blob: 03980b586a1df9a6b3c2d41b213614b7e8f93465 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkCodec_libgif.h"
#include "SkCodecPriv.h"
#include "SkColorPriv.h"
#include "SkColorTable.h"
#include "SkScaledCodec.h"
#include "SkStream.h"
#include "SkSwizzler.h"
#include "SkUtils.h"
/*
* Checks the start of the stream to see if the image is a gif
*/
bool SkGifCodec::IsGif(SkStream* stream) {
char buf[GIF_STAMP_LEN];
if (stream->read(buf, GIF_STAMP_LEN) == GIF_STAMP_LEN) {
if (memcmp(GIF_STAMP, buf, GIF_STAMP_LEN) == 0 ||
memcmp(GIF87_STAMP, buf, GIF_STAMP_LEN) == 0 ||
memcmp(GIF89_STAMP, buf, GIF_STAMP_LEN) == 0)
{
return true;
}
}
return false;
}
/*
* Warning reporting function
*/
static void gif_warning(const char* msg) {
SkCodecPrintf("Gif Warning: %s\n", msg);
}
/*
* Error function
*/
static SkCodec::Result gif_error(const char* msg, SkCodec::Result result = SkCodec::kInvalidInput) {
SkCodecPrintf("Gif Error: %s\n", msg);
return result;
}
/*
* Read function that will be passed to gif_lib
*/
static int32_t read_bytes_callback(GifFileType* fileType, GifByteType* out, int32_t size) {
SkStream* stream = (SkStream*) fileType->UserData;
return (int32_t) stream->read(out, size);
}
/*
* Open the gif file
*/
static GifFileType* open_gif(SkStream* stream) {
return DGifOpen(stream, read_bytes_callback, nullptr);
}
/*
* Check if a there is an index of the color table for a transparent pixel
*/
static uint32_t find_trans_index(const SavedImage& image) {
// If there is a transparent index specified, it will be contained in an
// extension block. We will loop through extension blocks in reverse order
// to check the most recent extension blocks first.
for (int32_t i = image.ExtensionBlockCount - 1; i >= 0; i--) {
// Get an extension block
const ExtensionBlock& extBlock = image.ExtensionBlocks[i];
// Specifically, we need to check for a graphics control extension,
// which may contain transparency information. Also, note that a valid
// graphics control extension is always four bytes. The fourth byte
// is the transparent index (if it exists), so we need at least four
// bytes.
if (GRAPHICS_EXT_FUNC_CODE == extBlock.Function && extBlock.ByteCount >= 4) {
// Check the transparent color flag which indicates whether a
// transparent index exists. It is the least significant bit of
// the first byte of the extension block.
if (1 == (extBlock.Bytes[0] & 1)) {
// Use uint32_t to prevent sign extending
return extBlock.Bytes[3];
}
// There should only be one graphics control extension for the image frame
break;
}
}
// Use maximum unsigned int (surely an invalid index) to indicate that a valid
// index was not found.
return SK_MaxU32;
}
static inline uint32_t ceil_div(uint32_t a, uint32_t b) {
return (a + b - 1) / b;
}
/*
* Gets the output row corresponding to the encoded row for interlaced gifs
*/
static uint32_t get_output_row_interlaced(uint32_t encodedRow, uint32_t height) {
SkASSERT(encodedRow < height);
// First pass
if (encodedRow * 8 < height) {
return encodedRow * 8;
}
// Second pass
if (encodedRow * 4 < height) {
return 4 + 8 * (encodedRow - ceil_div(height, 8));
}
// Third pass
if (encodedRow * 2 < height) {
return 2 + 4 * (encodedRow - ceil_div(height, 4));
}
// Fourth pass
return 1 + 2 * (encodedRow - ceil_div(height, 2));
}
/*
* This function cleans up the gif object after the decode completes
* It is used in a SkAutoTCallIProc template
*/
void SkGifCodec::CloseGif(GifFileType* gif) {
DGifCloseFile(gif, NULL);
}
/*
* This function free extension data that has been saved to assist the image
* decoder
*/
void SkGifCodec::FreeExtension(SavedImage* image) {
if (NULL != image->ExtensionBlocks) {
GifFreeExtensions(&image->ExtensionBlockCount, &image->ExtensionBlocks);
}
}
/*
* Read enough of the stream to initialize the SkGifCodec.
* Returns a bool representing success or failure.
*
* @param codecOut
* If it returned true, and codecOut was not nullptr,
* codecOut will be set to a new SkGifCodec.
*
* @param gifOut
* If it returned true, and codecOut was nullptr,
* gifOut must be non-nullptr and gifOut will be set to a new
* GifFileType pointer.
*
* @param stream
* Deleted on failure.
* codecOut will take ownership of it in the case where we created a codec.
* Ownership is unchanged when we returned a gifOut.
*
*/
bool SkGifCodec::ReadHeader(SkStream* stream, SkCodec** codecOut, GifFileType** gifOut) {
SkAutoTDelete<SkStream> streamDeleter(stream);
// Read gif header, logical screen descriptor, and global color table
SkAutoTCallVProc<GifFileType, CloseGif> gif(open_gif(stream));
if (nullptr == gif) {
gif_error("DGifOpen failed.\n");
return false;
}
// Read through gif extensions to get to the image data. Set the
// transparent index based on the extension data.
uint32_t transIndex;
SkCodec::Result result = ReadUpToFirstImage(gif, &transIndex);
if (kSuccess != result){
return false;
}
// Read the image descriptor
if (GIF_ERROR == DGifGetImageDesc(gif)) {
return false;
}
// If reading the image descriptor is successful, the image count will be
// incremented.
SkASSERT(gif->ImageCount >= 1);
if (nullptr != codecOut) {
// Get fields from header
const int32_t width = gif->SWidth;
const int32_t height = gif->SHeight;
if (width <= 0 || height <= 0) {
gif_error("Invalid dimensions.\n");
return false;
}
// Determine the recommended alpha type. The transIndex might be valid if it less
// than 256. We are not certain that the index is valid until we process the color
// table, since some gifs have color tables with less than 256 colors. If
// there might be a valid transparent index, we must indicate that the image has
// alpha.
// In the case where we must support alpha, we have the option to set the
// suggested alpha type to kPremul or kUnpremul. Both are valid since the alpha
// component will always be 0xFF or the entire 32-bit pixel will be set to zero.
// We prefer kPremul because we support kPremul, and it is more efficient to use
// kPremul directly even when kUnpremul is supported.
SkAlphaType alphaType = (transIndex < 256) ? kPremul_SkAlphaType : kOpaque_SkAlphaType;
// Return the codec
// kIndex is the most natural color type for gifs, so we set this as
// the default.
const SkImageInfo& imageInfo = SkImageInfo::Make(width, height,
kIndex_8_SkColorType, alphaType);
*codecOut = new SkGifCodec(imageInfo, streamDeleter.detach(), gif.detach(), transIndex);
} else {
SkASSERT(nullptr != gifOut);
streamDeleter.detach();
*gifOut = gif.detach();
}
return true;
}
/*
* Assumes IsGif was called and returned true
* Creates a gif decoder
* Reads enough of the stream to determine the image format
*/
SkCodec* SkGifCodec::NewFromStream(SkStream* stream) {
SkCodec* codec = nullptr;
if (ReadHeader(stream, &codec, nullptr)) {
return codec;
}
return nullptr;
}
SkGifCodec::SkGifCodec(const SkImageInfo& srcInfo, SkStream* stream, GifFileType* gif,
uint32_t transIndex)
: INHERITED(srcInfo, stream)
, fGif(gif)
, fSrcBuffer(new uint8_t[this->getInfo().width()])
// If it is valid, fTransIndex will be used to set fFillIndex. We don't know if
// fTransIndex is valid until we process the color table, since fTransIndex may
// be greater than the size of the color table.
, fTransIndex(transIndex)
// Default fFillIndex is 0. We will overwrite this if fTransIndex is valid, or if
// there is a valid background color.
, fFillIndex(0)
, fFrameDims(SkIRect::MakeEmpty())
, fFrameIsSubset(false)
, fColorTable(NULL)
, fSwizzler(NULL)
{}
bool SkGifCodec::onRewind() {
GifFileType* gifOut = nullptr;
if (!ReadHeader(this->stream(), nullptr, &gifOut)) {
return false;
}
SkASSERT(nullptr != gifOut);
fGif.reset(gifOut);
return true;
}
SkCodec::Result SkGifCodec::ReadUpToFirstImage(GifFileType* gif, uint32_t* transIndex) {
// Use this as a container to hold information about any gif extension
// blocks. This generally stores transparency and animation instructions.
SavedImage saveExt;
SkAutoTCallVProc<SavedImage, FreeExtension> autoFreeExt(&saveExt);
saveExt.ExtensionBlocks = nullptr;
saveExt.ExtensionBlockCount = 0;
GifByteType* extData;
int32_t extFunction;
// We will loop over components of gif images until we find an image. Once
// we find an image, we will decode and return it. While many gif files
// contain more than one image, we will simply decode the first image.
GifRecordType recordType;
do {
// Get the current record type
if (GIF_ERROR == DGifGetRecordType(gif, &recordType)) {
return gif_error("DGifGetRecordType failed.\n", kInvalidInput);
}
switch (recordType) {
case IMAGE_DESC_RECORD_TYPE: {
*transIndex = find_trans_index(saveExt);
// FIXME: Gif files may have multiple images stored in a single
// file. This is most commonly used to enable
// animations. Since we are leaving animated gifs as a
// TODO, we will return kSuccess after decoding the
// first image in the file. This is the same behavior
// as SkImageDecoder_libgif.
//
// Most times this works pretty well, but sometimes it
// doesn't. For example, I have an animated test image
// where the first image in the file is 1x1, but the
// subsequent images are meaningful. This currently
// displays the 1x1 image, which is not ideal. Right
// now I am leaving this as an issue that will be
// addressed when we implement animated gifs.
//
// It is also possible (not explicitly disallowed in the
// specification) that gif files provide multiple
// images in a single file that are all meant to be
// displayed in the same frame together. I will
// currently leave this unimplemented until I find a
// test case that expects this behavior.
return kSuccess;
}
// Extensions are used to specify special properties of the image
// such as transparency or animation.
case EXTENSION_RECORD_TYPE:
// Read extension data
if (GIF_ERROR == DGifGetExtension(gif, &extFunction, &extData)) {
return gif_error("Could not get extension.\n", kIncompleteInput);
}
// Create an extension block with our data
while (nullptr != extData) {
// Add a single block
if (GIF_ERROR == GifAddExtensionBlock(&saveExt.ExtensionBlockCount,
&saveExt.ExtensionBlocks,
extFunction, extData[0], &extData[1]))
{
return gif_error("Could not add extension block.\n", kIncompleteInput);
}
// Move to the next block
if (GIF_ERROR == DGifGetExtensionNext(gif, &extData)) {
return gif_error("Could not get next extension.\n", kIncompleteInput);
}
}
break;
// Signals the end of the gif file
case TERMINATE_RECORD_TYPE:
break;
default:
// DGifGetRecordType returns an error if the record type does
// not match one of the above cases. This should not be
// reached.
SkASSERT(false);
break;
}
} while (TERMINATE_RECORD_TYPE != recordType);
return gif_error("Could not find any images to decode in gif file.\n", kInvalidInput);
}
/*
* A gif may contain many image frames, all of different sizes.
* This function checks if the frame dimensions are valid and corrects them if
* necessary.
*/
bool SkGifCodec::setFrameDimensions(const GifImageDesc& desc) {
// Fail on non-positive dimensions
int32_t frameLeft = desc.Left;
int32_t frameTop = desc.Top;
int32_t frameWidth = desc.Width;
int32_t frameHeight = desc.Height;
int32_t height = this->getInfo().height();
int32_t width = this->getInfo().width();
if (frameWidth <= 0 || frameHeight <= 0) {
return false;
}
// Treat the following cases as warnings and try to fix
if (frameWidth > width) {
gif_warning("Image frame too wide, shrinking.\n");
frameWidth = width;
frameLeft = 0;
} else if (frameLeft + frameWidth > width) {
gif_warning("Shifting image frame to left to fit.\n");
frameLeft = width - frameWidth;
} else if (frameLeft < 0) {
gif_warning("Shifting image frame to right to fit\n");
frameLeft = 0;
}
if (frameHeight > height) {
gif_warning("Image frame too tall, shrinking.\n");
frameHeight = height;
frameTop = 0;
} else if (frameTop + frameHeight > height) {
gif_warning("Shifting image frame up to fit.\n");
frameTop = height - frameHeight;
} else if (frameTop < 0) {
gif_warning("Shifting image frame down to fit\n");
frameTop = 0;
}
fFrameDims.setXYWH(frameLeft, frameTop, frameWidth, frameHeight);
// Indicate if the frame dimensions do not match the header dimensions
if (this->getInfo().dimensions() != fFrameDims.size()) {
fFrameIsSubset = true;
}
return true;
}
void SkGifCodec::initializeColorTable(const SkImageInfo& dstInfo, SkPMColor* inputColorPtr,
int* inputColorCount) {
// Set up our own color table
const uint32_t maxColors = 256;
SkPMColor colorPtr[256];
if (NULL != inputColorCount) {
// We set the number of colors to maxColors in order to ensure
// safe memory accesses. Otherwise, an invalid pixel could
// access memory outside of our color table array.
*inputColorCount = maxColors;
}
// Get local color table
ColorMapObject* colorMap = fGif->Image.ColorMap;
// If there is no local color table, use the global color table
if (NULL == colorMap) {
colorMap = fGif->SColorMap;
}
uint32_t colorCount = 0;
if (NULL != colorMap) {
colorCount = colorMap->ColorCount;
// giflib guarantees these properties
SkASSERT(colorCount == (unsigned) (1 << (colorMap->BitsPerPixel)));
SkASSERT(colorCount <= 256);
for (uint32_t i = 0; i < colorCount; i++) {
colorPtr[i] = SkPackARGB32(0xFF, colorMap->Colors[i].Red,
colorMap->Colors[i].Green, colorMap->Colors[i].Blue);
}
}
// Gifs have the option to specify the color at a single index of the color
// table as transparent. If the transparent index is greater than the
// colorCount, we know that there is no valid transparent color in the color
// table. If there is not valid transparent index, we will try to use the
// backgroundIndex as the fill index. If the backgroundIndex is also not
// valid, we will let fFillIndex default to 0 (it is set to zero in the
// constructor). This behavior is not specified but matches
// SkImageDecoder_libgif.
uint32_t backgroundIndex = fGif->SBackGroundColor;
if (fTransIndex < colorCount) {
colorPtr[fTransIndex] = SK_ColorTRANSPARENT;
fFillIndex = fTransIndex;
} else if (backgroundIndex < colorCount) {
fFillIndex = backgroundIndex;
}
// Fill in the color table for indices greater than color count.
// This allows for predictable, safe behavior.
for (uint32_t i = colorCount; i < maxColors; i++) {
colorPtr[i] = colorPtr[fFillIndex];
}
fColorTable.reset(new SkColorTable(colorPtr, maxColors));
copy_color_table(dstInfo, this->fColorTable, inputColorPtr, inputColorCount);
}
SkCodec::Result SkGifCodec::prepareToDecode(const SkImageInfo& dstInfo, SkPMColor* inputColorPtr,
int* inputColorCount, const Options& opts) {
// Rewind if necessary
if (!this->rewindIfNeeded()) {
return kCouldNotRewind;
}
// Check for valid input parameters
if (opts.fSubset) {
// Subsets are not supported.
return kUnimplemented;
}
if (!conversion_possible(dstInfo, this->getInfo())) {
return gif_error("Cannot convert input type to output type.\n",
kInvalidConversion);
}
// We have asserted that the image count is at least one in ReadHeader().
SavedImage* image = &fGif->SavedImages[fGif->ImageCount - 1];
const GifImageDesc& desc = image->ImageDesc;
// Check that the frame dimensions are valid and set them
if(!this->setFrameDimensions(desc)) {
return gif_error("Invalid dimensions for image frame.\n", kInvalidInput);
}
// Initialize color table and copy to the client if necessary
this->initializeColorTable(dstInfo, inputColorPtr, inputColorCount);
return kSuccess;
}
SkCodec::Result SkGifCodec::initializeSwizzler(const SkImageInfo& dstInfo,
ZeroInitialized zeroInit) {
const SkPMColor* colorPtr = get_color_ptr(fColorTable.get());
fSwizzler.reset(SkSwizzler::CreateSwizzler(SkSwizzler::kIndex,
colorPtr, dstInfo, zeroInit, this->getInfo()));
if (nullptr != fSwizzler.get()) {
return kSuccess;
}
return kUnimplemented;
}
SkCodec::Result SkGifCodec::readRow() {
if (GIF_ERROR == DGifGetLine(fGif, fSrcBuffer.get(), fFrameDims.width())) {
return kIncompleteInput;
}
return kSuccess;
}
/*
* Initiates the gif decode
*/
SkCodec::Result SkGifCodec::onGetPixels(const SkImageInfo& dstInfo,
void* dst, size_t dstRowBytes,
const Options& opts,
SkPMColor* inputColorPtr,
int* inputColorCount) {
Result result = this->prepareToDecode(dstInfo, inputColorPtr, inputColorCount, opts);
if (kSuccess != result) {
return result;
}
if (dstInfo.dimensions() != this->getInfo().dimensions()) {
return gif_error("Scaling not supported.\n", kInvalidScale);
}
// Initialize the swizzler
if (fFrameIsSubset) {
const SkImageInfo subsetDstInfo = dstInfo.makeWH(fFrameDims.width(), fFrameDims.height());
if (kSuccess != this->initializeSwizzler(subsetDstInfo, opts.fZeroInitialized)) {
return gif_error("Could not initialize swizzler.\n", kUnimplemented);
}
// Fill the background
const SkPMColor* colorPtr = get_color_ptr(fColorTable.get());
SkSwizzler::Fill(dst, dstInfo, dstRowBytes, this->getInfo().height(),
fFillIndex, colorPtr, opts.fZeroInitialized);
// Modify the dst pointer
const int32_t dstBytesPerPixel = SkColorTypeBytesPerPixel(dstInfo.colorType());
dst = SkTAddOffset<void*>(dst, dstRowBytes * fFrameDims.top() +
dstBytesPerPixel * fFrameDims.left());
} else {
if (kSuccess != this->initializeSwizzler(dstInfo, opts.fZeroInitialized)) {
return gif_error("Could not initialize swizzler.\n", kUnimplemented);
}
}
// Check the interlace flag and iterate over rows of the input
uint32_t width = fFrameDims.width();
uint32_t height = fFrameDims.height();
if (fGif->Image.Interlace) {
// In interlace mode, the rows of input are rearranged in
// the output image. We a helper function to help us
// rearrange the decoded rows.
for (uint32_t y = 0; y < height; y++) {
if (kSuccess != this->readRow()) {
// Recover from error by filling remainder of image
memset(fSrcBuffer.get(), fFillIndex, width);
for (; y < height; y++) {
void* dstRow = SkTAddOffset<void>(dst,
dstRowBytes * get_output_row_interlaced(y, height));
fSwizzler->swizzle(dstRow, fSrcBuffer.get());
}
return gif_error("Could not decode line.\n", kIncompleteInput);
}
void* dstRow = SkTAddOffset<void>(dst,
dstRowBytes * get_output_row_interlaced(y, height));
fSwizzler->swizzle(dstRow, fSrcBuffer.get());
}
} else {
// Standard mode
void* dstRow = dst;
for (uint32_t y = 0; y < height; y++) {
if (kSuccess != this->readRow()) {
const SkPMColor* colorPtr = get_color_ptr(fColorTable.get());
SkSwizzler::Fill(dstRow, dstInfo, dstRowBytes,
height - y, fFillIndex, colorPtr, opts.fZeroInitialized);
return gif_error("Could not decode line\n", kIncompleteInput);
}
fSwizzler->swizzle(dstRow, fSrcBuffer.get());
dstRow = SkTAddOffset<void>(dstRow, dstRowBytes);
}
}
return kSuccess;
}
// TODO (msarett): skbug.com/3582
// Should we implement reallyHasAlpha? Or should we read extension blocks in the
// header? Or should we do both?
class SkGifScanlineDecoder : public SkScanlineDecoder {
public:
SkGifScanlineDecoder(const SkImageInfo& srcInfo, SkGifCodec* codec)
: INHERITED(srcInfo)
, fCodec(codec)
{}
SkEncodedFormat onGetEncodedFormat() const override {
return kGIF_SkEncodedFormat;
}
SkCodec::Result onStart(const SkImageInfo& dstInfo, const SkCodec::Options& opts,
SkPMColor inputColorPtr[], int* inputColorCount) override {
SkCodec::Result result = fCodec->prepareToDecode(dstInfo, inputColorPtr, inputColorCount,
this->options());
if (SkCodec::kSuccess != result) {
return result;
}
// Check to see if scaling was requested.
if (dstInfo.dimensions() != this->getInfo().dimensions()) {
if (!SkScaledCodec::DimensionsSupportedForSampling(this->getInfo(), dstInfo)) {
return gif_error("Scaling not supported.\n", SkCodec::kInvalidScale);
}
}
// Initialize the swizzler
if (fCodec->fFrameIsSubset) {
int sampleX;
SkScaledCodec::ComputeSampleSize(dstInfo, fCodec->getInfo(), &sampleX, NULL);
const SkImageInfo subsetDstInfo = dstInfo.makeWH(
get_scaled_dimension(fCodec->fFrameDims.width(), sampleX),
fCodec->fFrameDims.height());
if (SkCodec::kSuccess != fCodec->initializeSwizzler(subsetDstInfo,
opts.fZeroInitialized)) {
return gif_error("Could not initialize swizzler.\n", SkCodec::kUnimplemented);
}
} else {
if (SkCodec::kSuccess != fCodec->initializeSwizzler(dstInfo, opts.fZeroInitialized)) {
return gif_error("Could not initialize swizzler.\n", SkCodec::kUnimplemented);
}
}
return SkCodec::kSuccess;
}
SkCodec::Result onGetScanlines(void* dst, int count, size_t rowBytes) override {
if (fCodec->fFrameIsSubset) {
// Fill the requested rows
const SkPMColor* colorPtr = get_color_ptr(fCodec->fColorTable.get());
SkSwizzler::Fill(dst, this->dstInfo(), rowBytes, count, fCodec->fFillIndex,
colorPtr, this->options().fZeroInitialized);
// Do nothing for rows before the image frame
int rowsBeforeFrame = fCodec->fFrameDims.top() - INHERITED::getY();
if (rowsBeforeFrame > 0) {
count = SkTMin(0, count - rowsBeforeFrame);
dst = SkTAddOffset<void>(dst, rowBytes * rowsBeforeFrame);
}
// Do nothing for rows after the image frame
int rowsAfterFrame = INHERITED::getY() + count - fCodec->fFrameDims.bottom();
if (rowsAfterFrame > 0) {
count = SkTMin(0, count - rowsAfterFrame);
}
// Adjust dst pointer for left offset
dst = SkTAddOffset<void>(dst, SkColorTypeBytesPerPixel(
this->dstInfo().colorType()) * fCodec->fFrameDims.left());
}
for (int i = 0; i < count; i++) {
if (SkCodec::kSuccess != fCodec->readRow()) {
const SkPMColor* colorPtr = get_color_ptr(fCodec->fColorTable.get());
SkSwizzler::Fill(dst, this->dstInfo(), rowBytes,
count - i, fCodec->fFillIndex, colorPtr,
this->options().fZeroInitialized);
return gif_error("Could not decode line\n", SkCodec::kIncompleteInput);
}
fCodec->fSwizzler->swizzle(dst, fCodec->fSrcBuffer.get());
dst = SkTAddOffset<void>(dst, rowBytes);
}
return SkCodec::kSuccess;
}
SkScanlineOrder onGetScanlineOrder() const override {
if (fCodec->fGif->Image.Interlace) {
return kOutOfOrder_SkScanlineOrder;
} else {
return kTopDown_SkScanlineOrder;
}
}
int onGetY() const override {
if (fCodec->fGif->Image.Interlace) {
return get_output_row_interlaced(INHERITED::onGetY(), this->dstInfo().height());
} else {
return INHERITED::onGetY();
}
}
private:
SkAutoTDelete<SkGifCodec> fCodec;
typedef SkScanlineDecoder INHERITED;
};
SkScanlineDecoder* SkGifCodec::NewSDFromStream(SkStream* stream) {
SkAutoTDelete<SkGifCodec> codec (static_cast<SkGifCodec*>(SkGifCodec::NewFromStream(stream)));
if (!codec) {
return NULL;
}
const SkImageInfo& srcInfo = codec->getInfo();
return SkNEW_ARGS(SkGifScanlineDecoder, (srcInfo, codec.detach()));
}