blob: 4892463ad9bdc0cf03acbcc49235f153c8eaf790 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SKSL_IRNODE
#define SKSL_IRNODE
#include "src/sksl/SkSLASTNode.h"
#include "src/sksl/SkSLLexer.h"
#include "src/sksl/SkSLString.h"
#include <algorithm>
#include <vector>
namespace SkSL {
struct Expression;
struct Statement;
class SymbolTable;
class Type;
/**
* Represents a node in the intermediate representation (IR) tree. The IR is a fully-resolved
* version of the program (all types determined, everything validated), ready for code generation.
*/
class IRNode {
public:
virtual ~IRNode();
IRNode& operator=(const IRNode& other) {
// Need to have a copy assignment operator because Type requires it, but can't use the
// default version until we finish migrating away from std::unique_ptr children. For now,
// just assert that there are no children (we could theoretically clone them, but we never
// actually copy nodes containing children).
SkASSERT(other.fExpressionChildren.empty());
fKind = other.fKind;
fOffset = other.fOffset;
fData = other.fData;
return *this;
}
virtual String description() const = 0;
// character offset of this element within the program being compiled, for error reporting
// purposes
int fOffset;
const Type& type() const {
switch (fData.fKind) {
case NodeData::Kind::kType:
return *this->typeData();
case NodeData::Kind::kTypeToken:
return *this->typeTokenData().fType;
default:
SkUNREACHABLE;
}
}
protected:
struct BlockData {
std::shared_ptr<SymbolTable> fSymbolTable;
// if isScope is false, this is just a group of statements rather than an actual
// language-level block. This allows us to pass around multiple statements as if they were a
// single unit, with no semantic impact.
bool fIsScope;
};
struct TypeTokenData {
const Type* fType;
Token::Kind fToken;
};
struct NodeData {
char fBytes[std::max({sizeof(BlockData),
sizeof(Type*),
sizeof(TypeTokenData)})];
enum class Kind {
kBlock,
kType,
kTypeToken,
} fKind;
NodeData() = default;
NodeData(BlockData data)
: fKind(Kind::kBlock) {
new(reinterpret_cast<BlockData*>(fBytes)) BlockData{std::move(data.fSymbolTable),
data.fIsScope};
}
NodeData(const Type* data)
: fKind(Kind::kType) {
memcpy(fBytes, &data, sizeof(data));
}
NodeData(TypeTokenData data)
: fKind(Kind::kTypeToken) {
memcpy(fBytes, &data, sizeof(data));
}
~NodeData() {
if (fKind == Kind::kBlock) {
reinterpret_cast<BlockData*>(fBytes)->~BlockData();
}
}
};
IRNode(int offset, int kind, BlockData data, std::vector<std::unique_ptr<Statement>> stmts);
IRNode(int offset, int kind, const Type* data = nullptr);
IRNode(int offset, int kind, TypeTokenData data);
IRNode(const IRNode& other);
Expression& expressionChild(int index) const {
SkASSERT(index >= 0 && index < (int) fExpressionChildren.size());
return *fExpressionChildren[index];
}
std::unique_ptr<Expression>& expressionPointer(int index) {
SkASSERT(index >= 0 && index < (int) fExpressionChildren.size());
return fExpressionChildren[index];
}
const std::unique_ptr<Expression>& expressionPointer(int index) const {
SkASSERT(index >= 0 && index < (int) fExpressionChildren.size());
return fExpressionChildren[index];
}
int expressionChildCount() const {
return fExpressionChildren.size();
}
Statement& statementChild(int index) const {
SkASSERT(index >= 0 && index < (int) fStatementChildren.size());
return *fStatementChildren[index];
}
std::unique_ptr<Statement>& statementPointer(int index) {
SkASSERT(index >= 0 && index < (int) fStatementChildren.size());
return fStatementChildren[index];
}
const std::unique_ptr<Statement>& statementPointer(int index) const {
SkASSERT(index >= 0 && index < (int) fStatementChildren.size());
return fStatementChildren[index];
}
int statementChildCount() const {
return fStatementChildren.size();
}
BlockData& blockData() {
SkASSERT(fData.fKind == NodeData::Kind::kBlock);
return *reinterpret_cast<BlockData*>(fData.fBytes);
}
const BlockData& blockData() const {
SkASSERT(fData.fKind == NodeData::Kind::kBlock);
return *reinterpret_cast<const BlockData*>(fData.fBytes);
}
const Type* typeData() const {
SkASSERT(fData.fKind == NodeData::Kind::kType);
return *reinterpret_cast<const Type* const*>(fData.fBytes);
}
const TypeTokenData& typeTokenData() const {
SkASSERT(fData.fKind == NodeData::Kind::kTypeToken);
return *reinterpret_cast<const TypeTokenData*>(fData.fBytes);
}
int fKind;
NodeData fData;
// Needing two separate vectors is a temporary issue. Ideally, we'd just be able to use a single
// vector of nodes, but there are various spots where we take pointers to std::unique_ptr<>,
// and it isn't safe to pun std::unique_ptr<IRNode> to std::unique_ptr<Statement / Expression>.
// And we can't update the call sites to expect std::unique_ptr<IRNode> while there are still
// old-style nodes around.
// When the transition is finished, we'll be able to drop the unique_ptrs and just handle
// <IRNode> directly.
std::vector<std::unique_ptr<Expression>> fExpressionChildren;
// it's important to keep fStatements defined after (and thus destroyed before) fData,
// because destroying statements can modify reference counts in a SymbolTable contained in fData
std::vector<std::unique_ptr<Statement>> fStatementChildren;
};
} // namespace SkSL
#endif