| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkBitmap.h" |
| #include "SkDeduper.h" |
| #include "SkImage.h" |
| #include "SkImageGenerator.h" |
| #include "SkMakeUnique.h" |
| #include "SkMathPriv.h" |
| #include "SkMatrixPriv.h" |
| #include "SkReadBuffer.h" |
| #include "SkSafeMath.h" |
| #include "SkStream.h" |
| #include "SkTypeface.h" |
| |
| namespace { |
| // This generator intentionally should always fail on all attempts to get its pixels, |
| // simulating a bad or empty codec stream. |
| class EmptyImageGenerator final : public SkImageGenerator { |
| public: |
| EmptyImageGenerator(const SkImageInfo& info) : INHERITED(info) { } |
| |
| private: |
| typedef SkImageGenerator INHERITED; |
| }; |
| |
| static sk_sp<SkImage> MakeEmptyImage(int width, int height) { |
| return SkImage::MakeFromGenerator( |
| skstd::make_unique<EmptyImageGenerator>(SkImageInfo::MakeN32Premul(width, height))); |
| } |
| |
| } // anonymous namespace |
| |
| |
| SkReadBuffer::SkReadBuffer() { |
| fVersion = 0; |
| fMemoryPtr = nullptr; |
| |
| fTFArray = nullptr; |
| fTFCount = 0; |
| |
| fFactoryArray = nullptr; |
| fFactoryCount = 0; |
| #ifdef DEBUG_NON_DETERMINISTIC_ASSERT |
| fDecodedBitmapIndex = -1; |
| #endif // DEBUG_NON_DETERMINISTIC_ASSERT |
| } |
| |
| SkReadBuffer::SkReadBuffer(const void* data, size_t size) { |
| fVersion = 0; |
| this->setMemory(data, size); |
| fMemoryPtr = nullptr; |
| |
| fTFArray = nullptr; |
| fTFCount = 0; |
| |
| fFactoryArray = nullptr; |
| fFactoryCount = 0; |
| #ifdef DEBUG_NON_DETERMINISTIC_ASSERT |
| fDecodedBitmapIndex = -1; |
| #endif // DEBUG_NON_DETERMINISTIC_ASSERT |
| } |
| |
| SkReadBuffer::~SkReadBuffer() { |
| sk_free(fMemoryPtr); |
| } |
| |
| void SkReadBuffer::setMemory(const void* data, size_t size) { |
| this->validate(IsPtrAlign4(data) && (SkAlign4(size) == size)); |
| if (!fError) { |
| fReader.setMemory(data, size); |
| } |
| } |
| void SkReadBuffer::setInvalid() { |
| if (!fError) { |
| // When an error is found, send the read cursor to the end of the stream |
| fReader.skip(fReader.available()); |
| fError = true; |
| } |
| } |
| |
| const void* SkReadBuffer::skip(size_t size) { |
| size_t inc = SkAlign4(size); |
| this->validate(inc >= size); |
| const void* addr = fReader.peek(); |
| this->validate(IsPtrAlign4(addr) && fReader.isAvailable(inc)); |
| if (fError) { |
| return nullptr; |
| } |
| |
| fReader.skip(size); |
| return addr; |
| } |
| |
| const void* SkReadBuffer::skip(size_t count, size_t size) { |
| return this->skip(SkSafeMath::Mul(count, size)); |
| } |
| |
| void SkReadBuffer::setDeserialProcs(const SkDeserialProcs& procs) { |
| fProcs = procs; |
| } |
| |
| bool SkReadBuffer::readBool() { |
| uint32_t value = this->readUInt(); |
| // Boolean value should be either 0 or 1 |
| this->validate(!(value & ~1)); |
| return value != 0; |
| } |
| |
| SkColor SkReadBuffer::readColor() { |
| return this->readUInt(); |
| } |
| |
| int32_t SkReadBuffer::readInt() { |
| const size_t inc = sizeof(int32_t); |
| this->validate(IsPtrAlign4(fReader.peek()) && fReader.isAvailable(inc)); |
| return fError ? 0 : fReader.readInt(); |
| } |
| |
| SkScalar SkReadBuffer::readScalar() { |
| const size_t inc = sizeof(SkScalar); |
| this->validate(IsPtrAlign4(fReader.peek()) && fReader.isAvailable(inc)); |
| return fError ? 0 : fReader.readScalar(); |
| } |
| |
| uint32_t SkReadBuffer::readUInt() { |
| return this->readInt(); |
| } |
| |
| int32_t SkReadBuffer::read32() { |
| return this->readInt(); |
| } |
| |
| uint8_t SkReadBuffer::peekByte() { |
| if (fReader.available() <= 0) { |
| fError = true; |
| return 0; |
| } |
| return *((uint8_t*) fReader.peek()); |
| } |
| |
| bool SkReadBuffer::readPad32(void* buffer, size_t bytes) { |
| if (const void* src = this->skip(bytes)) { |
| memcpy(buffer, src, bytes); |
| return true; |
| } |
| return false; |
| } |
| |
| void SkReadBuffer::readString(SkString* string) { |
| const size_t len = this->readUInt(); |
| // skip over the string + '\0' |
| if (const char* src = this->skipT<char>(len + 1)) { |
| if (this->validate(src[len] == 0)) { |
| string->set(src, len); |
| return; |
| } |
| } |
| string->reset(); |
| } |
| |
| void SkReadBuffer::readColor4f(SkColor4f* color) { |
| if (!this->readPad32(color, sizeof(SkColor4f))) { |
| *color = {0, 0, 0, 0}; |
| } |
| } |
| |
| void SkReadBuffer::readPoint(SkPoint* point) { |
| point->fX = this->readScalar(); |
| point->fY = this->readScalar(); |
| } |
| |
| void SkReadBuffer::readPoint3(SkPoint3* point) { |
| this->readPad32(point, sizeof(SkPoint3)); |
| } |
| |
| void SkReadBuffer::readMatrix(SkMatrix* matrix) { |
| size_t size = 0; |
| if (this->isValid()) { |
| size = SkMatrixPriv::ReadFromMemory(matrix, fReader.peek(), fReader.available()); |
| (void)this->validate((SkAlign4(size) == size) && (0 != size)); |
| } |
| if (!this->isValid()) { |
| matrix->reset(); |
| } |
| (void)this->skip(size); |
| } |
| |
| void SkReadBuffer::readIRect(SkIRect* rect) { |
| if (!this->readPad32(rect, sizeof(SkIRect))) { |
| rect->setEmpty(); |
| } |
| } |
| |
| void SkReadBuffer::readRect(SkRect* rect) { |
| if (!this->readPad32(rect, sizeof(SkRect))) { |
| rect->setEmpty(); |
| } |
| } |
| |
| void SkReadBuffer::readRRect(SkRRect* rrect) { |
| if (!this->validate(fReader.readRRect(rrect))) { |
| rrect->setEmpty(); |
| } |
| } |
| |
| void SkReadBuffer::readRegion(SkRegion* region) { |
| size_t size = 0; |
| if (!fError) { |
| size = region->readFromMemory(fReader.peek(), fReader.available()); |
| if (!this->validate((SkAlign4(size) == size) && (0 != size))) { |
| region->setEmpty(); |
| } |
| } |
| (void)this->skip(size); |
| } |
| |
| void SkReadBuffer::readPath(SkPath* path) { |
| size_t size = 0; |
| if (!fError) { |
| size = path->readFromMemory(fReader.peek(), fReader.available()); |
| if (!this->validate((SkAlign4(size) == size) && (0 != size))) { |
| path->reset(); |
| } |
| } |
| (void)this->skip(size); |
| } |
| |
| bool SkReadBuffer::readArray(void* value, size_t size, size_t elementSize) { |
| const uint32_t count = this->readUInt(); |
| return this->validate(size == count) && |
| this->readPad32(value, SkSafeMath::Mul(size, elementSize)); |
| } |
| |
| bool SkReadBuffer::readByteArray(void* value, size_t size) { |
| return this->readArray(value, size, sizeof(uint8_t)); |
| } |
| |
| bool SkReadBuffer::readColorArray(SkColor* colors, size_t size) { |
| return this->readArray(colors, size, sizeof(SkColor)); |
| } |
| |
| bool SkReadBuffer::readColor4fArray(SkColor4f* colors, size_t size) { |
| return this->readArray(colors, size, sizeof(SkColor4f)); |
| } |
| |
| bool SkReadBuffer::readIntArray(int32_t* values, size_t size) { |
| return this->readArray(values, size, sizeof(int32_t)); |
| } |
| |
| bool SkReadBuffer::readPointArray(SkPoint* points, size_t size) { |
| return this->readArray(points, size, sizeof(SkPoint)); |
| } |
| |
| bool SkReadBuffer::readScalarArray(SkScalar* values, size_t size) { |
| return this->readArray(values, size, sizeof(SkScalar)); |
| } |
| |
| uint32_t SkReadBuffer::getArrayCount() { |
| const size_t inc = sizeof(uint32_t); |
| fError = fError || !IsPtrAlign4(fReader.peek()) || !fReader.isAvailable(inc); |
| return fError ? 0 : *(uint32_t*)fReader.peek(); |
| } |
| |
| sk_sp<SkImage> SkReadBuffer::readImage() { |
| if (fInflator) { |
| SkImage* img = fInflator->getImage(this->read32()); |
| return img ? sk_ref_sp(img) : nullptr; |
| } |
| |
| int width = this->read32(); |
| int height = this->read32(); |
| if (width <= 0 || height <= 0) { // SkImage never has a zero dimension |
| this->validate(false); |
| return nullptr; |
| } |
| |
| /* |
| * What follows is a 32bit encoded size. |
| * 0 : failure, nothing else to do |
| * <0 : negative (int32_t) of a custom encoded blob using SerialProcs |
| * >0 : standard encoded blob size (use MakeFromEncoded) |
| */ |
| |
| int32_t encoded_size = this->read32(); |
| if (encoded_size == 0) { |
| // The image could not be encoded at serialization time - return an empty placeholder. |
| return MakeEmptyImage(width, height); |
| } |
| if (encoded_size == 1) { |
| // legacy check (we stopped writing this for "raw" images Nov-2017) |
| this->validate(false); |
| return nullptr; |
| } |
| |
| size_t size = SkAbs32(encoded_size); |
| sk_sp<SkData> data = SkData::MakeUninitialized(size); |
| if (!this->readPad32(data->writable_data(), size)) { |
| this->validate(false); |
| return nullptr; |
| } |
| int32_t originX = this->read32(); |
| int32_t originY = this->read32(); |
| if (originX < 0 || originY < 0) { |
| this->validate(false); |
| return nullptr; |
| } |
| |
| sk_sp<SkImage> image; |
| if (encoded_size < 0) { // custom encoded, need serial proc |
| if (fProcs.fImageProc) { |
| image = fProcs.fImageProc(data->data(), data->size(), fProcs.fImageCtx); |
| } else { |
| // Nothing to do (no client proc), but since we've already "read" the custom data, |
| // wee just leave image as nullptr. |
| } |
| } else { |
| SkIRect subset = SkIRect::MakeXYWH(originX, originY, width, height); |
| image = SkImage::MakeFromEncoded(std::move(data), &subset); |
| } |
| // Question: are we correct to return an "empty" image instead of nullptr, if the decoder |
| // failed for some reason? |
| return image ? image : MakeEmptyImage(width, height); |
| } |
| |
| sk_sp<SkTypeface> SkReadBuffer::readTypeface() { |
| if (fInflator) { |
| return sk_ref_sp(fInflator->getTypeface(this->read32())); |
| } |
| |
| // Read 32 bits (signed) |
| // 0 -- return null (default font) |
| // >0 -- index |
| // <0 -- custom (serial procs) : negative size in bytes |
| |
| int32_t index = this->read32(); |
| if (index == 0) { |
| return nullptr; |
| } else if (index > 0) { |
| if (!this->validate(index <= fTFCount)) { |
| return nullptr; |
| } |
| return sk_ref_sp(fTFArray[index - 1]); |
| } else { // custom |
| size_t size = sk_negate_to_size_t(index); |
| const void* data = this->skip(size); |
| if (!this->validate(data != nullptr && fProcs.fTypefaceProc)) { |
| return nullptr; |
| } |
| return fProcs.fTypefaceProc(data, size, fProcs.fTypefaceCtx); |
| } |
| } |
| |
| SkFlattenable* SkReadBuffer::readFlattenable(SkFlattenable::Type ft) { |
| SkFlattenable::Factory factory = nullptr; |
| |
| if (fInflator) { |
| factory = fInflator->getFactory(this->read32()); |
| if (!factory) { |
| return nullptr; |
| } |
| } else if (fFactoryCount > 0) { |
| int32_t index = this->read32(); |
| if (0 == index || !this->isValid()) { |
| return nullptr; // writer failed to give us the flattenable |
| } |
| index -= 1; // we stored the index-base-1 |
| if ((unsigned)index >= (unsigned)fFactoryCount) { |
| this->validate(false); |
| return nullptr; |
| } |
| factory = fFactoryArray[index]; |
| } else { |
| SkString name; |
| if (this->peekByte()) { |
| // If the first byte is non-zero, the flattenable is specified by a string. |
| this->readString(&name); |
| |
| // Add the string to the dictionary. |
| fFlattenableDict.set(fFlattenableDict.count() + 1, name); |
| } else { |
| // Read the index. We are guaranteed that the first byte |
| // is zeroed, so we must shift down a byte. |
| uint32_t index = this->readUInt() >> 8; |
| if (index == 0) { |
| return nullptr; // writer failed to give us the flattenable |
| } |
| SkString* namePtr = fFlattenableDict.find(index); |
| if (!this->validate(namePtr != nullptr)) { |
| return nullptr; |
| } |
| name = *namePtr; |
| } |
| |
| // Check if a custom Factory has been specified for this flattenable. |
| if (!(factory = this->getCustomFactory(name))) { |
| // If there is no custom Factory, check for a default. |
| if (!(factory = SkFlattenable::NameToFactory(name.c_str()))) { |
| return nullptr; // writer failed to give us the flattenable |
| } |
| } |
| } |
| |
| // if we get here, factory may still be null, but if that is the case, the |
| // failure was ours, not the writer. |
| sk_sp<SkFlattenable> obj; |
| uint32_t sizeRecorded = this->read32(); |
| if (factory) { |
| size_t offset = fReader.offset(); |
| obj = (*factory)(*this); |
| // check that we read the amount we expected |
| size_t sizeRead = fReader.offset() - offset; |
| if (sizeRecorded != sizeRead) { |
| this->validate(false); |
| return nullptr; |
| } |
| if (obj && obj->getFlattenableType() != ft) { |
| this->validate(false); |
| return nullptr; |
| } |
| } else { |
| // we must skip the remaining data |
| fReader.skip(sizeRecorded); |
| } |
| return obj.release(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| int32_t SkReadBuffer::checkInt(int32_t min, int32_t max) { |
| SkASSERT(min <= max); |
| int32_t value = this->read32(); |
| if (value < min || value > max) { |
| this->validate(false); |
| value = min; |
| } |
| return value; |
| } |
| |
| SkFilterQuality SkReadBuffer::checkFilterQuality() { |
| return this->checkRange<SkFilterQuality>(kNone_SkFilterQuality, kLast_SkFilterQuality); |
| } |