blob: ff94e0545870fa51bf9559b587fb615a3ca1e5bd [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkNx_DEFINED
#define SkNx_DEFINED
#define SKNX_NO_SIMDx // Remove the x to disable SIMD for all SkNx types.
#include "SkScalar.h"
#include "SkTypes.h"
#include <math.h>
#define REQUIRE(x) static_assert(x, #x)
// This file may be included multiple times by .cpp files with different flags, leading
// to different definitions. Usually that doesn't matter because it's all inlined, but
// in Debug modes the compilers may not inline everything. So wrap everything in an
// anonymous namespace to give each includer their own silo of this code (or the linker
// will probably pick one randomly for us, which is rarely correct).
namespace {
// The default implementations just fall back on a pair of size N/2.
template <int N, typename T>
class SkNi {
public:
SkNi() {}
SkNi(const SkNi<N/2, T>& lo, const SkNi<N/2, T>& hi) : fLo(lo), fHi(hi) {}
explicit SkNi(T val) : fLo(val), fHi(val) {}
static SkNi Load(const T vals[N]) {
return SkNi(SkNi<N/2,T>::Load(vals), SkNi<N/2,T>::Load(vals+N/2));
}
SkNi(T a, T b) : fLo(a), fHi(b) { REQUIRE(N==2); }
SkNi(T a, T b, T c, T d) : fLo(a,b), fHi(c,d) { REQUIRE(N==4); }
SkNi(T a, T b, T c, T d, T e, T f, T g, T h) : fLo(a,b,c,d), fHi(e,f,g,h) { REQUIRE(N==8); }
SkNi(T a, T b, T c, T d, T e, T f, T g, T h,
T i, T j, T k, T l, T m, T n, T o, T p)
: fLo(a,b,c,d, e,f,g,h), fHi(i,j,k,l, m,n,o,p) { REQUIRE(N==16); }
void store(T vals[N]) const {
fLo.store(vals);
fHi.store(vals+N/2);
}
SkNi saturatedAdd(const SkNi& o) const {
return SkNi(fLo.saturatedAdd(o.fLo), fHi.saturatedAdd(o.fHi));
}
SkNi operator + (const SkNi& o) const { return SkNi(fLo + o.fLo, fHi + o.fHi); }
SkNi operator - (const SkNi& o) const { return SkNi(fLo - o.fLo, fHi - o.fHi); }
SkNi operator * (const SkNi& o) const { return SkNi(fLo * o.fLo, fHi * o.fHi); }
SkNi operator << (int bits) const { return SkNi(fLo << bits, fHi << bits); }
SkNi operator >> (int bits) const { return SkNi(fLo >> bits, fHi >> bits); }
static SkNi Min(const SkNi& a, const SkNi& b) {
return SkNi(SkNi<N/2, T>::Min(a.fLo, b.fLo), SkNi<N/2, T>::Min(a.fHi, b.fHi));
}
SkNi operator < (const SkNi& o) const { return SkNi(fLo < o.fLo, fHi < o.fHi); }
template <int k> T kth() const {
SkASSERT(0 <= k && k < N);
return k < N/2 ? fLo.template kth<k>() : fHi.template kth<k-N/2>();
}
bool allTrue() const { return fLo.allTrue() && fHi.allTrue(); }
bool anyTrue() const { return fLo.anyTrue() || fHi.anyTrue(); }
SkNi thenElse(const SkNi& t, const SkNi& e) const {
return SkNi(fLo.thenElse(t.fLo, e.fLo), fHi.thenElse(t.fHi, e.fHi));
}
protected:
REQUIRE(0 == (N & (N-1)));
SkNi<N/2, T> fLo, fHi;
};
template <int N, typename T>
class SkNf {
static int32_t MyNi(float);
static int64_t MyNi(double);
typedef decltype(MyNi(T())) I;
public:
SkNf() {}
explicit SkNf(T val) : fLo(val), fHi(val) {}
static SkNf Load(const T vals[N]) {
return SkNf(SkNf<N/2,T>::Load(vals), SkNf<N/2,T>::Load(vals+N/2));
}
// FromBytes() and toBytes() specializations may assume their argument is N-byte aligned.
// E.g. Sk4f::FromBytes() may assume it's reading from a 4-byte-aligned pointer.
// Converts [0,255] bytes to [0.0, 255.0] floats.
static SkNf FromBytes(const uint8_t bytes[N]) {
return SkNf(SkNf<N/2,T>::FromBytes(bytes), SkNf<N/2,T>::FromBytes(bytes+N/2));
}
SkNf(T a, T b) : fLo(a), fHi(b) { REQUIRE(N==2); }
SkNf(T a, T b, T c, T d) : fLo(a,b), fHi(c,d) { REQUIRE(N==4); }
SkNf(T a, T b, T c, T d, T e, T f, T g, T h) : fLo(a,b,c,d), fHi(e,f,g,h) { REQUIRE(N==8); }
void store(T vals[N]) const {
fLo.store(vals);
fHi.store(vals+N/2);
}
// Please see note on FromBytes().
// Clamps to [0.0,255.0] floats and truncates to [0,255] bytes.
void toBytes(uint8_t bytes[N]) const {
fLo.toBytes(bytes);
fHi.toBytes(bytes+N/2);
}
SkNi<N,I> castTrunc() const { return SkNi<N,I>(fLo.castTrunc(), fHi.castTrunc()); }
SkNf operator + (const SkNf& o) const { return SkNf(fLo + o.fLo, fHi + o.fHi); }
SkNf operator - (const SkNf& o) const { return SkNf(fLo - o.fLo, fHi - o.fHi); }
SkNf operator * (const SkNf& o) const { return SkNf(fLo * o.fLo, fHi * o.fHi); }
SkNf operator / (const SkNf& o) const { return SkNf(fLo / o.fLo, fHi / o.fHi); }
SkNf operator == (const SkNf& o) const { return SkNf(fLo == o.fLo, fHi == o.fHi); }
SkNf operator != (const SkNf& o) const { return SkNf(fLo != o.fLo, fHi != o.fHi); }
SkNf operator < (const SkNf& o) const { return SkNf(fLo < o.fLo, fHi < o.fHi); }
SkNf operator > (const SkNf& o) const { return SkNf(fLo > o.fLo, fHi > o.fHi); }
SkNf operator <= (const SkNf& o) const { return SkNf(fLo <= o.fLo, fHi <= o.fHi); }
SkNf operator >= (const SkNf& o) const { return SkNf(fLo >= o.fLo, fHi >= o.fHi); }
static SkNf Min(const SkNf& l, const SkNf& r) {
return SkNf(SkNf<N/2,T>::Min(l.fLo, r.fLo), SkNf<N/2,T>::Min(l.fHi, r.fHi));
}
static SkNf Max(const SkNf& l, const SkNf& r) {
return SkNf(SkNf<N/2,T>::Max(l.fLo, r.fLo), SkNf<N/2,T>::Max(l.fHi, r.fHi));
}
SkNf sqrt() const { return SkNf(fLo. sqrt(), fHi. sqrt()); }
// Generally, increasing precision, increasing cost.
SkNf rsqrt0() const { return SkNf(fLo.rsqrt0(), fHi.rsqrt0()); }
SkNf rsqrt1() const { return SkNf(fLo.rsqrt1(), fHi.rsqrt1()); }
SkNf rsqrt2() const { return SkNf(fLo.rsqrt2(), fHi.rsqrt2()); }
SkNf invert() const { return SkNf(fLo. invert(), fHi. invert()); }
SkNf approxInvert() const { return SkNf(fLo.approxInvert(), fHi.approxInvert()); }
template <int k> T kth() const {
SkASSERT(0 <= k && k < N);
return k < N/2 ? fLo.template kth<k>() : fHi.template kth<k-N/2>();
}
bool allTrue() const { return fLo.allTrue() && fHi.allTrue(); }
bool anyTrue() const { return fLo.anyTrue() || fHi.anyTrue(); }
SkNf thenElse(const SkNf& t, const SkNf& e) const {
return SkNf(fLo.thenElse(t.fLo, e.fLo), fHi.thenElse(t.fHi, e.fHi));
}
protected:
REQUIRE(0 == (N & (N-1)));
SkNf(const SkNf<N/2, T>& lo, const SkNf<N/2, T>& hi) : fLo(lo), fHi(hi) {}
SkNf<N/2, T> fLo, fHi;
};
// Bottom out the default implementations with scalars when nothing's been specialized.
template <typename T>
class SkNi<1,T> {
public:
SkNi() {}
explicit SkNi(T val) : fVal(val) {}
static SkNi Load(const T vals[1]) { return SkNi(vals[0]); }
void store(T vals[1]) const { vals[0] = fVal; }
SkNi saturatedAdd(const SkNi& o) const {
SkASSERT((T)(~0) > 0); // TODO: support signed T
T sum = fVal + o.fVal;
return SkNi(sum < fVal ? (T)(~0) : sum);
}
SkNi operator + (const SkNi& o) const { return SkNi(fVal + o.fVal); }
SkNi operator - (const SkNi& o) const { return SkNi(fVal - o.fVal); }
SkNi operator * (const SkNi& o) const { return SkNi(fVal * o.fVal); }
SkNi operator << (int bits) const { return SkNi(fVal << bits); }
SkNi operator >> (int bits) const { return SkNi(fVal >> bits); }
static SkNi Min(const SkNi& a, const SkNi& b) { return SkNi(SkTMin(a.fVal, b.fVal)); }
SkNi operator <(const SkNi& o) const { return SkNi(fVal < o.fVal); }
template <int k> T kth() const {
SkASSERT(0 == k);
return fVal;
}
bool allTrue() const { return fVal; }
bool anyTrue() const { return fVal; }
SkNi thenElse(const SkNi& t, const SkNi& e) const { return fVal ? t : e; }
protected:
T fVal;
};
template <typename T>
class SkNf<1,T> {
static int32_t MyNi(float);
static int64_t MyNi(double);
typedef decltype(MyNi(T())) I;
public:
SkNf() {}
explicit SkNf(T val) : fVal(val) {}
static SkNf Load(const T vals[1]) { return SkNf(vals[0]); }
static SkNf FromBytes(const uint8_t bytes[1]) { return SkNf((T)bytes[0]); }
void store(T vals[1]) const { vals[0] = fVal; }
void toBytes(uint8_t bytes[1]) const { bytes[0] = (uint8_t)(SkTMin(fVal, (T)255.0)); }
SkNi<1,I> castTrunc() const { return SkNi<1,I>(fVal); }
SkNf operator + (const SkNf& o) const { return SkNf(fVal + o.fVal); }
SkNf operator - (const SkNf& o) const { return SkNf(fVal - o.fVal); }
SkNf operator * (const SkNf& o) const { return SkNf(fVal * o.fVal); }
SkNf operator / (const SkNf& o) const { return SkNf(fVal / o.fVal); }
SkNf operator == (const SkNf& o) const { return SkNf(fVal == o.fVal); }
SkNf operator != (const SkNf& o) const { return SkNf(fVal != o.fVal); }
SkNf operator < (const SkNf& o) const { return SkNf(fVal < o.fVal); }
SkNf operator > (const SkNf& o) const { return SkNf(fVal > o.fVal); }
SkNf operator <= (const SkNf& o) const { return SkNf(fVal <= o.fVal); }
SkNf operator >= (const SkNf& o) const { return SkNf(fVal >= o.fVal); }
static SkNf Min(const SkNf& l, const SkNf& r) { return SkNf(SkTMin(l.fVal, r.fVal)); }
static SkNf Max(const SkNf& l, const SkNf& r) { return SkNf(SkTMax(l.fVal, r.fVal)); }
SkNf sqrt() const { return SkNf(Sqrt(fVal)); }
SkNf rsqrt0() const { return SkNf((T)1 / Sqrt(fVal)); }
SkNf rsqrt1() const { return this->rsqrt0(); }
SkNf rsqrt2() const { return this->rsqrt1(); }
SkNf invert() const { return SkNf((T)1 / fVal); }
SkNf approxInvert() const { return this->invert(); }
template <int k> T kth() const {
SkASSERT(k == 0);
return fVal;
}
bool allTrue() const { return this->pun(); }
bool anyTrue() const { return this->pun(); }
SkNf thenElse(const SkNf& t, const SkNf& e) const { return this->pun() ? t : e; }
protected:
// We do double sqrts natively, or via floats for any other type.
template <typename U>
static U Sqrt(U val) { return (U) ::sqrtf((float)val); }
static double Sqrt(double val) { return ::sqrt ( val); }
I pun() const {
union { T f; I i; } pun = { fVal };
return pun.i;
}
T fVal;
};
} // namespace
// Include platform specific specializations if available.
#ifndef SKNX_NO_SIMD
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
#include "../opts/SkNx_sse.h"
#elif defined(SK_ARM_HAS_NEON)
#include "../opts/SkNx_neon.h"
#endif
#endif
#undef REQUIRE
typedef SkNf<2, float> Sk2f;
typedef SkNf<2, double> Sk2d;
typedef SkNf<2, SkScalar> Sk2s;
typedef SkNf<4, float> Sk4f;
typedef SkNf<4, double> Sk4d;
typedef SkNf<4, SkScalar> Sk4s;
typedef SkNi<4, uint16_t> Sk4h;
typedef SkNi<8, uint16_t> Sk8h;
typedef SkNi<16, uint16_t> Sk16h;
typedef SkNi<16, uint8_t> Sk16b;
typedef SkNi<4, int32_t> Sk4i;
typedef SkNi<4, uint32_t> Sk4u;
#endif//SkNx_DEFINED