|  | /* | 
|  | * Copyright 2014 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #ifndef skgpu_ResourceKey_DEFINED | 
|  | #define skgpu_ResourceKey_DEFINED | 
|  |  | 
|  | #include "include/core/SkData.h" | 
|  | #include "include/core/SkRefCnt.h" | 
|  | #include "include/core/SkTypes.h" | 
|  | #include "include/private/base/SkAlign.h" | 
|  | #include "include/private/base/SkAlignedStorage.h" | 
|  | #include "include/private/base/SkDebug.h" | 
|  | #include "include/private/base/SkTemplates.h" | 
|  | #include "include/private/base/SkTo.h" | 
|  |  | 
|  | #include <cstdint> | 
|  | #include <cstring> | 
|  | #include <new> | 
|  | #include <utility> | 
|  |  | 
|  | class TestResource; | 
|  |  | 
|  | namespace skgpu { | 
|  |  | 
|  | uint32_t ResourceKeyHash(const uint32_t* data, size_t size); | 
|  |  | 
|  | /** | 
|  | * Base class for all gpu Resource cache keys. There are two types of cache keys. Refer to the | 
|  | * comments for each key type below. | 
|  | */ | 
|  | class ResourceKey { | 
|  | public: | 
|  | uint32_t hash() const { | 
|  | this->validate(); | 
|  | return fKey[kHash_MetaDataIdx]; | 
|  | } | 
|  |  | 
|  | size_t size() const { | 
|  | this->validate(); | 
|  | SkASSERT(this->isValid()); | 
|  | return this->internalSize(); | 
|  | } | 
|  |  | 
|  | /** Reset to an invalid key. */ | 
|  | void reset() { | 
|  | fKey.reset(kMetaDataCnt); | 
|  | fKey[kHash_MetaDataIdx] = 0; | 
|  | fKey[kDomainAndSize_MetaDataIdx] = kInvalidDomain; | 
|  | } | 
|  |  | 
|  | bool isValid() const { return kInvalidDomain != this->domain(); } | 
|  |  | 
|  | /** Used to initialize a key. */ | 
|  | class Builder { | 
|  | public: | 
|  | ~Builder() { this->finish(); } | 
|  |  | 
|  | void finish() { | 
|  | if (nullptr == fKey) { | 
|  | return; | 
|  | } | 
|  | uint32_t* hash = &fKey->fKey[kHash_MetaDataIdx]; | 
|  | *hash = ResourceKeyHash(hash + 1, fKey->internalSize() - sizeof(uint32_t)); | 
|  | fKey->validate(); | 
|  | fKey = nullptr; | 
|  | } | 
|  |  | 
|  | uint32_t& operator[](int dataIdx) { | 
|  | SkASSERT(fKey); | 
|  | SkDEBUGCODE(size_t dataCount = fKey->internalSize() / sizeof(uint32_t) - kMetaDataCnt;) | 
|  | SkASSERT(SkToU32(dataIdx) < dataCount); | 
|  | return fKey->fKey[(int)kMetaDataCnt + dataIdx]; | 
|  | } | 
|  |  | 
|  | protected: | 
|  | Builder(ResourceKey* key, uint32_t domain, int data32Count) : fKey(key) { | 
|  | size_t count = SkToSizeT(data32Count); | 
|  | SkASSERT(domain != kInvalidDomain); | 
|  | key->fKey.reset(kMetaDataCnt + count); | 
|  | size_t size = (count + kMetaDataCnt) * sizeof(uint32_t); | 
|  | SkASSERT(SkToU16(size) == size); | 
|  | SkASSERT(SkToU16(domain) == domain); | 
|  | key->fKey[kDomainAndSize_MetaDataIdx] = SkToU32(domain | (size << 16)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | ResourceKey* fKey; | 
|  | }; | 
|  |  | 
|  | protected: | 
|  | static const uint32_t kInvalidDomain = 0; | 
|  |  | 
|  | ResourceKey() { this->reset(); } | 
|  |  | 
|  | bool operator==(const ResourceKey& that) const { | 
|  | // Both keys should be sized to at least contain the meta data. The metadata contains each | 
|  | // key's length. So the second memcmp should only run if the keys have the same length. | 
|  | return 0 == memcmp(fKey.get(), that.fKey.get(), kMetaDataCnt*sizeof(uint32_t)) && | 
|  | 0 == memcmp(&fKey[kMetaDataCnt], &that.fKey[kMetaDataCnt], this->dataSize()); | 
|  | } | 
|  |  | 
|  | ResourceKey& operator=(const ResourceKey& that) { | 
|  | if (this != &that) { | 
|  | if (!that.isValid()) { | 
|  | this->reset(); | 
|  | } else { | 
|  | size_t bytes = that.size(); | 
|  | SkASSERT(SkIsAlign4(bytes)); | 
|  | fKey.reset(bytes / sizeof(uint32_t)); | 
|  | memcpy(fKey.get(), that.fKey.get(), bytes); | 
|  | this->validate(); | 
|  | } | 
|  | } | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | uint32_t domain() const { return fKey[kDomainAndSize_MetaDataIdx] & 0xffff; } | 
|  |  | 
|  | /** size of the key data, excluding meta-data (hash, domain, etc).  */ | 
|  | size_t dataSize() const { return this->size() - 4 * kMetaDataCnt; } | 
|  |  | 
|  | /** ptr to the key data, excluding meta-data (hash, domain, etc).  */ | 
|  | const uint32_t* data() const { | 
|  | this->validate(); | 
|  | return &fKey[kMetaDataCnt]; | 
|  | } | 
|  |  | 
|  | #ifdef SK_DEBUG | 
|  | void dump() const { | 
|  | if (!this->isValid()) { | 
|  | SkDebugf("Invalid Key\n"); | 
|  | } else { | 
|  | SkDebugf("hash: %u ", this->hash()); | 
|  | SkDebugf("domain: %u ", this->domain()); | 
|  | SkDebugf("size: %zuB ", this->internalSize()); | 
|  | size_t dataCount = this->internalSize() / sizeof(uint32_t) - kMetaDataCnt; | 
|  | for (size_t i = 0; i < dataCount; ++i) { | 
|  | SkDebugf("%u ", fKey[SkTo<int>(kMetaDataCnt+i)]); | 
|  | } | 
|  | SkDebugf("\n"); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | private: | 
|  | enum MetaDataIdx { | 
|  | kHash_MetaDataIdx, | 
|  | // The key domain and size are packed into a single uint32_t. | 
|  | kDomainAndSize_MetaDataIdx, | 
|  |  | 
|  | kLastMetaDataIdx = kDomainAndSize_MetaDataIdx | 
|  | }; | 
|  | static const uint32_t kMetaDataCnt = kLastMetaDataIdx + 1; | 
|  |  | 
|  | size_t internalSize() const { return fKey[kDomainAndSize_MetaDataIdx] >> 16; } | 
|  |  | 
|  | void validate() const { | 
|  | SkASSERT(this->isValid()); | 
|  | SkASSERT(fKey[kHash_MetaDataIdx] == | 
|  | ResourceKeyHash(&fKey[kHash_MetaDataIdx] + 1, | 
|  | this->internalSize() - sizeof(uint32_t))); | 
|  | SkASSERT(SkIsAlign4(this->internalSize())); | 
|  | } | 
|  |  | 
|  | friend class ::TestResource;  // For unit test to access kMetaDataCnt. | 
|  |  | 
|  | // For Ganesh, bmp textures require 5 uint32_t values. Graphite requires 6 (due to | 
|  | // storing mipmap status as part of the key). | 
|  | skia_private::AutoSTMalloc<kMetaDataCnt + 6, uint32_t> fKey; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * A key used for scratch resources. There are three important rules about scratch keys: | 
|  | *        * Multiple resources can share the same scratch key. Therefore resources assigned the same | 
|  | *          scratch key should be interchangeable with respect to the code that uses them. | 
|  | *        * A resource can have at most one scratch key and it is set at resource creation by the | 
|  | *          resource itself. | 
|  | *        * When a scratch resource is ref'ed it will not be returned from the | 
|  | *          cache for a subsequent cache request until all refs are released. This facilitates using | 
|  | *          a scratch key for multiple render-to-texture scenarios. An example is a separable blur: | 
|  | * | 
|  | *  GrTexture* texture[2]; | 
|  | *  texture[0] = get_scratch_texture(scratchKey); | 
|  | *  texture[1] = get_scratch_texture(scratchKey); // texture[0] is already owned so we will get a | 
|  | *                                                // different one for texture[1] | 
|  | *  draw_mask(texture[0], path);        // draws path mask to texture[0] | 
|  | *  blur_x(texture[0], texture[1]);     // blurs texture[0] in y and stores result in texture[1] | 
|  | *  blur_y(texture[1], texture[0]);     // blurs texture[1] in y and stores result in texture[0] | 
|  | *  texture[1]->unref();  // texture 1 can now be recycled for the next request with scratchKey | 
|  | *  consume_blur(texture[0]); | 
|  | *  texture[0]->unref();  // texture 0 can now be recycled for the next request with scratchKey | 
|  | */ | 
|  | class ScratchKey : public ResourceKey { | 
|  | public: | 
|  | /** Uniquely identifies the type of resource that is cached as scratch. */ | 
|  | typedef uint32_t ResourceType; | 
|  |  | 
|  | /** Generate a unique ResourceType. */ | 
|  | static ResourceType GenerateResourceType(); | 
|  |  | 
|  | /** Creates an invalid scratch key. It must be initialized using a Builder object before use. */ | 
|  | ScratchKey() {} | 
|  |  | 
|  | ScratchKey(const ScratchKey& that) { *this = that; } | 
|  |  | 
|  | ResourceType resourceType() const { return this->domain(); } | 
|  |  | 
|  | ScratchKey& operator=(const ScratchKey& that) { | 
|  | this->ResourceKey::operator=(that); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | bool operator==(const ScratchKey& that) const { return this->ResourceKey::operator==(that); } | 
|  | bool operator!=(const ScratchKey& that) const { return !(*this == that); } | 
|  |  | 
|  | class Builder : public ResourceKey::Builder { | 
|  | public: | 
|  | Builder(ScratchKey* key, ResourceType type, int data32Count) | 
|  | : ResourceKey::Builder(key, type, data32Count) {} | 
|  | }; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * A key that allows for exclusive use of a resource for a use case (AKA "domain"). There are three | 
|  | * rules governing the use of unique keys: | 
|  | *        * Only one resource can have a given unique key at a time. Hence, "unique". | 
|  | *        * A resource can have at most one unique key at a time. | 
|  | *        * Unlike scratch keys, multiple requests for a unique key will return the same | 
|  | *          resource even if the resource already has refs. | 
|  | * This key type allows a code path to create cached resources for which it is the exclusive user. | 
|  | * The code path creates a domain which it sets on its keys. This guarantees that there are no | 
|  | * cross-domain collisions. | 
|  | * | 
|  | * Unique keys preempt scratch keys. While a resource has a unique key it is inaccessible via its | 
|  | * scratch key. It can become scratch again if the unique key is removed. | 
|  | */ | 
|  | class UniqueKey : public ResourceKey { | 
|  | public: | 
|  | typedef uint32_t Domain; | 
|  | /** Generate a Domain for unique keys. */ | 
|  | static Domain GenerateDomain(); | 
|  |  | 
|  | /** Creates an invalid unique key. It must be initialized using a Builder object before use. */ | 
|  | UniqueKey() : fTag(nullptr) {} | 
|  |  | 
|  | UniqueKey(const UniqueKey& that) { *this = that; } | 
|  |  | 
|  | UniqueKey& operator=(const UniqueKey& that) { | 
|  | this->ResourceKey::operator=(that); | 
|  | this->setCustomData(sk_ref_sp(that.getCustomData())); | 
|  | fTag = that.fTag; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | bool operator==(const UniqueKey& that) const { return this->ResourceKey::operator==(that); } | 
|  | bool operator!=(const UniqueKey& that) const { return !(*this == that); } | 
|  |  | 
|  | void setCustomData(sk_sp<SkData> data) { fData = std::move(data); } | 
|  | SkData* getCustomData() const { return fData.get(); } | 
|  | sk_sp<SkData> refCustomData() const { return fData; } | 
|  |  | 
|  | const char* tag() const { return fTag; } | 
|  |  | 
|  | const uint32_t* data() const { return this->ResourceKey::data(); } | 
|  |  | 
|  | #ifdef SK_DEBUG | 
|  | uint32_t domain() const { return this->ResourceKey::domain(); } | 
|  | size_t dataSize() const { return this->ResourceKey::dataSize(); } | 
|  |  | 
|  | void dump(const char* label) const { | 
|  | SkDebugf("%s tag: %s\n", label, fTag ? fTag : "None"); | 
|  | this->ResourceKey::dump(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | class Builder : public ResourceKey::Builder { | 
|  | public: | 
|  | Builder(UniqueKey* key, Domain type, int data32Count, const char* tag = nullptr) | 
|  | : ResourceKey::Builder(key, type, data32Count) { | 
|  | key->fTag = tag; | 
|  | } | 
|  |  | 
|  | /** Used to build a key that wraps another key and adds additional data. */ | 
|  | Builder(UniqueKey* key, const UniqueKey& innerKey, Domain domain, int extraData32Cnt, | 
|  | const char* tag = nullptr) | 
|  | : ResourceKey::Builder(key, | 
|  | domain, | 
|  | Data32CntForInnerKey(innerKey) + extraData32Cnt) { | 
|  | SkASSERT(&innerKey != key); | 
|  | // add the inner key to the end of the key so that op[] can be indexed normally. | 
|  | uint32_t* innerKeyData = &this->operator[](extraData32Cnt); | 
|  | const uint32_t* srcData = innerKey.data(); | 
|  | (*innerKeyData++) = innerKey.domain(); | 
|  | memcpy(innerKeyData, srcData, innerKey.dataSize()); | 
|  | key->fTag = tag; | 
|  | } | 
|  |  | 
|  | private: | 
|  | static int Data32CntForInnerKey(const UniqueKey& innerKey) { | 
|  | // key data + domain | 
|  | return SkToInt((innerKey.dataSize() >> 2) + 1); | 
|  | } | 
|  | }; | 
|  |  | 
|  | private: | 
|  | sk_sp<SkData> fData; | 
|  | const char* fTag; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * It is common to need a frequently reused UniqueKey where the only requirement is that the key | 
|  | * is unique. These macros create such a key in a thread safe manner so the key can be truly global | 
|  | * and only constructed once. | 
|  | */ | 
|  |  | 
|  | /** Place outside of function/class definitions. */ | 
|  | #define SKGPU_DECLARE_STATIC_UNIQUE_KEY(name) static SkOnce name##_once | 
|  |  | 
|  | /** Place inside function where the key is used. */ | 
|  | #define SKGPU_DEFINE_STATIC_UNIQUE_KEY(name)                                \ | 
|  | static SkAlignedSTStorage<1, skgpu::UniqueKey> name##_storage;          \ | 
|  | name##_once(skgpu::skgpu_init_static_unique_key_once, &name##_storage); \ | 
|  | static const skgpu::UniqueKey& name =                                   \ | 
|  | *reinterpret_cast<skgpu::UniqueKey*>(name##_storage.get()) | 
|  |  | 
|  | static inline void skgpu_init_static_unique_key_once(SkAlignedSTStorage<1, UniqueKey>* keyStorage) { | 
|  | UniqueKey* key = new (keyStorage->get()) UniqueKey; | 
|  | UniqueKey::Builder builder(key, UniqueKey::GenerateDomain(), 0); | 
|  | } | 
|  |  | 
|  | // The cache listens for these messages to purge junk resources proactively. | 
|  | class UniqueKeyInvalidatedMessage { | 
|  | public: | 
|  | UniqueKeyInvalidatedMessage() = default; | 
|  | UniqueKeyInvalidatedMessage(const UniqueKey& key, | 
|  | uint32_t contextUniqueID, | 
|  | bool inThreadSafeCache = false) | 
|  | : fKey(key), fContextID(contextUniqueID), fInThreadSafeCache(inThreadSafeCache) { | 
|  | SkASSERT(SK_InvalidUniqueID != contextUniqueID); | 
|  | } | 
|  |  | 
|  | UniqueKeyInvalidatedMessage(const UniqueKeyInvalidatedMessage&) = default; | 
|  |  | 
|  | UniqueKeyInvalidatedMessage& operator=(const UniqueKeyInvalidatedMessage&) = default; | 
|  |  | 
|  | const UniqueKey& key() const { return fKey; } | 
|  | uint32_t contextID() const { return fContextID; } | 
|  | bool inThreadSafeCache() const { return fInThreadSafeCache; } | 
|  |  | 
|  | private: | 
|  | UniqueKey fKey; | 
|  | uint32_t fContextID = SK_InvalidUniqueID; | 
|  | bool fInThreadSafeCache = false; | 
|  | }; | 
|  |  | 
|  | static inline bool SkShouldPostMessageToBus(const UniqueKeyInvalidatedMessage& msg, | 
|  | uint32_t msgBusUniqueID) { | 
|  | return msg.contextID() == msgBusUniqueID; | 
|  | } | 
|  |  | 
|  | class UniqueKeyInvalidatedMsg_Graphite { | 
|  | public: | 
|  | UniqueKeyInvalidatedMsg_Graphite() = default; | 
|  | UniqueKeyInvalidatedMsg_Graphite(const UniqueKey& key, uint32_t recorderID) | 
|  | : fKey(key), fRecorderID(recorderID) { | 
|  | SkASSERT(SK_InvalidUniqueID != fRecorderID); | 
|  | } | 
|  |  | 
|  | UniqueKeyInvalidatedMsg_Graphite(const UniqueKeyInvalidatedMsg_Graphite&) = default; | 
|  |  | 
|  | UniqueKeyInvalidatedMsg_Graphite& operator=(const UniqueKeyInvalidatedMsg_Graphite&) = default; | 
|  |  | 
|  | const UniqueKey& key() const { return fKey; } | 
|  | uint32_t recorderID() const { return fRecorderID; } | 
|  |  | 
|  | private: | 
|  | UniqueKey fKey; | 
|  | uint32_t fRecorderID = SK_InvalidUniqueID; | 
|  | }; | 
|  |  | 
|  | static inline bool SkShouldPostMessageToBus(const UniqueKeyInvalidatedMsg_Graphite& msg, | 
|  | uint32_t msgBusUniqueID) { | 
|  | return msg.recorderID() == msgBusUniqueID; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * This is a special key that doesn't have domain and can only be used in a dedicated cache. | 
|  | * Unlike UniqueKey & ScratchKey, this key has compile time size (in number of uint32_t) | 
|  | * and doesn't need dynamic allocations. In comparison, UniqueKey & ScratchKey will need | 
|  | * dynamic allocation if a key is larger than 6 uint32_ts. | 
|  | */ | 
|  | template <size_t SizeInUInt32> | 
|  | class FixedSizeKey { | 
|  | public: | 
|  | uint32_t hash() const { return fHash; } | 
|  |  | 
|  | bool operator==(const FixedSizeKey& that) const { | 
|  | return fHash == that.fHash && | 
|  | 0 == memcmp(fPackedData, that.fPackedData, sizeof(fPackedData)); | 
|  | } | 
|  |  | 
|  | class Builder { | 
|  | public: | 
|  | Builder(FixedSizeKey* key) : fKey(key) {} | 
|  |  | 
|  | void finish() { | 
|  | SkASSERT(fKey); | 
|  | fKey->fHash = ResourceKeyHash(fKey->fPackedData, sizeof(fKey->fPackedData)); | 
|  | fKey = nullptr; | 
|  | } | 
|  |  | 
|  | uint32_t& operator[](int dataIdx) { | 
|  | SkASSERT(fKey); | 
|  | SkASSERT(SkToU32(dataIdx) < SizeInUInt32); | 
|  | return fKey->fPackedData[dataIdx]; | 
|  | } | 
|  |  | 
|  | private: | 
|  | FixedSizeKey* fKey = nullptr; | 
|  | }; | 
|  |  | 
|  | struct Hash { | 
|  | uint32_t operator()(const FixedSizeKey& key) const { return key.hash(); } | 
|  | }; | 
|  |  | 
|  | private: | 
|  | uint32_t fHash = 0; | 
|  | uint32_t fPackedData[SizeInUInt32] = {}; | 
|  | }; | 
|  |  | 
|  | } // namespace skgpu | 
|  |  | 
|  | #endif // skgpu_ResourceKey_DEFINED |