|  | /* | 
|  | * Copyright 2011 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "include/core/SkPoint.h" | 
|  | #include "include/private/SkColorData.h" | 
|  | #include "include/private/SkFixed.h" | 
|  | #include "include/private/SkHalf.h" | 
|  | #include "include/private/SkTo.h" | 
|  | #include "include/utils/SkRandom.h" | 
|  | #include "src/core/SkEndian.h" | 
|  | #include "src/core/SkFDot6.h" | 
|  | #include "src/core/SkMathPriv.h" | 
|  | #include "tests/Test.h" | 
|  |  | 
|  | static void test_clz(skiatest::Reporter* reporter) { | 
|  | REPORTER_ASSERT(reporter, 32 == SkCLZ(0)); | 
|  | REPORTER_ASSERT(reporter, 31 == SkCLZ(1)); | 
|  | REPORTER_ASSERT(reporter, 1 == SkCLZ(1 << 30)); | 
|  | REPORTER_ASSERT(reporter, 0 == SkCLZ(~0U)); | 
|  |  | 
|  | SkRandom rand; | 
|  | for (int i = 0; i < 1000; ++i) { | 
|  | uint32_t mask = rand.nextU(); | 
|  | // need to get some zeros for testing, but in some obscure way so the | 
|  | // compiler won't "see" that, and work-around calling the functions. | 
|  | mask >>= (mask & 31); | 
|  | int intri = SkCLZ(mask); | 
|  | int porta = SkCLZ_portable(mask); | 
|  | REPORTER_ASSERT(reporter, intri == porta); | 
|  | } | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | static float sk_fsel(float pred, float result_ge, float result_lt) { | 
|  | return pred >= 0 ? result_ge : result_lt; | 
|  | } | 
|  |  | 
|  | static float fast_floor(float x) { | 
|  | //    float big = sk_fsel(x, 0x1.0p+23, -0x1.0p+23); | 
|  | float big = sk_fsel(x, (float)(1 << 23), -(float)(1 << 23)); | 
|  | return (float)(x + big) - big; | 
|  | } | 
|  |  | 
|  | static float std_floor(float x) { | 
|  | return sk_float_floor(x); | 
|  | } | 
|  |  | 
|  | static void test_floor_value(skiatest::Reporter* reporter, float value) { | 
|  | float fast = fast_floor(value); | 
|  | float std = std_floor(value); | 
|  | if (std != fast) { | 
|  | ERRORF(reporter, "fast_floor(%.9g) == %.9g != %.9g == std_floor(%.9g)", | 
|  | value, fast, std, value); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_floor(skiatest::Reporter* reporter) { | 
|  | static const float gVals[] = { | 
|  | 0, 1, 1.1f, 1.01f, 1.001f, 1.0001f, 1.00001f, 1.000001f, 1.0000001f | 
|  | }; | 
|  |  | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(gVals); ++i) { | 
|  | test_floor_value(reporter, gVals[i]); | 
|  | //        test_floor_value(reporter, -gVals[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | // test that SkMul16ShiftRound and SkMulDiv255Round return the same result | 
|  | static void test_muldivround(skiatest::Reporter* reporter) { | 
|  | #if 0 | 
|  | // this "complete" test is too slow, so we test a random sampling of it | 
|  |  | 
|  | for (int a = 0; a <= 32767; ++a) { | 
|  | for (int b = 0; b <= 32767; ++b) { | 
|  | unsigned prod0 = SkMul16ShiftRound(a, b, 8); | 
|  | unsigned prod1 = SkMulDiv255Round(a, b); | 
|  | SkASSERT(prod0 == prod1); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | SkRandom rand; | 
|  | for (int i = 0; i < 10000; ++i) { | 
|  | unsigned a = rand.nextU() & 0x7FFF; | 
|  | unsigned b = rand.nextU() & 0x7FFF; | 
|  |  | 
|  | unsigned prod0 = SkMul16ShiftRound(a, b, 8); | 
|  | unsigned prod1 = SkMulDiv255Round(a, b); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, prod0 == prod1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static float float_blend(int src, int dst, float unit) { | 
|  | return dst + (src - dst) * unit; | 
|  | } | 
|  |  | 
|  | static int blend31(int src, int dst, int a31) { | 
|  | return dst + ((src - dst) * a31 * 2114 >> 16); | 
|  | //    return dst + ((src - dst) * a31 * 33 >> 10); | 
|  | } | 
|  |  | 
|  | static int blend31_slow(int src, int dst, int a31) { | 
|  | int prod = src * a31 + (31 - a31) * dst + 16; | 
|  | prod = (prod + (prod >> 5)) >> 5; | 
|  | return prod; | 
|  | } | 
|  |  | 
|  | static int blend31_round(int src, int dst, int a31) { | 
|  | int prod = (src - dst) * a31 + 16; | 
|  | prod = (prod + (prod >> 5)) >> 5; | 
|  | return dst + prod; | 
|  | } | 
|  |  | 
|  | static int blend31_old(int src, int dst, int a31) { | 
|  | a31 += a31 >> 4; | 
|  | return dst + ((src - dst) * a31 >> 5); | 
|  | } | 
|  |  | 
|  | // suppress unused code warning | 
|  | static int (*blend_functions[])(int, int, int) = { | 
|  | blend31, | 
|  | blend31_slow, | 
|  | blend31_round, | 
|  | blend31_old | 
|  | }; | 
|  |  | 
|  | static void test_blend31() { | 
|  | int failed = 0; | 
|  | int death = 0; | 
|  | if (false) { // avoid bit rot, suppress warning | 
|  | failed = (*blend_functions[0])(0,0,0); | 
|  | } | 
|  | for (int src = 0; src <= 255; src++) { | 
|  | for (int dst = 0; dst <= 255; dst++) { | 
|  | for (int a = 0; a <= 31; a++) { | 
|  | //                int r0 = blend31(src, dst, a); | 
|  | //                int r0 = blend31_round(src, dst, a); | 
|  | //                int r0 = blend31_old(src, dst, a); | 
|  | int r0 = blend31_slow(src, dst, a); | 
|  |  | 
|  | float f = float_blend(src, dst, a / 31.f); | 
|  | int r1 = (int)f; | 
|  | int r2 = SkScalarRoundToInt(f); | 
|  |  | 
|  | if (r0 != r1 && r0 != r2) { | 
|  | SkDebugf("src:%d dst:%d a:%d result:%d float:%g\n", | 
|  | src,   dst, a,        r0,      f); | 
|  | failed += 1; | 
|  | } | 
|  | if (r0 > 255) { | 
|  | death += 1; | 
|  | SkDebugf("death src:%d dst:%d a:%d result:%d float:%g\n", | 
|  | src,   dst, a,        r0,      f); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | SkDebugf("---- failed %d death %d\n", failed, death); | 
|  | } | 
|  |  | 
|  | static void check_length(skiatest::Reporter* reporter, | 
|  | const SkPoint& p, SkScalar targetLen) { | 
|  | float x = SkScalarToFloat(p.fX); | 
|  | float y = SkScalarToFloat(p.fY); | 
|  | float len = sk_float_sqrt(x*x + y*y); | 
|  |  | 
|  | len /= SkScalarToFloat(targetLen); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, len > 0.999f && len < 1.001f); | 
|  | } | 
|  |  | 
|  | static void unittest_isfinite(skiatest::Reporter* reporter) { | 
|  | float nan = sk_float_asin(2); | 
|  | float inf = SK_ScalarInfinity; | 
|  | float big = 3.40282e+038f; | 
|  |  | 
|  | REPORTER_ASSERT(reporter, !SkScalarIsNaN(inf)); | 
|  | REPORTER_ASSERT(reporter, !SkScalarIsNaN(-inf)); | 
|  | REPORTER_ASSERT(reporter, !SkScalarIsFinite(inf)); | 
|  | REPORTER_ASSERT(reporter, !SkScalarIsFinite(-inf)); | 
|  |  | 
|  | REPORTER_ASSERT(reporter,  SkScalarIsNaN(nan)); | 
|  | REPORTER_ASSERT(reporter, !SkScalarIsNaN(big)); | 
|  | REPORTER_ASSERT(reporter, !SkScalarIsNaN(-big)); | 
|  | REPORTER_ASSERT(reporter, !SkScalarIsNaN(0)); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, !SkScalarIsFinite(nan)); | 
|  | REPORTER_ASSERT(reporter,  SkScalarIsFinite(big)); | 
|  | REPORTER_ASSERT(reporter,  SkScalarIsFinite(-big)); | 
|  | REPORTER_ASSERT(reporter,  SkScalarIsFinite(0)); | 
|  | } | 
|  |  | 
|  | static void unittest_half(skiatest::Reporter* reporter) { | 
|  | static const float gFloats[] = { | 
|  | 0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3, | 
|  | -0.f, -1.f, -0.5f, -0.499999f, -0.5000001f, -1.f/3 | 
|  | }; | 
|  |  | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(gFloats); ++i) { | 
|  | SkHalf h = SkFloatToHalf(gFloats[i]); | 
|  | float f = SkHalfToFloat(h); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, gFloats[i])); | 
|  | } | 
|  |  | 
|  | // check some special values | 
|  | union FloatUnion { | 
|  | uint32_t fU; | 
|  | float    fF; | 
|  | }; | 
|  |  | 
|  | static const FloatUnion largestPositiveHalf = { ((142 << 23) | (1023 << 13)) }; | 
|  | SkHalf h = SkFloatToHalf(largestPositiveHalf.fF); | 
|  | float f = SkHalfToFloat(h); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestPositiveHalf.fF)); | 
|  |  | 
|  | static const FloatUnion largestNegativeHalf = { (1u << 31) | (142u << 23) | (1023u << 13) }; | 
|  | h = SkFloatToHalf(largestNegativeHalf.fF); | 
|  | f = SkHalfToFloat(h); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestNegativeHalf.fF)); | 
|  |  | 
|  | static const FloatUnion smallestPositiveHalf = { 102 << 23 }; | 
|  | h = SkFloatToHalf(smallestPositiveHalf.fF); | 
|  | f = SkHalfToFloat(h); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, smallestPositiveHalf.fF)); | 
|  |  | 
|  | static const FloatUnion overflowHalf = { ((143 << 23) | (1023 << 13)) }; | 
|  | h = SkFloatToHalf(overflowHalf.fF); | 
|  | f = SkHalfToFloat(h); | 
|  | REPORTER_ASSERT(reporter, !SkScalarIsFinite(f) ); | 
|  |  | 
|  | static const FloatUnion underflowHalf = { 101 << 23 }; | 
|  | h = SkFloatToHalf(underflowHalf.fF); | 
|  | f = SkHalfToFloat(h); | 
|  | REPORTER_ASSERT(reporter, f == 0.0f ); | 
|  |  | 
|  | static const FloatUnion inf32 = { 255 << 23 }; | 
|  | h = SkFloatToHalf(inf32.fF); | 
|  | f = SkHalfToFloat(h); | 
|  | REPORTER_ASSERT(reporter, !SkScalarIsFinite(f) ); | 
|  |  | 
|  | static const FloatUnion nan32 = { 255 << 23 | 1 }; | 
|  | h = SkFloatToHalf(nan32.fF); | 
|  | f = SkHalfToFloat(h); | 
|  | REPORTER_ASSERT(reporter, SkScalarIsNaN(f) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | template <typename RSqrtFn> | 
|  | static void test_rsqrt(skiatest::Reporter* reporter, RSqrtFn rsqrt) { | 
|  | const float maxRelativeError = 6.50196699e-4f; | 
|  |  | 
|  | // test close to 0 up to 1 | 
|  | float input = 0.000001f; | 
|  | for (int i = 0; i < 1000; ++i) { | 
|  | float exact = 1.0f/sk_float_sqrt(input); | 
|  | float estimate = rsqrt(input); | 
|  | float relativeError = sk_float_abs(exact - estimate)/exact; | 
|  | REPORTER_ASSERT(reporter, relativeError <= maxRelativeError); | 
|  | input += 0.001f; | 
|  | } | 
|  |  | 
|  | // test 1 to ~100 | 
|  | input = 1.0f; | 
|  | for (int i = 0; i < 1000; ++i) { | 
|  | float exact = 1.0f/sk_float_sqrt(input); | 
|  | float estimate = rsqrt(input); | 
|  | float relativeError = sk_float_abs(exact - estimate)/exact; | 
|  | REPORTER_ASSERT(reporter, relativeError <= maxRelativeError); | 
|  | input += 0.01f; | 
|  | } | 
|  |  | 
|  | // test some big numbers | 
|  | input = 1000000.0f; | 
|  | for (int i = 0; i < 100; ++i) { | 
|  | float exact = 1.0f/sk_float_sqrt(input); | 
|  | float estimate = rsqrt(input); | 
|  | float relativeError = sk_float_abs(exact - estimate)/exact; | 
|  | REPORTER_ASSERT(reporter, relativeError <= maxRelativeError); | 
|  | input += 754326.f; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_muldiv255(skiatest::Reporter* reporter) { | 
|  | for (int a = 0; a <= 255; a++) { | 
|  | for (int b = 0; b <= 255; b++) { | 
|  | int ab = a * b; | 
|  | float s = ab / 255.0f; | 
|  | int round = (int)floorf(s + 0.5f); | 
|  | int trunc = (int)floorf(s); | 
|  |  | 
|  | int iround = SkMulDiv255Round(a, b); | 
|  | int itrunc = SkMulDiv255Trunc(a, b); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, iround == round); | 
|  | REPORTER_ASSERT(reporter, itrunc == trunc); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, itrunc <= iround); | 
|  | REPORTER_ASSERT(reporter, iround <= a); | 
|  | REPORTER_ASSERT(reporter, iround <= b); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_muldiv255ceiling(skiatest::Reporter* reporter) { | 
|  | for (int c = 0; c <= 255; c++) { | 
|  | for (int a = 0; a <= 255; a++) { | 
|  | int product = (c * a + 255); | 
|  | int expected_ceiling = (product + (product >> 8)) >> 8; | 
|  | int webkit_ceiling = (c * a + 254) / 255; | 
|  | REPORTER_ASSERT(reporter, expected_ceiling == webkit_ceiling); | 
|  | int skia_ceiling = SkMulDiv255Ceiling(c, a); | 
|  | REPORTER_ASSERT(reporter, skia_ceiling == webkit_ceiling); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_copysign(skiatest::Reporter* reporter) { | 
|  | static const int32_t gTriples[] = { | 
|  | // x, y, expected result | 
|  | 0, 0, 0, | 
|  | 0, 1, 0, | 
|  | 0, -1, 0, | 
|  | 1, 0, 1, | 
|  | 1, 1, 1, | 
|  | 1, -1, -1, | 
|  | -1, 0, 1, | 
|  | -1, 1, 1, | 
|  | -1, -1, -1, | 
|  | }; | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(gTriples); i += 3) { | 
|  | REPORTER_ASSERT(reporter, | 
|  | SkCopySign32(gTriples[i], gTriples[i+1]) == gTriples[i+2]); | 
|  | float x = (float)gTriples[i]; | 
|  | float y = (float)gTriples[i+1]; | 
|  | float expected = (float)gTriples[i+2]; | 
|  | REPORTER_ASSERT(reporter, sk_float_copysign(x, y) == expected); | 
|  | } | 
|  |  | 
|  | SkRandom rand; | 
|  | for (int j = 0; j < 1000; j++) { | 
|  | int ix = rand.nextS(); | 
|  | REPORTER_ASSERT(reporter, SkCopySign32(ix, ix) == ix); | 
|  | REPORTER_ASSERT(reporter, SkCopySign32(ix, -ix) == -ix); | 
|  | REPORTER_ASSERT(reporter, SkCopySign32(-ix, ix) == ix); | 
|  | REPORTER_ASSERT(reporter, SkCopySign32(-ix, -ix) == -ix); | 
|  |  | 
|  | SkScalar sx = rand.nextSScalar1(); | 
|  | REPORTER_ASSERT(reporter, SkScalarCopySign(sx, sx) == sx); | 
|  | REPORTER_ASSERT(reporter, SkScalarCopySign(sx, -sx) == -sx); | 
|  | REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, sx) == sx); | 
|  | REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, -sx) == -sx); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void huge_vector_normalize(skiatest::Reporter* reporter) { | 
|  | // these values should fail (overflow/underflow) trying to normalize | 
|  | const SkVector fail[] = { | 
|  | { 0, 0 }, | 
|  | { SK_ScalarInfinity, 0 }, { 0, SK_ScalarInfinity }, | 
|  | { 0, SK_ScalarNaN }, { SK_ScalarNaN, 0 }, | 
|  | }; | 
|  | for (SkVector v : fail) { | 
|  | SkVector v2 = v; | 
|  | if (v2.setLength(1.0f)) { | 
|  | REPORTER_ASSERT(reporter, !v.setLength(1.0f)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | DEF_TEST(Math, reporter) { | 
|  | int         i; | 
|  | SkRandom    rand; | 
|  |  | 
|  | // these should assert | 
|  | #if 0 | 
|  | SkToS8(128); | 
|  | SkToS8(-129); | 
|  | SkToU8(256); | 
|  | SkToU8(-5); | 
|  |  | 
|  | SkToS16(32768); | 
|  | SkToS16(-32769); | 
|  | SkToU16(65536); | 
|  | SkToU16(-5); | 
|  |  | 
|  | if (sizeof(size_t) > 4) { | 
|  | SkToS32(4*1024*1024); | 
|  | SkToS32(-4*1024*1024); | 
|  | SkToU32(5*1024*1024); | 
|  | SkToU32(-5); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | test_muldiv255(reporter); | 
|  | test_muldiv255ceiling(reporter); | 
|  | test_copysign(reporter); | 
|  |  | 
|  | { | 
|  | SkScalar x = SK_ScalarNaN; | 
|  | REPORTER_ASSERT(reporter, SkScalarIsNaN(x)); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 10000; i++) { | 
|  | SkPoint p; | 
|  |  | 
|  | // These random values are being treated as 32-bit-patterns, not as | 
|  | // ints; calling SkIntToScalar() here produces crashes. | 
|  | p.setLength((SkScalar) rand.nextS(), | 
|  | (SkScalar) rand.nextS(), | 
|  | SK_Scalar1); | 
|  | check_length(reporter, p, SK_Scalar1); | 
|  | p.setLength((SkScalar) (rand.nextS() >> 13), | 
|  | (SkScalar) (rand.nextS() >> 13), | 
|  | SK_Scalar1); | 
|  | check_length(reporter, p, SK_Scalar1); | 
|  | } | 
|  |  | 
|  | { | 
|  | SkFixed result = SkFixedDiv(100, 100); | 
|  | REPORTER_ASSERT(reporter, result == SK_Fixed1); | 
|  | result = SkFixedDiv(1, SK_Fixed1); | 
|  | REPORTER_ASSERT(reporter, result == 1); | 
|  | result = SkFixedDiv(10 - 1, SK_Fixed1 * 3); | 
|  | REPORTER_ASSERT(reporter, result == 3); | 
|  | } | 
|  |  | 
|  | { | 
|  | REPORTER_ASSERT(reporter, (SkFixedRoundToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5); | 
|  | REPORTER_ASSERT(reporter, (SkFixedFloorToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5); | 
|  | REPORTER_ASSERT(reporter, (SkFixedCeilToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5); | 
|  | } | 
|  |  | 
|  | huge_vector_normalize(reporter); | 
|  | unittest_isfinite(reporter); | 
|  | unittest_half(reporter); | 
|  | test_rsqrt(reporter, sk_float_rsqrt); | 
|  | test_rsqrt(reporter, sk_float_rsqrt_portable); | 
|  |  | 
|  | for (i = 0; i < 10000; i++) { | 
|  | SkFixed numer = rand.nextS(); | 
|  | SkFixed denom = rand.nextS(); | 
|  | SkFixed result = SkFixedDiv(numer, denom); | 
|  | int64_t check = SkLeftShift((int64_t)numer, 16) / denom; | 
|  |  | 
|  | (void)SkCLZ(numer); | 
|  | (void)SkCLZ(denom); | 
|  |  | 
|  | REPORTER_ASSERT(reporter, result != (SkFixed)SK_NaN32); | 
|  | if (check > SK_MaxS32) { | 
|  | check = SK_MaxS32; | 
|  | } else if (check < -SK_MaxS32) { | 
|  | check = SK_MinS32; | 
|  | } | 
|  | if (result != (int32_t)check) { | 
|  | ERRORF(reporter, "\nFixed Divide: %8x / %8x -> %8x %8x\n", numer, denom, result, check); | 
|  | } | 
|  | REPORTER_ASSERT(reporter, result == (int32_t)check); | 
|  | } | 
|  |  | 
|  | if (false) test_floor(reporter); | 
|  |  | 
|  | // disable for now | 
|  | if (false) test_blend31();  // avoid bit rot, suppress warning | 
|  |  | 
|  | test_muldivround(reporter); | 
|  | test_clz(reporter); | 
|  | } | 
|  |  | 
|  | template <typename T> struct PairRec { | 
|  | T   fYin; | 
|  | T   fYang; | 
|  | }; | 
|  |  | 
|  | DEF_TEST(TestEndian, reporter) { | 
|  | static const PairRec<uint16_t> g16[] = { | 
|  | { 0x0,      0x0     }, | 
|  | { 0xFFFF,   0xFFFF  }, | 
|  | { 0x1122,   0x2211  }, | 
|  | }; | 
|  | static const PairRec<uint32_t> g32[] = { | 
|  | { 0x0,          0x0         }, | 
|  | { 0xFFFFFFFF,   0xFFFFFFFF  }, | 
|  | { 0x11223344,   0x44332211  }, | 
|  | }; | 
|  | static const PairRec<uint64_t> g64[] = { | 
|  | { 0x0,      0x0                             }, | 
|  | { 0xFFFFFFFFFFFFFFFFULL,  0xFFFFFFFFFFFFFFFFULL  }, | 
|  | { 0x1122334455667788ULL,  0x8877665544332211ULL  }, | 
|  | }; | 
|  |  | 
|  | REPORTER_ASSERT(reporter, 0x1122 == SkTEndianSwap16<0x2211>::value); | 
|  | REPORTER_ASSERT(reporter, 0x11223344 == SkTEndianSwap32<0x44332211>::value); | 
|  | REPORTER_ASSERT(reporter, 0x1122334455667788ULL == SkTEndianSwap64<0x8877665544332211ULL>::value); | 
|  |  | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(g16); ++i) { | 
|  | REPORTER_ASSERT(reporter, g16[i].fYang == SkEndianSwap16(g16[i].fYin)); | 
|  | } | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(g32); ++i) { | 
|  | REPORTER_ASSERT(reporter, g32[i].fYang == SkEndianSwap32(g32[i].fYin)); | 
|  | } | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(g64); ++i) { | 
|  | REPORTER_ASSERT(reporter, g64[i].fYang == SkEndianSwap64(g64[i].fYin)); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | static void test_divmod(skiatest::Reporter* r) { | 
|  | #if !defined(__MSVC_RUNTIME_CHECKS) | 
|  | const struct { | 
|  | T numer; | 
|  | T denom; | 
|  | } kEdgeCases[] = { | 
|  | {(T)17, (T)17}, | 
|  | {(T)17, (T)4}, | 
|  | {(T)0,  (T)17}, | 
|  | // For unsigned T these negatives are just some large numbers.  Doesn't hurt to test them. | 
|  | {(T)-17, (T)-17}, | 
|  | {(T)-17, (T)4}, | 
|  | {(T)17,  (T)-4}, | 
|  | {(T)-17, (T)-4}, | 
|  | }; | 
|  |  | 
|  | for (size_t i = 0; i < SK_ARRAY_COUNT(kEdgeCases); i++) { | 
|  | const T numer = kEdgeCases[i].numer; | 
|  | const T denom = kEdgeCases[i].denom; | 
|  | T div, mod; | 
|  | SkTDivMod(numer, denom, &div, &mod); | 
|  | REPORTER_ASSERT(r, numer/denom == div); | 
|  | REPORTER_ASSERT(r, numer%denom == mod); | 
|  | } | 
|  |  | 
|  | SkRandom rand; | 
|  | for (size_t i = 0; i < 10000; i++) { | 
|  | const T numer = (T)rand.nextS(); | 
|  | T denom = 0; | 
|  | while (0 == denom) { | 
|  | denom = (T)rand.nextS(); | 
|  | } | 
|  | T div, mod; | 
|  | SkTDivMod(numer, denom, &div, &mod); | 
|  | REPORTER_ASSERT(r, numer/denom == div); | 
|  | REPORTER_ASSERT(r, numer%denom == mod); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | DEF_TEST(divmod_u8, r) { | 
|  | test_divmod<uint8_t>(r); | 
|  | } | 
|  |  | 
|  | DEF_TEST(divmod_u16, r) { | 
|  | test_divmod<uint16_t>(r); | 
|  | } | 
|  |  | 
|  | DEF_TEST(divmod_u32, r) { | 
|  | test_divmod<uint32_t>(r); | 
|  | } | 
|  |  | 
|  | DEF_TEST(divmod_u64, r) { | 
|  | test_divmod<uint64_t>(r); | 
|  | } | 
|  |  | 
|  | DEF_TEST(divmod_s8, r) { | 
|  | test_divmod<int8_t>(r); | 
|  | } | 
|  |  | 
|  | DEF_TEST(divmod_s16, r) { | 
|  | test_divmod<int16_t>(r); | 
|  | } | 
|  |  | 
|  | DEF_TEST(divmod_s32, r) { | 
|  | test_divmod<int32_t>(r); | 
|  | } | 
|  |  | 
|  | DEF_TEST(divmod_s64, r) { | 
|  | test_divmod<int64_t>(r); | 
|  | } | 
|  |  | 
|  | static void test_nextsizepow2(skiatest::Reporter* r, size_t test, size_t expectedAns) { | 
|  | size_t ans = GrNextSizePow2(test); | 
|  |  | 
|  | REPORTER_ASSERT(r, ans == expectedAns); | 
|  | //SkDebugf("0x%zx -> 0x%zx (0x%zx)\n", test, ans, expectedAns); | 
|  | } | 
|  |  | 
|  | DEF_TEST(GrNextSizePow2, reporter) { | 
|  | constexpr int kNumSizeTBits = 8 * sizeof(size_t); | 
|  |  | 
|  | size_t test = 0, expectedAns = 1; | 
|  |  | 
|  | test_nextsizepow2(reporter, test, expectedAns); | 
|  |  | 
|  | test = 1; expectedAns = 1; | 
|  |  | 
|  | for (int i = 1; i < kNumSizeTBits; ++i) { | 
|  | test_nextsizepow2(reporter, test, expectedAns); | 
|  |  | 
|  | test++; | 
|  | expectedAns <<= 1; | 
|  |  | 
|  | test_nextsizepow2(reporter, test, expectedAns); | 
|  |  | 
|  | test = expectedAns; | 
|  | } | 
|  |  | 
|  | // For the remaining three tests there is no higher power (of 2) | 
|  | test = 0x1; | 
|  | test <<= kNumSizeTBits-1; | 
|  | test_nextsizepow2(reporter, test, test); | 
|  |  | 
|  | test++; | 
|  | test_nextsizepow2(reporter, test, test); | 
|  |  | 
|  | test_nextsizepow2(reporter, SIZE_MAX, SIZE_MAX); | 
|  | } | 
|  |  | 
|  | DEF_TEST(FloatSaturate32, reporter) { | 
|  | const struct { | 
|  | float   fFloat; | 
|  | int     fExpectedInt; | 
|  | } recs[] = { | 
|  | { 0, 0 }, | 
|  | { 100.5f, 100 }, | 
|  | { (float)SK_MaxS32, SK_MaxS32FitsInFloat }, | 
|  | { (float)SK_MinS32, SK_MinS32FitsInFloat }, | 
|  | { SK_MaxS32 * 100.0f, SK_MaxS32FitsInFloat }, | 
|  | { SK_MinS32 * 100.0f, SK_MinS32FitsInFloat }, | 
|  | { SK_ScalarInfinity, SK_MaxS32FitsInFloat }, | 
|  | { SK_ScalarNegativeInfinity, SK_MinS32FitsInFloat }, | 
|  | { SK_ScalarNaN, SK_MaxS32FitsInFloat }, | 
|  | }; | 
|  |  | 
|  | for (auto r : recs) { | 
|  | int i = sk_float_saturate2int(r.fFloat); | 
|  | REPORTER_ASSERT(reporter, r.fExpectedInt == i); | 
|  |  | 
|  | // Ensure that SkTPin bounds even non-finite values (including NaN) | 
|  | SkScalar p = SkTPin<SkScalar>(r.fFloat, 0, 100); | 
|  | REPORTER_ASSERT(reporter, p >= 0 && p <= 100); | 
|  | } | 
|  | } | 
|  |  | 
|  | DEF_TEST(FloatSaturate64, reporter) { | 
|  | const struct { | 
|  | float   fFloat; | 
|  | int64_t fExpected64; | 
|  | } recs[] = { | 
|  | { 0, 0 }, | 
|  | { 100.5f, 100 }, | 
|  | { (float)SK_MaxS64, SK_MaxS64FitsInFloat }, | 
|  | { (float)SK_MinS64, SK_MinS64FitsInFloat }, | 
|  | { SK_MaxS64 * 100.0f, SK_MaxS64FitsInFloat }, | 
|  | { SK_MinS64 * 100.0f, SK_MinS64FitsInFloat }, | 
|  | { SK_ScalarInfinity, SK_MaxS64FitsInFloat }, | 
|  | { SK_ScalarNegativeInfinity, SK_MinS64FitsInFloat }, | 
|  | { SK_ScalarNaN, SK_MaxS64FitsInFloat }, | 
|  | }; | 
|  |  | 
|  | for (auto r : recs) { | 
|  | int64_t i = sk_float_saturate2int64(r.fFloat); | 
|  | REPORTER_ASSERT(reporter, r.fExpected64 == i); | 
|  | } | 
|  | } | 
|  |  | 
|  | DEF_TEST(DoubleSaturate32, reporter) { | 
|  | const struct { | 
|  | double  fDouble; | 
|  | int     fExpectedInt; | 
|  | } recs[] = { | 
|  | { 0, 0 }, | 
|  | { 100.5, 100 }, | 
|  | { SK_MaxS32, SK_MaxS32 }, | 
|  | { SK_MinS32, SK_MinS32 }, | 
|  | { SK_MaxS32 - 1, SK_MaxS32 - 1 }, | 
|  | { SK_MinS32 + 1, SK_MinS32 + 1 }, | 
|  | { SK_MaxS32 * 100.0, SK_MaxS32 }, | 
|  | { SK_MinS32 * 100.0, SK_MinS32 }, | 
|  | { SK_ScalarInfinity, SK_MaxS32 }, | 
|  | { SK_ScalarNegativeInfinity, SK_MinS32 }, | 
|  | { SK_ScalarNaN, SK_MaxS32 }, | 
|  | }; | 
|  |  | 
|  | for (auto r : recs) { | 
|  | int i = sk_double_saturate2int(r.fDouble); | 
|  | REPORTER_ASSERT(reporter, r.fExpectedInt == i); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if defined(__ARM_NEON) | 
|  | #include <arm_neon.h> | 
|  |  | 
|  | DEF_TEST(NeonU16Div255, r) { | 
|  |  | 
|  | for (int v = 0; v <= 255*255; v++) { | 
|  | int want = (v + 127)/255; | 
|  |  | 
|  | uint16x8_t V = vdupq_n_u16(v); | 
|  | int got = vrshrq_n_u16(vrsraq_n_u16(V, V, 8), 8)[0]; | 
|  |  | 
|  | if (got != want) { | 
|  | SkDebugf("%d -> %d, want %d\n", v, got, want); | 
|  | } | 
|  | REPORTER_ASSERT(r, got == want); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | DEF_TEST(unit_floats, r) { | 
|  | // pick a non-trivial, non-pow-2 value, to test the loop | 
|  | float v[13]; | 
|  | constexpr int N = SK_ARRAY_COUNT(v); | 
|  |  | 
|  | // empty array reports true | 
|  | REPORTER_ASSERT(r, sk_floats_are_unit(v, 0)); | 
|  |  | 
|  | SkRandom rand; | 
|  | for (int outer = 0; outer < 1000; ++outer) { | 
|  | // check some good values | 
|  | for (int i = 0; i < N; ++i) { | 
|  | v[i] = rand.nextUScalar1(); | 
|  | } | 
|  | const int index = rand.nextU() % N; | 
|  |  | 
|  | REPORTER_ASSERT(r, sk_floats_are_unit(v, N)); | 
|  | v[index] = -0.f; | 
|  | REPORTER_ASSERT(r, sk_floats_are_unit(v, N)); | 
|  | v[index] = 1.0f; | 
|  | REPORTER_ASSERT(r, sk_floats_are_unit(v, N)); | 
|  |  | 
|  | // check some bad values | 
|  | const float non_norms[] = { | 
|  | 1.0000001f, 2, SK_ScalarInfinity, SK_ScalarNaN | 
|  | }; | 
|  | for (float bad : non_norms) { | 
|  | v[index] = bad; | 
|  | REPORTER_ASSERT(r, !sk_floats_are_unit(v, N)); | 
|  | v[index] = -bad; | 
|  | REPORTER_ASSERT(r, !sk_floats_are_unit(v, N)); | 
|  | } | 
|  | } | 
|  | } |