|  | /* | 
|  | * Copyright 2012 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "bench/Benchmark.h" | 
|  | #include "src/base/SkRandom.h" | 
|  | #include "src/gpu/ganesh/GrMemoryPool.h" | 
|  |  | 
|  | #include <type_traits> | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // sizeof is a multiple of GrMemoryPool::kAlignment for 4, 8, or 16 byte alignment | 
|  | struct alignas(GrMemoryPool::kAlignment) Aligned { | 
|  | char buf[32]; | 
|  | }; | 
|  | static_assert(sizeof(Aligned) == 32); | 
|  | static_assert(sizeof(Aligned) % GrMemoryPool::kAlignment == 0); | 
|  |  | 
|  | // sizeof is not a multiple of GrMemoryPool::kAlignment (will not be a multiple of max_align_t | 
|  | // if it's 4, 8, or 16, as desired). | 
|  | struct alignas(2) Unaligned { | 
|  | char buf[30]; | 
|  | }; | 
|  | static_assert(sizeof(Unaligned) == 30); | 
|  | static_assert(sizeof(Unaligned) % GrMemoryPool::kAlignment != 0); | 
|  |  | 
|  | // When max_align_t == 16, 8, or 4 the padded Unaligned will also be 32 | 
|  | static_assert(SkAlignTo(sizeof(Unaligned), GrMemoryPool::kAlignment) == sizeof(Aligned)); | 
|  |  | 
|  | // All benchmarks create and delete the same number of objects. The key difference is the order | 
|  | // of operations, the size of the objects being allocated, and the size of the pool. | 
|  | typedef void (*RunBenchProc)(GrMemoryPool*, int); | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | // N objects are created, and then destroyed in reverse order (fully unwinding the cursor within | 
|  | // each block of the memory pool). | 
|  | template <typename T> | 
|  | static void run_stack(GrMemoryPool* pool, int loops) { | 
|  | static const int kMaxObjects = 4 * (1 << 10); | 
|  | T* objs[kMaxObjects]; | 
|  | for (int i = 0; i < loops; ++i) { | 
|  | // Push N objects into the pool (or heap if pool is null) | 
|  | for (int j = 0; j < kMaxObjects; ++j) { | 
|  | objs[j] = pool ? (T*) pool->allocate(sizeof(T)) : new T; | 
|  | } | 
|  | // Pop N objects off in LIFO order | 
|  | for (int j = kMaxObjects - 1; j >= 0; --j) { | 
|  | if (pool) { | 
|  | pool->release(objs[j]); | 
|  | } else { | 
|  | delete objs[j]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Everything has been cleaned up for the next loop | 
|  | } | 
|  | } | 
|  |  | 
|  | // N objects are created, and then destroyed in creation order (is not able to unwind the cursor | 
|  | // within each block, but can reclaim the block once everything is destroyed). | 
|  | template <typename T> | 
|  | static void run_queue(GrMemoryPool* pool, int loops) { | 
|  | static const int kMaxObjects = 4 * (1 << 10); | 
|  | T* objs[kMaxObjects]; | 
|  | for (int i = 0; i < loops; ++i) { | 
|  | // Push N objects into the pool (or heap if pool is null) | 
|  | for (int j = 0; j < kMaxObjects; ++j) { | 
|  | objs[j] = pool ? (T*) pool->allocate(sizeof(T)) : new T; | 
|  | } | 
|  | // Pop N objects off in FIFO order | 
|  | for (int j = 0; j < kMaxObjects; ++j) { | 
|  | if (pool) { | 
|  | pool->release(objs[j]); | 
|  | } else { | 
|  | delete objs[j]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Everything has been cleaned up for the next loop | 
|  | } | 
|  | } | 
|  |  | 
|  | // N objects are created and immediately destroyed, so space at the start of the pool should be | 
|  | // immediately reclaimed. | 
|  | template <typename T> | 
|  | static void run_pushpop(GrMemoryPool* pool, int loops) { | 
|  | static const int kMaxObjects = 4 * (1 << 10); | 
|  | T* objs[kMaxObjects]; | 
|  | for (int i = 0; i < loops; ++i) { | 
|  | // Push N objects into the pool (or heap if pool is null) | 
|  | for (int j = 0; j < kMaxObjects; ++j) { | 
|  | if (pool) { | 
|  | objs[j] = (T*) pool->allocate(sizeof(T)); | 
|  | pool->release(objs[j]); | 
|  | } else { | 
|  | objs[j] = new T; | 
|  | delete objs[j]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Everything has been cleaned up for the next loop | 
|  | } | 
|  | } | 
|  |  | 
|  | // N object creations and destructions are invoked in random order. | 
|  | template <typename T> | 
|  | static void run_random(GrMemoryPool* pool, int loops) { | 
|  | static const int kMaxObjects = 4 * (1 << 10); | 
|  | T* objs[kMaxObjects]; | 
|  | for (int i = 0; i < kMaxObjects; ++i) { | 
|  | objs[i] = nullptr; | 
|  | } | 
|  |  | 
|  | auto del = [&](int j) { | 
|  | // Delete | 
|  | if (pool) { | 
|  | pool->release(objs[j]); | 
|  | } else { | 
|  | delete objs[j]; | 
|  | } | 
|  | objs[j] = nullptr; | 
|  | }; | 
|  |  | 
|  | SkRandom r; | 
|  | for (int i = 0; i < loops; ++i) { | 
|  | // Execute 2*kMaxObjects operations, which should average to N create and N destroy, | 
|  | // followed by a small number of remaining deletions. | 
|  | for (int j = 0; j < 2 * kMaxObjects; ++j) { | 
|  | int k = r.nextRangeU(0, kMaxObjects-1); | 
|  | if (objs[k]) { | 
|  | del(k); | 
|  | } else { | 
|  | // Create | 
|  | objs[k] = pool ? (T*) pool->allocate(sizeof(T)) : new T; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Ensure everything is null for the next loop | 
|  | for (int j = 0; j < kMaxObjects; ++j) { | 
|  | if (objs[j]) { | 
|  | del(j); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | class GrMemoryPoolBench : public Benchmark { | 
|  | public: | 
|  | GrMemoryPoolBench(const char* name, RunBenchProc proc, int poolSize) | 
|  | : fPoolSize(poolSize) | 
|  | , fProc(proc) { | 
|  | fName.printf("grmemorypool_%s", name); | 
|  | } | 
|  |  | 
|  | bool isSuitableFor(Backend backend) override { | 
|  | return backend == Backend::kNonRendering; | 
|  | } | 
|  |  | 
|  | protected: | 
|  | const char* onGetName() override { | 
|  | return fName.c_str(); | 
|  | } | 
|  |  | 
|  | void onDraw(int loops, SkCanvas*) override { | 
|  | std::unique_ptr<GrMemoryPool> pool; | 
|  | if (fPoolSize > 0) { | 
|  | pool = GrMemoryPool::Make(fPoolSize, fPoolSize); | 
|  | } // else keep it null to test regular new/delete performance | 
|  |  | 
|  | fProc(pool.get(), loops); | 
|  | } | 
|  |  | 
|  | SkString     fName; | 
|  | int          fPoolSize; | 
|  | RunBenchProc fProc; | 
|  |  | 
|  | using INHERITED = Benchmark; | 
|  | }; | 
|  |  | 
|  | /////////////////////////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | static const int kLargePool = 10 * (1 << 10); | 
|  | static const int kSmallPool = GrMemoryPool::kMinAllocationSize; | 
|  |  | 
|  | DEF_BENCH( return new GrMemoryPoolBench("stack_aligned_lg",      run_stack<Aligned>,     kLargePool); ) | 
|  | DEF_BENCH( return new GrMemoryPoolBench("stack_aligned_sm",      run_stack<Aligned>,     kSmallPool); ) | 
|  | DEF_BENCH( return new GrMemoryPoolBench("stack_aligned_ref",     run_stack<Aligned>,     0); ) | 
|  | DEF_BENCH( return new GrMemoryPoolBench("stack_unaligned_lg",    run_stack<Unaligned>,   kLargePool); ) | 
|  | DEF_BENCH( return new GrMemoryPoolBench("stack_unaligned_sm",    run_stack<Unaligned>,   kSmallPool); ) | 
|  | DEF_BENCH( return new GrMemoryPoolBench("stack_unaligned_ref",   run_stack<Unaligned>,   0); ) | 
|  |  | 
|  | DEF_BENCH( return new GrMemoryPoolBench("queue_aligned_lg",      run_queue<Aligned>,     kLargePool); ) | 
|  | DEF_BENCH( return new GrMemoryPoolBench("queue_aligned_sm",      run_queue<Aligned>,     kSmallPool); ) | 
|  | DEF_BENCH( return new GrMemoryPoolBench("queue_aligned_ref",     run_queue<Aligned>,     0); ) | 
|  | DEF_BENCH( return new GrMemoryPoolBench("queue_unaligned_lg",    run_queue<Unaligned>,   kLargePool); ) | 
|  | DEF_BENCH( return new GrMemoryPoolBench("queue_unaligned_sm",    run_queue<Unaligned>,   kSmallPool); ) | 
|  | DEF_BENCH( return new GrMemoryPoolBench("queue_unaligned_ref",   run_queue<Unaligned>,   0); ) | 
|  |  | 
|  | DEF_BENCH( return new GrMemoryPoolBench("pushpop_aligned_lg",    run_pushpop<Aligned>,   kLargePool); ) | 
|  | DEF_BENCH( return new GrMemoryPoolBench("pushpop_aligned_sm",    run_pushpop<Aligned>,   kSmallPool); ) | 
|  | // DEF_BENCH( return new GrMemoryPoolBench("pushpop_aligned_ref",   run_pushpop<Aligned>,   0); ) | 
|  | DEF_BENCH( return new GrMemoryPoolBench("pushpop_unaligned_lg",  run_pushpop<Unaligned>, kLargePool); ) | 
|  | DEF_BENCH( return new GrMemoryPoolBench("pushpop_unaligned_sm",  run_pushpop<Unaligned>, kSmallPool); ) | 
|  | // DEF_BENCH( return new GrMemoryPoolBench("pushpop_unaligned_ref", run_pushpop<Unaligned>, 0); ) | 
|  | // pushpop_x_ref are not meaningful because the compiler completely optimizes away new T; delete *. | 
|  |  | 
|  | DEF_BENCH( return new GrMemoryPoolBench("random_aligned_lg",     run_random<Aligned>,    kLargePool); ) | 
|  | DEF_BENCH( return new GrMemoryPoolBench("random_aligned_sm",     run_random<Aligned>,    kSmallPool); ) | 
|  | DEF_BENCH( return new GrMemoryPoolBench("random_aligned_ref",    run_random<Aligned>,    0); ) | 
|  | DEF_BENCH( return new GrMemoryPoolBench("random_unaligned_lg",   run_random<Unaligned>,  kLargePool); ) | 
|  | DEF_BENCH( return new GrMemoryPoolBench("random_unaligned_sm",   run_random<Unaligned>,  kSmallPool); ) | 
|  | DEF_BENCH( return new GrMemoryPoolBench("random_unaligned_ref",  run_random<Unaligned>,  0); ) |