| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkWriteBuffer.h" |
| #include "SkBitmap.h" |
| #include "SkData.h" |
| #include "SkDeduper.h" |
| #include "SkPaint.h" |
| #include "SkPixelRef.h" |
| #include "SkPtrRecorder.h" |
| #include "SkStream.h" |
| #include "SkTypeface.h" |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| SkBinaryWriteBuffer::SkBinaryWriteBuffer() |
| : fFactorySet(nullptr) |
| , fTFSet(nullptr) { |
| } |
| |
| SkBinaryWriteBuffer::SkBinaryWriteBuffer(void* storage, size_t storageSize) |
| : fFactorySet(nullptr) |
| , fWriter(storage, storageSize) |
| , fTFSet(nullptr) { |
| } |
| |
| SkBinaryWriteBuffer::~SkBinaryWriteBuffer() { |
| SkSafeUnref(fFactorySet); |
| SkSafeUnref(fTFSet); |
| } |
| |
| void SkBinaryWriteBuffer::writeByteArray(const void* data, size_t size) { |
| fWriter.write32(SkToU32(size)); |
| fWriter.writePad(data, size); |
| } |
| |
| void SkBinaryWriteBuffer::writeBool(bool value) { |
| fWriter.writeBool(value); |
| } |
| |
| void SkBinaryWriteBuffer::writeScalar(SkScalar value) { |
| fWriter.writeScalar(value); |
| } |
| |
| void SkBinaryWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) { |
| fWriter.write32(count); |
| fWriter.write(value, count * sizeof(SkScalar)); |
| } |
| |
| void SkBinaryWriteBuffer::writeInt(int32_t value) { |
| fWriter.write32(value); |
| } |
| |
| void SkBinaryWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) { |
| fWriter.write32(count); |
| fWriter.write(value, count * sizeof(int32_t)); |
| } |
| |
| void SkBinaryWriteBuffer::writeUInt(uint32_t value) { |
| fWriter.write32(value); |
| } |
| |
| void SkBinaryWriteBuffer::writeString(const char* value) { |
| fWriter.writeString(value); |
| } |
| |
| void SkBinaryWriteBuffer::writeColor(SkColor color) { |
| fWriter.write32(color); |
| } |
| |
| void SkBinaryWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) { |
| fWriter.write32(count); |
| fWriter.write(color, count * sizeof(SkColor)); |
| } |
| |
| void SkBinaryWriteBuffer::writeColor4f(const SkColor4f& color) { |
| fWriter.write(&color, sizeof(SkColor4f)); |
| } |
| |
| void SkBinaryWriteBuffer::writeColor4fArray(const SkColor4f* color, uint32_t count) { |
| fWriter.write32(count); |
| fWriter.write(color, count * sizeof(SkColor4f)); |
| } |
| |
| void SkBinaryWriteBuffer::writePoint(const SkPoint& point) { |
| fWriter.writeScalar(point.fX); |
| fWriter.writeScalar(point.fY); |
| } |
| |
| void SkBinaryWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) { |
| fWriter.write32(count); |
| fWriter.write(point, count * sizeof(SkPoint)); |
| } |
| |
| void SkBinaryWriteBuffer::writeMatrix(const SkMatrix& matrix) { |
| fWriter.writeMatrix(matrix); |
| } |
| |
| void SkBinaryWriteBuffer::writeIRect(const SkIRect& rect) { |
| fWriter.write(&rect, sizeof(SkIRect)); |
| } |
| |
| void SkBinaryWriteBuffer::writeRect(const SkRect& rect) { |
| fWriter.writeRect(rect); |
| } |
| |
| void SkBinaryWriteBuffer::writeRegion(const SkRegion& region) { |
| fWriter.writeRegion(region); |
| } |
| |
| void SkBinaryWriteBuffer::writePath(const SkPath& path) { |
| fWriter.writePath(path); |
| } |
| |
| size_t SkBinaryWriteBuffer::writeStream(SkStream* stream, size_t length) { |
| fWriter.write32(SkToU32(length)); |
| size_t bytesWritten = fWriter.readFromStream(stream, length); |
| if (bytesWritten < length) { |
| fWriter.reservePad(length - bytesWritten); |
| } |
| return bytesWritten; |
| } |
| |
| bool SkBinaryWriteBuffer::writeToStream(SkWStream* stream) { |
| return fWriter.writeToStream(stream); |
| } |
| |
| void SkBinaryWriteBuffer::writeImage(const SkImage* image) { |
| if (fDeduper) { |
| this->write32(fDeduper->findOrDefineImage(const_cast<SkImage*>(image))); |
| return; |
| } |
| |
| this->writeInt(image->width()); |
| this->writeInt(image->height()); |
| |
| auto write_data = [this](sk_sp<SkData> data, int sign) { |
| size_t size = data ? data->size() : 0; |
| if (!sk_64_isS32(size)) { |
| size = 0; // too big to store |
| } |
| if (size) { |
| this->write32(SkToS32(size) * sign); |
| this->writePad32(data->data(), size); // does nothing if size == 0 |
| this->write32(0); // origin-x |
| this->write32(0); // origin-y |
| } else { |
| this->write32(0); // signal no image |
| } |
| }; |
| |
| /* |
| * What follows is a 32bit encoded size. |
| * 0 : failure, nothing else to do |
| * <0 : negative (int32_t) of a custom encoded blob using SerialProcs |
| * >0 : standard encoded blob size (use MakeFromEncoded) |
| */ |
| sk_sp<SkData> data; |
| int sign = 1; // +1 signals standard encoder |
| if (fProcs.fImageProc) { |
| data = fProcs.fImageProc(const_cast<SkImage*>(image), fProcs.fImageCtx); |
| sign = -1; // +1 signals custom encoder |
| } |
| // We check data, since a custom proc can return nullptr, in which case we behave as if |
| // there was no custom proc. |
| if (!data) { |
| data = image->encodeToData(); |
| sign = 1; |
| } |
| write_data(std::move(data), sign); |
| } |
| |
| void SkBinaryWriteBuffer::writeTypeface(SkTypeface* obj) { |
| if (fDeduper) { |
| this->write32(fDeduper->findOrDefineTypeface(obj)); |
| return; |
| } |
| |
| // Write 32 bits (signed) |
| // 0 -- default font |
| // >0 -- index |
| // <0 -- custom (serial procs) |
| |
| if (obj == nullptr) { |
| fWriter.write32(0); |
| } else if (fProcs.fTypefaceProc) { |
| auto data = fProcs.fTypefaceProc(obj, fProcs.fTypefaceCtx); |
| if (data) { |
| size_t size = data->size(); |
| if (!sk_64_isS32(size)) { |
| size = 0; // fall back to default font |
| } |
| int32_t ssize = SkToS32(size); |
| fWriter.write32(-ssize); // negative to signal custom |
| if (size) { |
| this->writePad32(data->data(), size); |
| } |
| return; |
| } |
| // no data means fall through for std behavior |
| } |
| fWriter.write32(fTFSet ? fTFSet->add(obj) : 0); |
| } |
| |
| void SkBinaryWriteBuffer::writePaint(const SkPaint& paint) { |
| paint.flatten(*this); |
| } |
| |
| SkFactorySet* SkBinaryWriteBuffer::setFactoryRecorder(SkFactorySet* rec) { |
| SkRefCnt_SafeAssign(fFactorySet, rec); |
| return rec; |
| } |
| |
| SkRefCntSet* SkBinaryWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) { |
| SkRefCnt_SafeAssign(fTFSet, rec); |
| return rec; |
| } |
| |
| void SkBinaryWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) { |
| if (nullptr == flattenable) { |
| this->write32(0); |
| return; |
| } |
| |
| if (fDeduper) { |
| this->write32(fDeduper->findOrDefineFactory(const_cast<SkFlattenable*>(flattenable))); |
| } else { |
| /* |
| * We can write 1 of 2 versions of the flattenable: |
| * 1. index into fFactorySet : This assumes the writer will later |
| * resolve the function-ptrs into strings for its reader. SkPicture |
| * does exactly this, by writing a table of names (matching the indices) |
| * up front in its serialized form. |
| * 2. string name of the flattenable or index into fFlattenableDict: We |
| * store the string to allow the reader to specify its own factories |
| * after write time. In order to improve compression, if we have |
| * already written the string, we write its index instead. |
| */ |
| if (fFactorySet) { |
| SkFlattenable::Factory factory = flattenable->getFactory(); |
| SkASSERT(factory); |
| this->write32(fFactorySet->add(factory)); |
| } else { |
| const char* name = flattenable->getTypeName(); |
| SkASSERT(name); |
| SkString key(name); |
| if (uint32_t* indexPtr = fFlattenableDict.find(key)) { |
| // We will write the index as a 32-bit int. We want the first byte |
| // that we send to be zero - this will act as a sentinel that we |
| // have an index (not a string). This means that we will send the |
| // the index shifted left by 8. The remaining 24-bits should be |
| // plenty to store the index. Note that this strategy depends on |
| // being little endian. |
| SkASSERT(0 == *indexPtr >> 24); |
| this->write32(*indexPtr << 8); |
| } else { |
| // Otherwise write the string. Clients should not use the empty |
| // string as a name, or we will have a problem. |
| SkASSERT(strcmp("", name)); |
| this->writeString(name); |
| |
| // Add key to dictionary. |
| fFlattenableDict.set(key, fFlattenableDict.count() + 1); |
| } |
| } |
| } |
| |
| // make room for the size of the flattened object |
| (void)fWriter.reserve(sizeof(uint32_t)); |
| // record the current size, so we can subtract after the object writes. |
| size_t offset = fWriter.bytesWritten(); |
| // now flatten the object |
| flattenable->flatten(*this); |
| size_t objSize = fWriter.bytesWritten() - offset; |
| // record the obj's size |
| fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize)); |
| } |