blob: 4f7ae95e8e46436ce307f2de2c4e0d0ba9c45238 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkPDFBitmap.h"
#include "SkColorData.h"
#include "SkData.h"
#include "SkDeflate.h"
#include "SkExecutor.h"
#include "SkImage.h"
#include "SkImageInfoPriv.h"
#include "SkJpegInfo.h"
#include "SkPDFDocumentPriv.h"
#include "SkPDFTypes.h"
#include "SkPDFUtils.h"
#include "SkStream.h"
#include "SkTo.h"
////////////////////////////////////////////////////////////////////////////////
// write a single byte to a stream n times.
static void fill_stream(SkWStream* out, char value, size_t n) {
char buffer[4096];
memset(buffer, value, sizeof(buffer));
for (size_t i = 0; i < n / sizeof(buffer); ++i) {
out->write(buffer, sizeof(buffer));
}
out->write(buffer, n % sizeof(buffer));
}
/* It is necessary to average the color component of transparent
pixels with their surrounding neighbors since the PDF renderer may
separately re-sample the alpha and color channels when the image is
not displayed at its native resolution. Since an alpha of zero
gives no information about the color component, the pathological
case is a white image with sharp transparency bounds - the color
channel goes to black, and the should-be-transparent pixels are
rendered as grey because of the separate soft mask and color
resizing. e.g.: gm/bitmappremul.cpp */
static SkColor get_neighbor_avg_color(const SkPixmap& bm, int xOrig, int yOrig) {
SkASSERT(kBGRA_8888_SkColorType == bm.colorType());
unsigned r = 0, g = 0, b = 0, n = 0;
// Clamp the range to the edge of the bitmap.
int ymin = SkTMax(0, yOrig - 1);
int ymax = SkTMin(yOrig + 1, bm.height() - 1);
int xmin = SkTMax(0, xOrig - 1);
int xmax = SkTMin(xOrig + 1, bm.width() - 1);
for (int y = ymin; y <= ymax; ++y) {
const SkColor* scanline = bm.addr32(0, y);
for (int x = xmin; x <= xmax; ++x) {
SkColor color = scanline[x];
if (color != SK_ColorTRANSPARENT) {
r += SkColorGetR(color);
g += SkColorGetG(color);
b += SkColorGetB(color);
n++;
}
}
}
return n > 0 ? SkColorSetRGB(SkToU8(r / n), SkToU8(g / n), SkToU8(b / n))
: SK_ColorTRANSPARENT;
}
static void emit_stream(SkDynamicMemoryWStream* src, SkWStream* dst) {
dst->writeText(" stream\n");
src->writeToAndReset(dst);
dst->writeText("\nendstream");
}
static void emit_dict(SkWStream* stream, SkISize size, const char* colorSpace,
const SkPDFIndirectReference* smask, int length) {
SkPDFDict pdfDict("XObject");
pdfDict.insertName("Subtype", "Image");
pdfDict.insertInt("Width", size.width());
pdfDict.insertInt("Height", size.height());
pdfDict.insertName("ColorSpace", colorSpace);
if (smask) {
pdfDict.insertRef("SMask", *smask);
}
pdfDict.insertInt("BitsPerComponent", 8);
#ifdef SK_PDF_BASE85_BINARY
auto filters = SkPDFMakeArray();
filters->appendName("ASCII85Decode");
filters->appendName("FlateDecode");
pdfDict.insertObject("Filter", std::move(filters));
#else
pdfDict.insertName("Filter", "FlateDecode");
#endif
pdfDict.insertInt("Length", length);
pdfDict.emitObject(stream);
}
static SkPDFIndirectReference do_deflated_alpha(const SkPixmap& pm, SkPDFDocument* doc,
SkPDFIndirectReference ref) {
SkDynamicMemoryWStream buffer;
SkDeflateWStream deflateWStream(&buffer);
if (kAlpha_8_SkColorType == pm.colorType()) {
SkASSERT(pm.rowBytes() == (size_t)pm.width());
buffer.write(pm.addr8(), pm.width() * pm.height());
} else {
SkASSERT(pm.alphaType() == kUnpremul_SkAlphaType);
SkASSERT(pm.colorType() == kBGRA_8888_SkColorType);
SkASSERT(pm.rowBytes() == (size_t)pm.width() * 4);
const uint32_t* ptr = pm.addr32();
const uint32_t* stop = ptr + pm.height() * pm.width();
uint8_t byteBuffer[4092];
uint8_t* bufferStop = byteBuffer + SK_ARRAY_COUNT(byteBuffer);
uint8_t* dst = byteBuffer;
while (ptr != stop) {
*dst++ = 0xFF & ((*ptr++) >> SK_BGRA_A32_SHIFT);
if (dst == bufferStop) {
deflateWStream.write(byteBuffer, sizeof(byteBuffer));
dst = byteBuffer;
}
}
deflateWStream.write(byteBuffer, dst - byteBuffer);
}
deflateWStream.finalize();
#ifdef SK_PDF_BASE85_BINARY
SkPDFUtils::Base85Encode(buffer.detachAsStream(), &buffer);
#endif
SkWStream* stream = doc->beginObject(ref);
emit_dict(stream, pm.info().dimensions(), "DeviceGray", nullptr, buffer.bytesWritten());
emit_stream(&buffer, stream);
doc->endObject();
return ref;
}
static void do_deflated_image(const SkPixmap& pm,
SkPDFDocument* doc,
bool isOpaque,
SkPDFIndirectReference ref) {
SkPDFIndirectReference sMask;
if (!isOpaque) {
sMask = doc->reserveRef();
}
SkDynamicMemoryWStream buffer;
SkDeflateWStream deflateWStream(&buffer);
const char* colorSpace = "DeviceGray";
switch (pm.colorType()) {
case kAlpha_8_SkColorType:
fill_stream(&deflateWStream, '\x00', pm.width() * pm.height());
break;
case kGray_8_SkColorType:
SkASSERT(sMask.fValue = -1);
SkASSERT(pm.rowBytes() == (size_t)pm.width());
deflateWStream.write(pm.addr8(), pm.width() * pm.height());
break;
default:
colorSpace = "DeviceRGB";
SkASSERT(pm.alphaType() == kUnpremul_SkAlphaType);
SkASSERT(pm.colorType() == kBGRA_8888_SkColorType);
SkASSERT(pm.rowBytes() == (size_t)pm.width() * 4);
uint8_t byteBuffer[3072];
static_assert(SK_ARRAY_COUNT(byteBuffer) % 3 == 0, "");
uint8_t* bufferStop = byteBuffer + SK_ARRAY_COUNT(byteBuffer);
uint8_t* dst = byteBuffer;
for (int y = 0; y < pm.height(); ++y) {
const SkColor* src = pm.addr32(0, y);
for (int x = 0; x < pm.width(); ++x) {
SkColor color = *src++;
if (SkColorGetA(color) == SK_AlphaTRANSPARENT) {
color = get_neighbor_avg_color(pm, x, y);
}
*dst++ = SkColorGetR(color);
*dst++ = SkColorGetG(color);
*dst++ = SkColorGetB(color);
if (dst == bufferStop) {
deflateWStream.write(byteBuffer, sizeof(byteBuffer));
dst = byteBuffer;
}
}
}
deflateWStream.write(byteBuffer, dst - byteBuffer);
}
deflateWStream.finalize();
#ifdef SK_PDF_BASE85_BINARY
SkPDFUtils::Base85Encode(buffer.detachAsStream(), &buffer);
#endif
SkWStream* stream = doc->beginObject(ref);
emit_dict(stream, pm.info().dimensions(), colorSpace,
sMask.fValue != -1 ? &sMask : nullptr,
buffer.bytesWritten());
emit_stream(&buffer, stream);
doc->endObject();
if (!isOpaque) {
do_deflated_alpha(pm, doc, sMask);
}
}
static bool do_jpeg(const SkData& data, SkPDFDocument* doc, SkISize size,
SkPDFIndirectReference ref) {
SkISize jpegSize;
SkEncodedInfo::Color jpegColorType;
SkEncodedOrigin exifOrientation;
if (!SkGetJpegInfo(data.data(), data.size(), &jpegSize,
&jpegColorType, &exifOrientation)) {
return false;
}
bool yuv = jpegColorType == SkEncodedInfo::kYUV_Color;
bool goodColorType = yuv || jpegColorType == SkEncodedInfo::kGray_Color;
if (jpegSize != size // Sanity check.
|| !goodColorType
|| kTopLeft_SkEncodedOrigin != exifOrientation) {
return false;
}
#ifdef SK_PDF_IMAGE_STATS
gJpegImageObjects.fetch_add(1);
#endif
#ifdef SK_PDF_BASE85_BINARY
SkDynamicMemoryWStream buffer;
SkPDFUtils::Base85Encode(SkMemoryStream::MakeDirect(data.data(), data.size()), &buffer);
int length = SkToInt(buffer.bytesWritten());
#else
int length = SkToInt(data.size());
#endif
SkPDFDict pdfDict("XObject");
pdfDict.insertName("Subtype", "Image");
pdfDict.insertInt("Width", jpegSize.width());
pdfDict.insertInt("Height", jpegSize.height());
if (yuv) {
pdfDict.insertName("ColorSpace", "DeviceRGB");
} else {
pdfDict.insertName("ColorSpace", "DeviceGray");
}
pdfDict.insertInt("BitsPerComponent", 8);
#ifdef SK_PDF_BASE85_BINARY
auto filters = SkPDFMakeArray();
filters->appendName("ASCII85Decode");
filters->appendName("DCTDecode");
pdfDict.insertObject("Filter", std::move(filters));
#else
pdfDict.insertName("Filter", "DCTDecode");
#endif
pdfDict.insertInt("ColorTransform", 0);
pdfDict.insertInt("Length", length);
SkWStream* stream = doc->beginObject(ref);
pdfDict.emitObject(stream);
stream->writeText(" stream\n");
#ifdef SK_PDF_BASE85_BINARY
buffer.writeToAndReset(stream);
#else
stream->write(data.data(), data.size());
#endif
stream->writeText("\nendstream");
doc->endObject();
return true;
}
static SkBitmap to_pixels(const SkImage* image) {
SkBitmap bm;
int w = image->width(),
h = image->height();
switch (image->colorType()) {
case kAlpha_8_SkColorType:
bm.allocPixels(SkImageInfo::MakeA8(w, h));
break;
case kGray_8_SkColorType:
bm.allocPixels(SkImageInfo::Make(w, h, kGray_8_SkColorType, kOpaque_SkAlphaType));
break;
default: {
// TODO: makeColorSpace(sRGB) or actually tag the images
SkAlphaType at = bm.isOpaque() ? kOpaque_SkAlphaType : kUnpremul_SkAlphaType;
bm.allocPixels(SkImageInfo::Make(w, h, kBGRA_8888_SkColorType, at));
}
}
if (!image->readPixels(bm.pixmap(), 0, 0)) {
bm.eraseColor(SkColorSetARGB(0xFF, 0, 0, 0));
}
return bm;
}
void serialize_image(const SkImage* img,
int encodingQuality,
SkPDFDocument* doc,
SkPDFIndirectReference ref) {
SkASSERT(img);
SkASSERT(doc);
SkASSERT(encodingQuality >= 0);
SkISize dimensions = img->dimensions();
sk_sp<SkData> data = img->refEncodedData();
if (data && do_jpeg(*data, doc, dimensions, ref)) {
return;
}
SkBitmap bm = to_pixels(img);
SkPixmap pm = bm.pixmap();
bool isOpaque = pm.isOpaque() || pm.computeIsOpaque();
if (encodingQuality <= 100 && isOpaque) {
sk_sp<SkData> data = img->encodeToData(SkEncodedImageFormat::kJPEG, encodingQuality);
if (data && do_jpeg(*data, doc, dimensions, ref)) {
return;
}
}
do_deflated_image(pm, doc, isOpaque, ref);
}
SkPDFIndirectReference SkPDFSerializeImage(const SkImage* img,
SkPDFDocument* doc,
int encodingQuality) {
SkASSERT(img);
SkASSERT(doc);
SkPDFIndirectReference ref = doc->reserveRef();
if (SkExecutor* executor = doc->executor()) {
SkRef(img);
doc->incrementJobCount();
executor->add([img, encodingQuality, doc, ref]() {
serialize_image(img, encodingQuality, doc, ref);
SkSafeUnref(img);
doc->signalJobComplete();
});
return ref;
}
serialize_image(img, encodingQuality, doc, ref);
return ref;
}