blob: 6afa3671e124374ab6d379d60141487506eae39a [file] [log] [blame]
/*
* Copyright 2020 Google LLC.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/sksl/SkSLAnalysis.h"
#include "include/private/SkSLSampleUsage.h"
#include "src/sksl/ir/SkSLExpression.h"
#include "src/sksl/ir/SkSLProgram.h"
#include "src/sksl/ir/SkSLProgramElement.h"
#include "src/sksl/ir/SkSLStatement.h"
// ProgramElements
#include "src/sksl/ir/SkSLEnum.h"
#include "src/sksl/ir/SkSLExtension.h"
#include "src/sksl/ir/SkSLFunctionDefinition.h"
#include "src/sksl/ir/SkSLInterfaceBlock.h"
#include "src/sksl/ir/SkSLModifiers.h"
#include "src/sksl/ir/SkSLSection.h"
#include "src/sksl/ir/SkSLVarDeclarations.h"
// Statements
#include "src/sksl/ir/SkSLBlock.h"
#include "src/sksl/ir/SkSLBreakStatement.h"
#include "src/sksl/ir/SkSLContinueStatement.h"
#include "src/sksl/ir/SkSLDiscardStatement.h"
#include "src/sksl/ir/SkSLDoStatement.h"
#include "src/sksl/ir/SkSLExpressionStatement.h"
#include "src/sksl/ir/SkSLForStatement.h"
#include "src/sksl/ir/SkSLIfStatement.h"
#include "src/sksl/ir/SkSLNop.h"
#include "src/sksl/ir/SkSLReturnStatement.h"
#include "src/sksl/ir/SkSLSwitchStatement.h"
#include "src/sksl/ir/SkSLVarDeclarationsStatement.h"
#include "src/sksl/ir/SkSLWhileStatement.h"
// Expressions
#include "src/sksl/ir/SkSLBinaryExpression.h"
#include "src/sksl/ir/SkSLBoolLiteral.h"
#include "src/sksl/ir/SkSLConstructor.h"
#include "src/sksl/ir/SkSLExternalFunctionCall.h"
#include "src/sksl/ir/SkSLExternalValueReference.h"
#include "src/sksl/ir/SkSLFieldAccess.h"
#include "src/sksl/ir/SkSLFloatLiteral.h"
#include "src/sksl/ir/SkSLFunctionCall.h"
#include "src/sksl/ir/SkSLFunctionReference.h"
#include "src/sksl/ir/SkSLIndexExpression.h"
#include "src/sksl/ir/SkSLInlineMarker.h"
#include "src/sksl/ir/SkSLIntLiteral.h"
#include "src/sksl/ir/SkSLNullLiteral.h"
#include "src/sksl/ir/SkSLPostfixExpression.h"
#include "src/sksl/ir/SkSLPrefixExpression.h"
#include "src/sksl/ir/SkSLSetting.h"
#include "src/sksl/ir/SkSLSwizzle.h"
#include "src/sksl/ir/SkSLTernaryExpression.h"
#include "src/sksl/ir/SkSLTypeReference.h"
#include "src/sksl/ir/SkSLVariableReference.h"
namespace SkSL {
namespace {
static bool is_sample_call_to_fp(const FunctionCall& fc, const Variable& fp) {
const FunctionDeclaration& f = fc.fFunction;
return f.fBuiltin && f.fName == "sample" && fc.fArguments.size() >= 1 &&
fc.fArguments[0]->is<VariableReference>() &&
fc.fArguments[0]->as<VariableReference>().fVariable == &fp;
}
// Visitor that determines the merged SampleUsage for a given child 'fp' in the program.
class MergeSampleUsageVisitor : public ProgramVisitor {
public:
MergeSampleUsageVisitor(const Context& context, const Variable& fp)
: fContext(context), fFP(fp) {}
SampleUsage visit(const Program& program) {
fUsage = SampleUsage(); // reset to none
INHERITED::visit(program);
return fUsage;
}
protected:
const Context& fContext;
const Variable& fFP;
SampleUsage fUsage;
bool visitExpression(const Expression& e) override {
// Looking for sample(fp, inColor?, ...)
if (e.kind() == Expression::Kind::kFunctionCall) {
const FunctionCall& fc = e.as<FunctionCall>();
if (is_sample_call_to_fp(fc, fFP)) {
// Determine the type of call at this site, and merge it with the accumulated state
const Expression* lastArg = fc.fArguments.back().get();
if (lastArg->type() == *fContext.fFloat2_Type) {
fUsage.merge(SampleUsage::Explicit());
} else if (lastArg->type() == *fContext.fFloat3x3_Type) {
// Determine the type of matrix for this call site
if (lastArg->isConstantOrUniform()) {
if (lastArg->kind() == Expression::Kind::kVariableReference ||
lastArg->kind() == Expression::Kind::kConstructor) {
// FIXME if this is a constant, we should parse the float3x3 constructor
// and determine if the resulting matrix introduces perspective.
fUsage.merge(SampleUsage::UniformMatrix(lastArg->description()));
} else {
// FIXME this is really to workaround a restriction of the downstream
// code that relies on the SampleUsage's fExpression to identify uniform
// names. Once they are tracked separately, any uniform expression can
// work, but right now this avoids issues from '0.5 * matrix' that is
// both a constant AND a uniform.
fUsage.merge(SampleUsage::VariableMatrix());
}
} else {
fUsage.merge(SampleUsage::VariableMatrix());
}
} else {
// The only other signatures do pass-through sampling
fUsage.merge(SampleUsage::PassThrough());
}
// NOTE: we don't return true here just because we found a sample call. We need to
// process the entire program and merge across all encountered calls.
}
}
return INHERITED::visitExpression(e);
}
using INHERITED = ProgramVisitor;
};
// Visitor that searches through the program for references to a particular builtin variable
class BuiltinVariableVisitor : public ProgramVisitor {
public:
BuiltinVariableVisitor(int builtin) : fBuiltin(builtin) {}
bool visitExpression(const Expression& e) override {
if (e.is<VariableReference>()) {
const VariableReference& var = e.as<VariableReference>();
return var.fVariable->fModifiers.fLayout.fBuiltin == fBuiltin;
}
return INHERITED::visitExpression(e);
}
int fBuiltin;
using INHERITED = ProgramVisitor;
};
// Visitor that counts the number of nodes visited
class NodeCountVisitor : public ProgramVisitor {
public:
int visit(const Statement& s) {
fCount = 0;
this->visitStatement(s);
return fCount;
}
bool visitExpression(const Expression& e) override {
++fCount;
return INHERITED::visitExpression(e);
}
bool visitProgramElement(const ProgramElement& p) override {
++fCount;
return INHERITED::visitProgramElement(p);
}
bool visitStatement(const Statement& s) override {
++fCount;
return INHERITED::visitStatement(s);
}
private:
int fCount;
using INHERITED = ProgramVisitor;
};
class VariableWriteVisitor : public ProgramVisitor {
public:
VariableWriteVisitor(const Variable* var)
: fVar(var) {}
bool visit(const Statement& s) {
return this->visitStatement(s);
}
bool visitExpression(const Expression& e) override {
if (e.is<VariableReference>()) {
const VariableReference& ref = e.as<VariableReference>();
if (ref.fVariable == fVar && (ref.fRefKind == VariableReference::kWrite_RefKind ||
ref.fRefKind == VariableReference::kReadWrite_RefKind ||
ref.fRefKind == VariableReference::kPointer_RefKind)) {
return true;
}
}
return INHERITED::visitExpression(e);
}
private:
const Variable* fVar;
using INHERITED = ProgramVisitor;
};
} // namespace
////////////////////////////////////////////////////////////////////////////////
// Analysis
SampleUsage Analysis::GetSampleUsage(const Program& program, const Variable& fp) {
MergeSampleUsageVisitor visitor(*program.fContext, fp);
return visitor.visit(program);
}
bool Analysis::ReferencesBuiltin(const Program& program, int builtin) {
BuiltinVariableVisitor visitor(builtin);
return visitor.visit(program);
}
bool Analysis::ReferencesSampleCoords(const Program& program) {
return Analysis::ReferencesBuiltin(program, SK_MAIN_COORDS_BUILTIN);
}
bool Analysis::ReferencesFragCoords(const Program& program) {
return Analysis::ReferencesBuiltin(program, SK_FRAGCOORD_BUILTIN);
}
int Analysis::NodeCount(const FunctionDefinition& function) {
return NodeCountVisitor().visit(*function.fBody);
}
bool Analysis::StatementWritesToVariable(const Statement& stmt, const Variable& var) {
return VariableWriteVisitor(&var).visit(stmt);
}
////////////////////////////////////////////////////////////////////////////////
// ProgramVisitor
bool ProgramVisitor::visit(const Program& program) {
for (const ProgramElement& pe : program) {
if (this->visitProgramElement(pe)) {
return true;
}
}
return false;
}
bool ProgramVisitor::visitExpression(const Expression& e) {
switch(e.kind()) {
case Expression::Kind::kBoolLiteral:
case Expression::Kind::kDefined:
case Expression::Kind::kExternalValue:
case Expression::Kind::kFloatLiteral:
case Expression::Kind::kFunctionReference:
case Expression::Kind::kIntLiteral:
case Expression::Kind::kNullLiteral:
case Expression::Kind::kSetting:
case Expression::Kind::kTypeReference:
case Expression::Kind::kVariableReference:
// Leaf expressions return false
return false;
case Expression::Kind::kBinary: {
const BinaryExpression& b = e.as<BinaryExpression>();
return this->visitExpression(b.left()) || this->visitExpression(b.right()); }
case Expression::Kind::kConstructor: {
const Constructor& c = e.as<Constructor>();
for (const auto& arg : c.fArguments) {
if (this->visitExpression(*arg)) { return true; }
}
return false; }
case Expression::Kind::kExternalFunctionCall: {
const ExternalFunctionCall& c = e.as<ExternalFunctionCall>();
for (const auto& arg : c.fArguments) {
if (this->visitExpression(*arg)) { return true; }
}
return false; }
case Expression::Kind::kFieldAccess:
return this->visitExpression(*e.as<FieldAccess>().fBase);
case Expression::Kind::kFunctionCall: {
const FunctionCall& c = e.as<FunctionCall>();
for (const auto& arg : c.fArguments) {
if (this->visitExpression(*arg)) { return true; }
}
return false; }
case Expression::Kind::kIndex: {
const IndexExpression& i = e.as<IndexExpression>();
return this->visitExpression(*i.fBase) || this->visitExpression(*i.fIndex); }
case Expression::Kind::kPostfix:
return this->visitExpression(*e.as<PostfixExpression>().fOperand);
case Expression::Kind::kPrefix:
return this->visitExpression(*e.as<PrefixExpression>().fOperand);
case Expression::Kind::kSwizzle:
return this->visitExpression(*e.as<Swizzle>().fBase);
case Expression::Kind::kTernary: {
const TernaryExpression& t = e.as<TernaryExpression>();
return this->visitExpression(*t.fTest) ||
this->visitExpression(*t.fIfTrue) ||
this->visitExpression(*t.fIfFalse); }
default:
SkUNREACHABLE;
}
}
bool ProgramVisitor::visitStatement(const Statement& s) {
switch(s.kind()) {
case Statement::Kind::kBreak:
case Statement::Kind::kContinue:
case Statement::Kind::kDiscard:
case Statement::Kind::kInlineMarker:
case Statement::Kind::kNop:
// Leaf statements just return false
return false;
case Statement::Kind::kBlock:
for (const std::unique_ptr<Statement>& blockStmt : s.as<Block>().fStatements) {
if (this->visitStatement(*blockStmt)) { return true; }
}
return false;
case Statement::Kind::kDo: {
const DoStatement& d = s.as<DoStatement>();
return this->visitExpression(*d.fTest) || this->visitStatement(*d.fStatement); }
case Statement::Kind::kExpression:
return this->visitExpression(*s.as<ExpressionStatement>().fExpression);
case Statement::Kind::kFor: {
const ForStatement& f = s.as<ForStatement>();
return (f.fInitializer && this->visitStatement(*f.fInitializer)) ||
(f.fTest && this->visitExpression(*f.fTest)) ||
(f.fNext && this->visitExpression(*f.fNext)) ||
this->visitStatement(*f.fStatement); }
case Statement::Kind::kIf: {
const IfStatement& i = s.as<IfStatement>();
return this->visitExpression(*i.fTest) ||
this->visitStatement(*i.fIfTrue) ||
(i.fIfFalse && this->visitStatement(*i.fIfFalse)); }
case Statement::Kind::kReturn: {
const ReturnStatement& r = s.as<ReturnStatement>();
return r.fExpression && this->visitExpression(*r.fExpression); }
case Statement::Kind::kSwitch: {
const SwitchStatement& sw = s.as<SwitchStatement>();
if (this->visitExpression(*sw.fValue)) { return true; }
for (const auto& c : sw.fCases) {
if (c->fValue && this->visitExpression(*c->fValue)) { return true; }
for (const std::unique_ptr<Statement>& st : c->fStatements) {
if (this->visitStatement(*st)) { return true; }
}
}
return false; }
case Statement::Kind::kVarDeclaration: {
const VarDeclaration& v = s.as<VarDeclaration>();
for (const std::unique_ptr<Expression>& sizeExpr : v.fSizes) {
if (sizeExpr && this->visitExpression(*sizeExpr)) { return true; }
}
return v.fValue && this->visitExpression(*v.fValue); }
case Statement::Kind::kVarDeclarations:
return this->visitProgramElement(*s.as<VarDeclarationsStatement>().fDeclaration);
case Statement::Kind::kWhile: {
const WhileStatement& w = s.as<WhileStatement>();
return this->visitExpression(*w.fTest) || this->visitStatement(*w.fStatement); }
default:
SkUNREACHABLE;
}
}
bool ProgramVisitor::visitProgramElement(const ProgramElement& pe) {
switch(pe.kind()) {
case ProgramElement::Kind::kEnum:
case ProgramElement::Kind::kExtension:
case ProgramElement::Kind::kModifiers:
case ProgramElement::Kind::kSection:
// Leaf program elements just return false by default
return false;
case ProgramElement::Kind::kFunction:
return this->visitStatement(*pe.as<FunctionDefinition>().fBody);
case ProgramElement::Kind::kInterfaceBlock:
for (const auto& e : pe.as<InterfaceBlock>().fSizes) {
if (this->visitExpression(*e)) { return true; }
}
return false;
case ProgramElement::Kind::kVar:
for (const auto& v : pe.as<VarDeclarations>().fVars) {
if (this->visitStatement(*v)) { return true; }
}
return false;
default:
SkUNREACHABLE;
}
}
} // namespace SkSL