blob: cb3e6458d386d21a88211a79992b769c7369270d [file] [log] [blame]
/*
* Copyright 2022 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/graphite/TextureUtils.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColorSpace.h"
#include "include/core/SkPaint.h"
#include "include/core/SkSurface.h"
#include "src/core/SkMipmap.h"
#include "include/gpu/graphite/Context.h"
#include "include/gpu/graphite/GraphiteTypes.h"
#include "include/gpu/graphite/Recorder.h"
#include "include/gpu/graphite/Recording.h"
#include "include/gpu/graphite/Surface.h"
#include "src/gpu/graphite/Buffer.h"
#include "src/gpu/graphite/Caps.h"
#include "src/gpu/graphite/CommandBuffer.h"
#include "src/gpu/graphite/CopyTask.h"
#include "src/gpu/graphite/Image_Graphite.h"
#include "src/gpu/graphite/Log.h"
#include "src/gpu/graphite/RecorderPriv.h"
#include "src/gpu/graphite/ResourceProvider.h"
#include "src/gpu/graphite/SynchronizeToCpuTask.h"
#include "src/gpu/graphite/Texture.h"
#include "src/gpu/graphite/UploadTask.h"
namespace skgpu::graphite {
std::tuple<TextureProxyView, SkColorType> MakeBitmapProxyView(Recorder* recorder,
const SkBitmap& bitmap,
sk_sp<SkMipmap> mipmapsIn,
Mipmapped mipmapped,
skgpu::Budgeted budgeted) {
// Adjust params based on input and Caps
const skgpu::graphite::Caps* caps = recorder->priv().caps();
SkColorType ct = bitmap.info().colorType();
if (bitmap.dimensions().area() <= 1) {
mipmapped = Mipmapped::kNo;
}
auto textureInfo = caps->getDefaultSampledTextureInfo(ct, mipmapped, Protected::kNo,
Renderable::kNo);
if (!textureInfo.isValid()) {
ct = kRGBA_8888_SkColorType;
textureInfo = caps->getDefaultSampledTextureInfo(ct, mipmapped, Protected::kNo,
Renderable::kNo);
}
SkASSERT(textureInfo.isValid());
// Convert bitmap to texture colortype if necessary
SkBitmap bmpToUpload;
if (ct != bitmap.info().colorType()) {
if (!bmpToUpload.tryAllocPixels(bitmap.info().makeColorType(ct)) ||
!bitmap.readPixels(bmpToUpload.pixmap())) {
return {};
}
bmpToUpload.setImmutable();
} else {
bmpToUpload = bitmap;
}
if (!SkImageInfoIsValid(bmpToUpload.info())) {
return {};
}
int mipLevelCount = (mipmapped == Mipmapped::kYes) ?
SkMipmap::ComputeLevelCount(bitmap.width(), bitmap.height()) + 1 : 1;
// setup MipLevels
sk_sp<SkMipmap> mipmaps;
std::vector<MipLevel> texels;
if (mipLevelCount == 1) {
texels.resize(mipLevelCount);
texels[0].fPixels = bmpToUpload.getPixels();
texels[0].fRowBytes = bmpToUpload.rowBytes();
} else {
mipmaps = SkToBool(mipmapsIn) ? mipmapsIn
: sk_ref_sp(SkMipmap::Build(bmpToUpload.pixmap(), nullptr));
if (!mipmaps) {
return {};
}
SkASSERT(mipLevelCount == mipmaps->countLevels() + 1);
texels.resize(mipLevelCount);
texels[0].fPixels = bmpToUpload.getPixels();
texels[0].fRowBytes = bmpToUpload.rowBytes();
for (int i = 1; i < mipLevelCount; ++i) {
SkMipmap::Level generatedMipLevel;
mipmaps->getLevel(i - 1, &generatedMipLevel);
texels[i].fPixels = generatedMipLevel.fPixmap.addr();
texels[i].fRowBytes = generatedMipLevel.fPixmap.rowBytes();
SkASSERT(texels[i].fPixels);
SkASSERT(generatedMipLevel.fPixmap.colorType() == bmpToUpload.colorType());
}
}
// Create proxy
sk_sp<TextureProxy> proxy =
TextureProxy::Make(caps, bmpToUpload.dimensions(), textureInfo, budgeted);
if (!proxy) {
return {};
}
SkASSERT(caps->areColorTypeAndTextureInfoCompatible(ct, proxy->textureInfo()));
SkASSERT(mipmapped == Mipmapped::kNo || proxy->mipmapped() == Mipmapped::kYes);
// Src and dst colorInfo are the same
const SkColorInfo& colorInfo = bmpToUpload.info().colorInfo();
// Add UploadTask to Recorder
UploadInstance upload = UploadInstance::Make(
recorder, proxy, colorInfo, colorInfo, texels,
SkIRect::MakeSize(bmpToUpload.dimensions()), std::make_unique<ImageUploadContext>());
if (!upload.isValid()) {
SKGPU_LOG_E("MakeBitmapProxyView: Could not create UploadInstance");
return {};
}
recorder->priv().add(UploadTask::Make(std::move(upload)));
Swizzle swizzle = caps->getReadSwizzle(ct, textureInfo);
// If the color type is alpha-only, propagate the alpha value to the other channels.
if (SkColorTypeIsAlphaOnly(colorInfo.colorType())) {
swizzle = Swizzle::Concat(swizzle, Swizzle("aaaa"));
}
return {{std::move(proxy), swizzle}, ct};
}
sk_sp<SkImage> MakeFromBitmap(Recorder* recorder,
const SkColorInfo& colorInfo,
const SkBitmap& bitmap,
sk_sp<SkMipmap> mipmaps,
skgpu::Budgeted budgeted,
SkImage::RequiredProperties requiredProps) {
auto mm = requiredProps.fMipmapped ? skgpu::Mipmapped::kYes : skgpu::Mipmapped::kNo;
auto [view, ct] = MakeBitmapProxyView(recorder, bitmap, std::move(mipmaps), mm, budgeted);
if (!view) {
return nullptr;
}
SkASSERT(!requiredProps.fMipmapped || view.proxy()->mipmapped() == skgpu::Mipmapped::kYes);
return sk_make_sp<skgpu::graphite::Image>(kNeedNewImageUniqueID,
std::move(view),
colorInfo.makeColorType(ct));
}
// TODO: Make this computed size more generic to handle compressed textures
size_t ComputeSize(SkISize dimensions,
const TextureInfo& info) {
// TODO: Should we make sure the backends return zero here if the TextureInfo is for a
// memoryless texture?
size_t bytesPerPixel = info.bytesPerPixel();
size_t colorSize = (size_t)dimensions.width() * dimensions.height() * bytesPerPixel;
size_t finalSize = colorSize * info.numSamples();
if (info.mipmapped() == Mipmapped::kYes) {
finalSize += colorSize/3;
}
return finalSize;
}
sk_sp<SkSurface> make_surface_with_fallback(Recorder* recorder,
const SkImageInfo& info,
Mipmapped mipmapped,
const SkSurfaceProps* surfaceProps) {
SkColorType ct = recorder->priv().caps()->getRenderableColorType(info.colorType());
if (ct == kUnknown_SkColorType) {
return nullptr;
}
return SkSurfaces::RenderTarget(recorder, info.makeColorType(ct), mipmapped, surfaceProps);
}
sk_sp<SkImage> RescaleImage(Recorder* recorder,
const SkImage* srcImage,
SkIRect srcIRect,
const SkImageInfo& dstInfo,
SkImage::RescaleGamma rescaleGamma,
SkImage::RescaleMode rescaleMode) {
// make a Surface matching dstInfo to rescale into
SkSurfaceProps surfaceProps = {};
sk_sp<SkSurface> dst = make_surface_with_fallback(recorder,
dstInfo,
Mipmapped::kNo,
&surfaceProps);
if (!dst) {
return nullptr;
}
SkRect srcRect = SkRect::Make(srcIRect);
SkRect dstRect = SkRect::Make(dstInfo.dimensions());
// Get backing texture information for source Image.
// For now this needs to be texturable because we can't depend on copies to scale.
auto srcGraphiteImage = reinterpret_cast<const skgpu::graphite::Image*>(srcImage);
TextureProxyView imageView = srcGraphiteImage->textureProxyView();
if (!imageView.proxy()) {
// TODO: if not texturable, copy to a texturable format
return nullptr;
}
SkISize finalSize = SkISize::Make(dstRect.width(), dstRect.height());
if (finalSize == srcIRect.size()) {
rescaleGamma = Image::RescaleGamma::kSrc;
rescaleMode = Image::RescaleMode::kNearest;
}
// Within a rescaling pass tempInput is read from and tempOutput is written to.
// At the end of the pass tempOutput's texture is wrapped and assigned to tempInput.
const SkImageInfo& srcImageInfo = srcImage->imageInfo();
sk_sp<SkImage> tempInput(new Image(kNeedNewImageUniqueID,
imageView,
srcImageInfo.colorInfo()));
sk_sp<SkSurface> tempOutput;
// Assume we should ignore the rescale linear request if the surface has no color space since
// it's unclear how we'd linearize from an unknown color space.
if (rescaleGamma == Image::RescaleGamma::kLinear &&
srcImageInfo.colorSpace() &&
!srcImageInfo.colorSpace()->gammaIsLinear()) {
// Draw the src image into a new surface with linear gamma, and make that the new tempInput
sk_sp<SkColorSpace> linearGamma = srcImageInfo.colorSpace()->makeLinearGamma();
SkImageInfo gammaDstInfo = SkImageInfo::Make(srcIRect.size(),
tempInput->imageInfo().colorType(),
kPremul_SkAlphaType,
std::move(linearGamma));
tempOutput = make_surface_with_fallback(recorder,
gammaDstInfo,
Mipmapped::kNo,
&surfaceProps);
if (!tempOutput) {
return nullptr;
}
SkCanvas* gammaDst = tempOutput->getCanvas();
SkRect gammaDstRect = SkRect::Make(srcIRect.size());
SkPaint paint;
gammaDst->drawImageRect(tempInput, srcRect, gammaDstRect,
SkSamplingOptions(SkFilterMode::kNearest), &paint,
SkCanvas::kStrict_SrcRectConstraint);
tempInput = SkSurfaces::AsImage(tempOutput);
srcRect = gammaDstRect;
}
SkImageInfo outImageInfo = tempInput->imageInfo().makeAlphaType(kPremul_SkAlphaType);
do {
SkISize nextDims = finalSize;
if (rescaleMode != Image::RescaleMode::kNearest &&
rescaleMode != Image::RescaleMode::kLinear) {
if (srcRect.width() > finalSize.width()) {
nextDims.fWidth = std::max((srcRect.width() + 1)/2, (float)finalSize.width());
} else if (srcRect.width() < finalSize.width()) {
nextDims.fWidth = std::min(srcRect.width()*2, (float)finalSize.width());
}
if (srcRect.height() > finalSize.height()) {
nextDims.fHeight = std::max((srcRect.height() + 1)/2, (float)finalSize.height());
} else if (srcRect.height() < finalSize.height()) {
nextDims.fHeight = std::min(srcRect.height()*2, (float)finalSize.height());
}
}
SkCanvas* stepDst;
SkRect stepDstRect;
if (nextDims == finalSize) {
stepDst = dst->getCanvas();
stepDstRect = dstRect;
} else {
SkImageInfo nextInfo = outImageInfo.makeDimensions(nextDims);
tempOutput = make_surface_with_fallback(recorder,
nextInfo,
Mipmapped::kNo,
&surfaceProps);
if (!tempOutput) {
return nullptr;
}
stepDst = tempOutput->getCanvas();
stepDstRect = SkRect::Make(tempOutput->imageInfo().dimensions());
}
SkSamplingOptions samplingOptions;
if (rescaleMode == Image::RescaleMode::kRepeatedCubic) {
samplingOptions = SkSamplingOptions(SkCubicResampler::CatmullRom());
} else {
samplingOptions = (rescaleMode == Image::RescaleMode::kNearest) ?
SkSamplingOptions(SkFilterMode::kNearest) :
SkSamplingOptions(SkFilterMode::kLinear);
}
SkPaint paint;
stepDst->drawImageRect(tempInput, srcRect, stepDstRect, samplingOptions, &paint,
SkCanvas::kStrict_SrcRectConstraint);
tempInput = SkSurfaces::AsImage(tempOutput);
srcRect = SkRect::Make(nextDims);
} while (srcRect.width() != finalSize.width() || srcRect.height() != finalSize.height());
return SkSurfaces::AsImage(dst);
}
} // namespace skgpu::graphite