blob: 19507c07e54ea7ce781a3ec797eed88800911e63 [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrOptDrawState.h"
#include "GrDrawState.h"
#include "GrDrawTargetCaps.h"
GrOptDrawState::GrOptDrawState(const GrDrawState& drawState,
BlendOptFlags blendOptFlags,
GrBlendCoeff optSrcCoeff,
GrBlendCoeff optDstCoeff,
const GrDrawTargetCaps& caps) {
fRenderTarget.set(SkSafeRef(drawState.getRenderTarget()),
GrIORef::kWrite_IOType);
fColor = drawState.getColor();
fCoverage = drawState.getCoverage();
fViewMatrix = drawState.getViewMatrix();
fBlendConstant = drawState.getBlendConstant();
fFlagBits = drawState.getFlagBits();
fVAPtr = drawState.getVertexAttribs();
fVACount = drawState.getVertexAttribCount();
fVAStride = drawState.getVertexStride();
fStencilSettings = drawState.getStencil();
fDrawFace = (DrawFace)drawState.getDrawFace();
fBlendOptFlags = blendOptFlags;
fSrcBlend = optSrcCoeff;
fDstBlend = optDstCoeff;
memcpy(fFixedFunctionVertexAttribIndices,
drawState.getFixedFunctionVertexAttribIndices(),
sizeof(fFixedFunctionVertexAttribIndices));
fInputColorIsUsed = true;
fInputCoverageIsUsed = true;
if (drawState.hasGeometryProcessor()) {
fGeometryProcessor.reset(SkNEW_ARGS(GrGeometryStage, (*drawState.getGeometryProcessor())));
} else {
fGeometryProcessor.reset(NULL);
}
this->copyEffectiveColorStages(drawState);
this->copyEffectiveCoverageStages(drawState);
this->adjustFromBlendOpts();
this->getStageStats();
this->setOutputStateInfo(caps);
};
GrOptDrawState* GrOptDrawState::Create(const GrDrawState& drawState, const GrDrawTargetCaps& caps,
GrGpu::DrawType drawType) {
if (NULL == drawState.fCachedOptState || caps.getUniqueID() != drawState.fCachedCapsID) {
GrBlendCoeff srcCoeff;
GrBlendCoeff dstCoeff;
BlendOptFlags blendFlags = (BlendOptFlags) drawState.getBlendOpts(false,
&srcCoeff,
&dstCoeff);
// If our blend coeffs are set to 0,1 we know we will not end up drawing unless we are
// stenciling. When path rendering the stencil settings are not always set on the draw state
// so we must check the draw type. In cases where we will skip drawing we simply return a
// null GrOptDrawState.
if (kZero_GrBlendCoeff == srcCoeff && kOne_GrBlendCoeff == dstCoeff &&
!drawState.getStencil().doesWrite() && GrGpu::kStencilPath_DrawType != drawType) {
return NULL;
}
drawState.fCachedOptState = SkNEW_ARGS(GrOptDrawState, (drawState, blendFlags, srcCoeff,
dstCoeff, caps));
drawState.fCachedCapsID = caps.getUniqueID();
} else {
#ifdef SK_DEBUG
GrBlendCoeff srcCoeff;
GrBlendCoeff dstCoeff;
BlendOptFlags blendFlags = (BlendOptFlags) drawState.getBlendOpts(false,
&srcCoeff,
&dstCoeff);
SkASSERT(GrOptDrawState(drawState, blendFlags, srcCoeff, dstCoeff, caps) ==
*drawState.fCachedOptState);
#endif
}
drawState.fCachedOptState->ref();
return drawState.fCachedOptState;
}
void GrOptDrawState::setOutputStateInfo(const GrDrawTargetCaps& caps) {
// Set this default and then possibly change our mind if there is coverage.
fPrimaryOutputType = kModulate_PrimaryOutputType;
fSecondaryOutputType = kNone_SecondaryOutputType;
// If we do have coverage determine whether it matters.
bool separateCoverageFromColor = this->hasGeometryProcessor();
if (!this->isCoverageDrawing() &&
(this->numCoverageStages() > 0 ||
this->hasGeometryProcessor() ||
this->hasCoverageVertexAttribute())) {
if (caps.dualSourceBlendingSupport()) {
if (kZero_GrBlendCoeff == fDstBlend) {
// write the coverage value to second color
fSecondaryOutputType = kCoverage_SecondaryOutputType;
separateCoverageFromColor = true;
fDstBlend = (GrBlendCoeff)GrGpu::kIS2C_GrBlendCoeff;
} else if (kSA_GrBlendCoeff == fDstBlend) {
// SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered.
fSecondaryOutputType = kCoverageISA_SecondaryOutputType;
separateCoverageFromColor = true;
fDstBlend = (GrBlendCoeff)GrGpu::kIS2C_GrBlendCoeff;
} else if (kSC_GrBlendCoeff == fDstBlend) {
// SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered.
fSecondaryOutputType = kCoverageISC_SecondaryOutputType;
separateCoverageFromColor = true;
fDstBlend = (GrBlendCoeff)GrGpu::kIS2C_GrBlendCoeff;
}
} else if (fReadsDst &&
kOne_GrBlendCoeff == fSrcBlend &&
kZero_GrBlendCoeff == fDstBlend) {
fPrimaryOutputType = kCombineWithDst_PrimaryOutputType;
separateCoverageFromColor = true;
}
}
// TODO: Once we have flag to know if we only multiply on stages, only push coverage into color
// stages if everything is multipy
if (!separateCoverageFromColor) {
for (int s = 0; s < this->numCoverageStages(); ++s) {
fColorStages.push_back(this->getCoverageStage(s));
}
fCoverageStages.reset();
}
}
void GrOptDrawState::adjustFromBlendOpts() {
switch (fBlendOptFlags) {
case kNone_BlendOpt:
case kSkipDraw_BlendOptFlag:
break;
case kCoverageAsAlpha_BlendOptFlag:
fFlagBits |= kCoverageDrawing_StateBit;
break;
case kEmitCoverage_BlendOptFlag:
fColor = 0xffffffff;
fInputColorIsUsed = true;
fColorStages.reset();
this->removeFixedFunctionVertexAttribs(0x1 << kColor_GrVertexAttribBinding);
break;
case kEmitTransBlack_BlendOptFlag:
fColor = 0;
fCoverage = 0xff;
fInputColorIsUsed = true;
fInputCoverageIsUsed = true;
fColorStages.reset();
fCoverageStages.reset();
this->removeFixedFunctionVertexAttribs(0x1 << kColor_GrVertexAttribBinding |
0x1 << kCoverage_GrVertexAttribBinding);
break;
default:
SkFAIL("Unknown BlendOptFlag");
}
}
void GrOptDrawState::removeFixedFunctionVertexAttribs(uint8_t removeVAFlag) {
int numToRemove = 0;
uint8_t maskCheck = 0x1;
// Count the number of vertex attributes that we will actually remove
for (int i = 0; i < kGrFixedFunctionVertexAttribBindingCnt; ++i) {
if ((maskCheck & removeVAFlag) && -1 != fFixedFunctionVertexAttribIndices[i]) {
++numToRemove;
}
maskCheck <<= 1;
}
fOptVA.reset(fVACount - numToRemove);
GrVertexAttrib* dst = fOptVA.get();
const GrVertexAttrib* src = fVAPtr;
for (int i = 0, newIdx = 0; i < fVACount; ++i, ++src) {
const GrVertexAttrib& currAttrib = *src;
if (currAttrib.fBinding < kGrFixedFunctionVertexAttribBindingCnt) {
uint8_t maskCheck = 0x1 << currAttrib.fBinding;
if (maskCheck & removeVAFlag) {
SkASSERT(-1 != fFixedFunctionVertexAttribIndices[currAttrib.fBinding]);
fFixedFunctionVertexAttribIndices[currAttrib.fBinding] = -1;
continue;
}
fFixedFunctionVertexAttribIndices[currAttrib.fBinding] = newIdx;
}
memcpy(dst, src, sizeof(GrVertexAttrib));
++newIdx;
++dst;
}
fVACount -= numToRemove;
fVAPtr = fOptVA.get();
}
void GrOptDrawState::copyEffectiveColorStages(const GrDrawState& ds) {
int firstColorStage = 0;
// Set up color and flags for ConstantColorComponent checks
GrProcessor::InvariantOutput inout;
inout.fIsSingleComponent = false;
if (!this->hasColorVertexAttribute()) {
inout.fColor = ds.getColor();
inout.fValidFlags = kRGBA_GrColorComponentFlags;
} else {
if (ds.vertexColorsAreOpaque()) {
inout.fColor = 0xFF << GrColor_SHIFT_A;
inout.fValidFlags = kA_GrColorComponentFlag;
} else {
inout.fValidFlags = 0;
// not strictly necessary but we get false alarms from tools about uninit.
inout.fColor = 0;
}
}
for (int i = 0; i < ds.numColorStages(); ++i) {
const GrFragmentProcessor* fp = ds.getColorStage(i).getProcessor();
if (!fp->willUseInputColor()) {
firstColorStage = i;
fInputColorIsUsed = false;
}
fp->computeInvariantOutput(&inout);
if (kRGBA_GrColorComponentFlags == inout.fValidFlags) {
firstColorStage = i + 1;
fColor = inout.fColor;
fInputColorIsUsed = true;
this->removeFixedFunctionVertexAttribs(0x1 << kColor_GrVertexAttribBinding);
}
}
if (firstColorStage < ds.numColorStages()) {
fColorStages.reset(&ds.getColorStage(firstColorStage),
ds.numColorStages() - firstColorStage);
} else {
fColorStages.reset();
}
}
void GrOptDrawState::copyEffectiveCoverageStages(const GrDrawState& ds) {
int firstCoverageStage = 0;
// We do not try to optimize out constantColor coverage effects here. It is extremely rare
// to have a coverage effect that returns a constant value for all four channels. Thus we
// save having to make extra virtual calls by not checking for it.
// Don't do any optimizations on coverage stages. It should not be the case where we do not use
// input coverage in an effect
#ifdef OptCoverageStages
for (int i = 0; i < ds.numCoverageStages(); ++i) {
const GrProcessor* processor = ds.getCoverageStage(i).getProcessor();
if (!processor->willUseInputColor()) {
firstCoverageStage = i;
fInputCoverageIsUsed = false;
}
}
#endif
if (ds.numCoverageStages() > 0) {
fCoverageStages.reset(&ds.getCoverageStage(firstCoverageStage),
ds.numCoverageStages() - firstCoverageStage);
} else {
fCoverageStages.reset();
}
}
static void get_stage_stats(const GrFragmentStage& stage, bool* readsDst, bool* readsFragPosition) {
if (stage.getProcessor()->willReadDstColor()) {
*readsDst = true;
}
if (stage.getProcessor()->willReadFragmentPosition()) {
*readsFragPosition = true;
}
}
void GrOptDrawState::getStageStats() {
// We will need a local coord attrib if there is one currently set on the optState and we are
// actually generating some effect code
fRequiresLocalCoordAttrib = this->hasLocalCoordAttribute() && this->numTotalStages() > 0;
fReadsDst = false;
fReadsFragPosition = false;
for (int s = 0; s < this->numColorStages(); ++s) {
const GrFragmentStage& stage = this->getColorStage(s);
get_stage_stats(stage, &fReadsDst, &fReadsFragPosition);
}
for (int s = 0; s < this->numCoverageStages(); ++s) {
const GrFragmentStage& stage = this->getCoverageStage(s);
get_stage_stats(stage, &fReadsDst, &fReadsFragPosition);
}
if (this->hasGeometryProcessor()) {
const GrGeometryStage& stage = *this->getGeometryProcessor();
fReadsFragPosition = fReadsFragPosition || stage.getProcessor()->willReadFragmentPosition();
}
}
////////////////////////////////////////////////////////////////////////////////
bool GrOptDrawState::operator== (const GrOptDrawState& that) const {
return this->isEqual(that);
}
bool GrOptDrawState::isEqual(const GrOptDrawState& that) const {
bool usingVertexColors = this->hasColorVertexAttribute();
if (!usingVertexColors && this->fColor != that.fColor) {
return false;
}
if (this->getRenderTarget() != that.getRenderTarget() ||
this->fColorStages.count() != that.fColorStages.count() ||
this->fCoverageStages.count() != that.fCoverageStages.count() ||
!this->fViewMatrix.cheapEqualTo(that.fViewMatrix) ||
this->fSrcBlend != that.fSrcBlend ||
this->fDstBlend != that.fDstBlend ||
this->fBlendConstant != that.fBlendConstant ||
this->fFlagBits != that.fFlagBits ||
this->fVACount != that.fVACount ||
this->fVAStride != that.fVAStride ||
memcmp(this->fVAPtr, that.fVAPtr, this->fVACount * sizeof(GrVertexAttrib)) ||
this->fStencilSettings != that.fStencilSettings ||
this->fDrawFace != that.fDrawFace ||
this->fInputColorIsUsed != that.fInputColorIsUsed ||
this->fInputCoverageIsUsed != that.fInputCoverageIsUsed ||
this->fReadsDst != that.fReadsDst ||
this->fReadsFragPosition != that.fReadsFragPosition ||
this->fRequiresLocalCoordAttrib != that.fRequiresLocalCoordAttrib ||
this->fPrimaryOutputType != that.fPrimaryOutputType ||
this->fSecondaryOutputType != that.fSecondaryOutputType) {
return false;
}
bool usingVertexCoverage = this->hasCoverageVertexAttribute();
if (!usingVertexCoverage && this->fCoverage != that.fCoverage) {
return false;
}
bool explicitLocalCoords = this->hasLocalCoordAttribute();
if (this->hasGeometryProcessor()) {
if (!that.hasGeometryProcessor()) {
return false;
} else if (!GrProcessorStage::AreCompatible(*this->getGeometryProcessor(),
*that.getGeometryProcessor(),
explicitLocalCoords)) {
return false;
}
} else if (that.hasGeometryProcessor()) {
return false;
}
for (int i = 0; i < this->numColorStages(); i++) {
if (!GrProcessorStage::AreCompatible(this->getColorStage(i), that.getColorStage(i),
explicitLocalCoords)) {
return false;
}
}
for (int i = 0; i < this->numCoverageStages(); i++) {
if (!GrProcessorStage::AreCompatible(this->getCoverageStage(i), that.getCoverageStage(i),
explicitLocalCoords)) {
return false;
}
}
SkASSERT(0 == memcmp(this->fFixedFunctionVertexAttribIndices,
that.fFixedFunctionVertexAttribIndices,
sizeof(this->fFixedFunctionVertexAttribIndices)));
return true;
}