|  | /* | 
|  | * Copyright 2018 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "tests/PathOpsExtendedTest.h" | 
|  | #include "tests/PathOpsThreadedCommon.h" | 
|  | #include "tests/Test.h" | 
|  |  | 
|  | static SkPath build_squircle(SkPath::Verb verb, const SkRect& rect, SkPathDirection dir) { | 
|  | SkPath path; | 
|  | bool reverse = SkPathDirection::kCCW == dir; | 
|  | switch (verb) { | 
|  | case SkPath::kLine_Verb: | 
|  | path.addRect(rect, dir); | 
|  | reverse = false; | 
|  | break; | 
|  | case SkPath::kQuad_Verb: | 
|  | path.moveTo(rect.centerX(), rect.fTop); | 
|  | path.quadTo(rect.fRight, rect.fTop, rect.fRight, rect.centerY()); | 
|  | path.quadTo(rect.fRight, rect.fBottom, rect.centerX(), rect.fBottom); | 
|  | path.quadTo(rect.fLeft, rect.fBottom, rect.fLeft, rect.centerY()); | 
|  | path.quadTo(rect.fLeft, rect.fTop, rect.centerX(), rect.fTop); | 
|  | break; | 
|  | case SkPath::kConic_Verb: | 
|  | path.addCircle(rect.centerX(), rect.centerY(), rect.width() / 2, dir); | 
|  | reverse = false; | 
|  | break; | 
|  | case SkPath::kCubic_Verb: { | 
|  | SkScalar aX14 = rect.fLeft + rect.width() * 1 / 4; | 
|  | SkScalar aX34 = rect.fLeft + rect.width() * 3 / 4; | 
|  | SkScalar aY14 = rect.fTop + rect.height() * 1 / 4; | 
|  | SkScalar aY34 = rect.fTop + rect.height() * 3 / 4; | 
|  | path.moveTo(rect.centerX(), rect.fTop); | 
|  | path.cubicTo(aX34, rect.fTop, rect.fRight, aY14, rect.fRight, rect.centerY()); | 
|  | path.cubicTo(rect.fRight, aY34, aX34, rect.fBottom, rect.centerX(), rect.fBottom); | 
|  | path.cubicTo(aX14, rect.fBottom, rect.fLeft, aY34, rect.fLeft, rect.centerY()); | 
|  | path.cubicTo(rect.fLeft, aY14, aX14, rect.fTop, rect.centerX(), rect.fTop); | 
|  | } break; | 
|  | default: | 
|  | SkASSERT(0); | 
|  | } | 
|  | if (reverse) { | 
|  | SkPath temp; | 
|  | temp.reverseAddPath(path); | 
|  | path.swap(temp); | 
|  | } | 
|  | return path; | 
|  | } | 
|  |  | 
|  | DEF_TEST(PathOpsAsWinding, reporter) { | 
|  | SkPath test, result; | 
|  | test.addRect({1, 2, 3, 4}); | 
|  | // if test is winding | 
|  | REPORTER_ASSERT(reporter, AsWinding(test, &result)); | 
|  | REPORTER_ASSERT(reporter, test == result); | 
|  | // if test is empty | 
|  | test.reset(); | 
|  | test.setFillType(SkPathFillType::kEvenOdd); | 
|  | REPORTER_ASSERT(reporter, AsWinding(test, &result)); | 
|  | REPORTER_ASSERT(reporter, result.isEmpty()); | 
|  | REPORTER_ASSERT(reporter, result.getFillType() == SkPathFillType::kWinding); | 
|  | // if test is convex | 
|  | test.addCircle(5, 5, 10); | 
|  | REPORTER_ASSERT(reporter, AsWinding(test, &result)); | 
|  | REPORTER_ASSERT(reporter, result.isConvex()); | 
|  | test.setFillType(SkPathFillType::kWinding); | 
|  | REPORTER_ASSERT(reporter, test == result); | 
|  | // if test has infinity | 
|  | test.reset(); | 
|  | test.addRect({1, 2, 3, SK_ScalarInfinity}); | 
|  | test.setFillType(SkPathFillType::kEvenOdd); | 
|  | REPORTER_ASSERT(reporter, !AsWinding(test, &result)); | 
|  | // if test has only one contour | 
|  | test.reset(); | 
|  | SkPoint ell[] = {{0, 0}, {4, 0}, {4, 1}, {1, 1}, {1, 4}, {0, 4}}; | 
|  | test.addPoly(ell, SK_ARRAY_COUNT(ell), true); | 
|  | test.setFillType(SkPathFillType::kEvenOdd); | 
|  | REPORTER_ASSERT(reporter, AsWinding(test, &result)); | 
|  | REPORTER_ASSERT(reporter, !result.isConvex()); | 
|  | test.setFillType(SkPathFillType::kWinding); | 
|  | REPORTER_ASSERT(reporter, test == result); | 
|  | // test two contours that do not overlap or share bounds | 
|  | test.addRect({5, 2, 6, 3}); | 
|  | test.setFillType(SkPathFillType::kEvenOdd); | 
|  | REPORTER_ASSERT(reporter, AsWinding(test, &result)); | 
|  | REPORTER_ASSERT(reporter, !result.isConvex()); | 
|  | test.setFillType(SkPathFillType::kWinding); | 
|  | REPORTER_ASSERT(reporter, test == result); | 
|  | // test two contours that do not overlap but share bounds | 
|  | test.reset(); | 
|  | test.addPoly(ell, SK_ARRAY_COUNT(ell), true); | 
|  | test.addRect({2, 2, 3, 3}); | 
|  | test.setFillType(SkPathFillType::kEvenOdd); | 
|  | REPORTER_ASSERT(reporter, AsWinding(test, &result)); | 
|  | REPORTER_ASSERT(reporter, !result.isConvex()); | 
|  | test.setFillType(SkPathFillType::kWinding); | 
|  | REPORTER_ASSERT(reporter, test == result); | 
|  | // test two contours that partially overlap | 
|  | test.reset(); | 
|  | test.addRect({0, 0, 3, 3}); | 
|  | test.addRect({1, 1, 4, 4}); | 
|  | test.setFillType(SkPathFillType::kEvenOdd); | 
|  | REPORTER_ASSERT(reporter, AsWinding(test, &result)); | 
|  | REPORTER_ASSERT(reporter, !result.isConvex()); | 
|  | test.setFillType(SkPathFillType::kWinding); | 
|  | REPORTER_ASSERT(reporter, test == result); | 
|  | // test that result may be input | 
|  | SkPath copy = test; | 
|  | test.setFillType(SkPathFillType::kEvenOdd); | 
|  | REPORTER_ASSERT(reporter, AsWinding(test, &test)); | 
|  | REPORTER_ASSERT(reporter, !test.isConvex()); | 
|  | REPORTER_ASSERT(reporter, test == copy); | 
|  | // test a in b, b in a, cw/ccw | 
|  | constexpr SkRect rectA = {0, 0, 3, 3}; | 
|  | constexpr SkRect rectB = {1, 1, 2, 2}; | 
|  | const std::initializer_list<SkPoint> revBccw = {{1, 2}, {2, 2}, {2, 1}, {1, 1}}; | 
|  | const std::initializer_list<SkPoint> revBcw  = {{2, 1}, {2, 2}, {1, 2}, {1, 1}}; | 
|  | for (bool aFirst : {false, true}) { | 
|  | for (auto dirA : {SkPathDirection::kCW, SkPathDirection::kCCW}) { | 
|  | for (auto dirB : {SkPathDirection::kCW, SkPathDirection::kCCW}) { | 
|  | test.reset(); | 
|  | test.setFillType(SkPathFillType::kEvenOdd); | 
|  | if (aFirst) { | 
|  | test.addRect(rectA, dirA); | 
|  | test.addRect(rectB, dirB); | 
|  | } else { | 
|  | test.addRect(rectB, dirB); | 
|  | test.addRect(rectA, dirA); | 
|  | } | 
|  | SkPath original = test; | 
|  | REPORTER_ASSERT(reporter, AsWinding(test, &result)); | 
|  | REPORTER_ASSERT(reporter, result.getFillType() == SkPathFillType::kWinding); | 
|  | test.reset(); | 
|  | if (aFirst) { | 
|  | test.addRect(rectA, dirA); | 
|  | } | 
|  | if (dirA != dirB) { | 
|  | test.addRect(rectB, dirB); | 
|  | } else { | 
|  | test.addPoly(SkPathDirection::kCW == dirA ? revBccw : revBcw, true); | 
|  | } | 
|  | if (!aFirst) { | 
|  | test.addRect(rectA, dirA); | 
|  | } | 
|  | REPORTER_ASSERT(reporter, test == result); | 
|  | // test that result may be input | 
|  | REPORTER_ASSERT(reporter, AsWinding(original, &original)); | 
|  | REPORTER_ASSERT(reporter, original.getFillType() == SkPathFillType::kWinding); | 
|  | REPORTER_ASSERT(reporter, original == result); | 
|  | } | 
|  | } | 
|  | } | 
|  | // Test curve types with donuts. Create a donut with outer and hole in all directions. | 
|  | // After converting to winding, all donuts should have a hole in the middle. | 
|  | for (bool aFirst : {false, true}) { | 
|  | for (auto dirA : {SkPathDirection::kCW, SkPathDirection::kCCW}) { | 
|  | for (auto dirB : {SkPathDirection::kCW, SkPathDirection::kCCW}) { | 
|  | for (auto curveA : { SkPath::kLine_Verb, SkPath::kQuad_Verb, | 
|  | SkPath::kConic_Verb, SkPath::kCubic_Verb } ) { | 
|  | SkPath pathA = build_squircle(curveA, rectA, dirA); | 
|  | for (auto curveB : { SkPath::kLine_Verb, SkPath::kQuad_Verb, | 
|  | SkPath::kConic_Verb, SkPath::kCubic_Verb } ) { | 
|  | test = aFirst ? pathA : SkPath(); | 
|  | test.addPath(build_squircle(curveB, rectB, dirB)); | 
|  | if (!aFirst) { | 
|  | test.addPath(pathA); | 
|  | } | 
|  | test.setFillType(SkPathFillType::kEvenOdd); | 
|  | REPORTER_ASSERT(reporter, AsWinding(test, &result)); | 
|  | REPORTER_ASSERT(reporter, result.getFillType() == SkPathFillType::kWinding); | 
|  | for (SkScalar x = rectA.fLeft - 1; x <= rectA.fRight + 1; ++x) { | 
|  | for (SkScalar y = rectA.fTop - 1; y <= rectA.fBottom + 1; ++y) { | 
|  | bool evenOddContains = test.contains(x, y); | 
|  | bool windingContains = result.contains(x, y); | 
|  | REPORTER_ASSERT(reporter, evenOddContains == windingContains); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } |