blob: 31d9d5fdbc166e5fedab16638f6c353ed8608969 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkBlurImageFilter_opts_DEFINED
#define SkBlurImageFilter_opts_DEFINED
#include "SkColorPriv.h"
#include "SkTypes.h"
namespace SK_OPTS_NS {
enum class BlurDirection { kX, kY };
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
template<BlurDirection srcDirection, BlurDirection dstDirection>
void box_blur(const SkPMColor* src, int srcStride, SkPMColor* dst, int kernelSize,
int leftOffset, int rightOffset, int width, int height) {
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
// ARGB -> 000A 000R 000G 000B
auto expand = [](int p) {
return _mm_cvtepu8_epi32(_mm_cvtsi32_si128(p));
};
// Axxx Rxxx Gxxx Bxxx -> ARGB
auto repack = [](__m128i p) {
const char _ = ~0; // Don't care what ends up in these bytes. This zeros them.
p = _mm_shuffle_epi8(p, _mm_set_epi8(_,_,_,_, _,_,_,_, _,_,_,_, 15,11,7,3));
return _mm_cvtsi128_si32(p);
};
#else
// ARGB -> 000A 000R 000G 000B
auto expand = [](int p) {
auto result = _mm_cvtsi32_si128(p);
result = _mm_unpacklo_epi8(result, _mm_setzero_si128());
result = _mm_unpacklo_epi16(result, _mm_setzero_si128());
return result;
};
// Axxx Rxxx Gxxx Bxxx -> ARGB
auto repack = [](__m128i p) {
p = _mm_srli_epi32(p, 24); // 000A 000R 000G 000B
p = _mm_packs_epi32(p, p); // xxxx xxxx 0A0R 0G0B
p = _mm_packus_epi16(p, p); // xxxx xxxx xxxx ARGB
return _mm_cvtsi128_si32(p);
};
// _mm_mullo_epi32 is not available, so use the standard trick to emulate it.
auto _mm_mullo_epi32 = [](__m128i a, __m128i b) {
__m128i p02 = _mm_mul_epu32(a, b),
p13 = _mm_mul_epu32(_mm_srli_si128(a, 4),
_mm_srli_si128(b, 4));
return _mm_unpacklo_epi32(_mm_shuffle_epi32(p02, _MM_SHUFFLE(0,0,2,0)),
_mm_shuffle_epi32(p13, _MM_SHUFFLE(0,0,2,0)));
};
#endif
const int rightBorder = SkMin32(rightOffset + 1, width);
const int srcStrideX = srcDirection == BlurDirection::kX ? 1 : srcStride;
const int dstStrideX = dstDirection == BlurDirection::kX ? 1 : height;
const int srcStrideY = srcDirection == BlurDirection::kX ? srcStride : 1;
const int dstStrideY = dstDirection == BlurDirection::kX ? width : 1;
const __m128i scale = _mm_set1_epi32((1 << 24) / kernelSize);
const __m128i half = _mm_set1_epi32(1 << 23);
for (int y = 0; y < height; ++y) {
__m128i sum = _mm_setzero_si128();
const SkPMColor* p = src;
for (int i = 0; i < rightBorder; ++i) {
sum = _mm_add_epi32(sum, expand(*p));
p += srcStrideX;
}
const SkPMColor* sptr = src;
SkColor* dptr = dst;
for (int x = 0; x < width; ++x) {
// TODO(mtklein): We are working in 8.24 here. Drop to 8.8 when the kernel is narrow?
// Multiply each component by scale (divide by kernel size) and add half to round.
auto result = _mm_mullo_epi32(sum, scale);
result = _mm_add_epi32(result, half);
// Now pack the top byte of each 32-bit lane back down into one 32-bit color.
// Axxx Rxxx Gxxx Bxxx -> xxxx xxxx xxxx ARGB
*dptr = repack(result);
// TODO(mtklein): experiment with breaking this loop into 3 parts
if (x >= leftOffset) {
SkColor l = *(sptr - leftOffset * srcStrideX);
sum = _mm_sub_epi32(sum, expand(l));
}
if (x + rightOffset + 1 < width) {
SkColor r = *(sptr + (rightOffset + 1) * srcStrideX);
sum = _mm_add_epi32(sum, expand(r));
}
sptr += srcStrideX;
if (srcDirection == BlurDirection::kY) {
// TODO(mtklein): experiment with moving this prefetch forward
_mm_prefetch(reinterpret_cast<const char*>(sptr + (rightOffset + 1) * srcStrideX),
_MM_HINT_T0);
}
dptr += dstStrideX;
}
src += srcStrideY;
dst += dstStrideY;
}
}
#elif defined(SK_ARM_HAS_NEON)
// Fast path for kernel sizes between 2 and 127, working on two rows at a time.
template<BlurDirection srcDirection, BlurDirection dstDirection>
void box_blur_double(const SkPMColor** src, int srcStride, SkPMColor** dst, int kernelSize,
int leftOffset, int rightOffset, int width, int* height) {
// Load 2 pixels from adjacent rows.
auto load_2_pixels = [&](const SkPMColor* s) {
if (srcDirection == BlurDirection::kX) {
// 10% faster by adding these 2 prefetches
SK_PREFETCH(s + 16);
SK_PREFETCH(s + 16 + srcStride);
auto one = vld1_lane_u32(s + 0, vdup_n_u32(0), 0),
two = vld1_lane_u32(s + srcStride, one, 1);
return vreinterpret_u8_u32(two);
} else {
return vld1_u8((uint8_t*)s);
}
};
const int rightBorder = SkMin32(rightOffset + 1, width);
const int srcStrideX = srcDirection == BlurDirection::kX ? 1 : srcStride;
const int dstStrideX = dstDirection == BlurDirection::kX ? 1 : *height;
const int srcStrideY = srcDirection == BlurDirection::kX ? srcStride : 1;
const int dstStrideY = dstDirection == BlurDirection::kX ? width : 1;
const uint16x8_t scale = vdupq_n_u16((1 << 15) / kernelSize);
for (; *height >= 2; *height -= 2) {
uint16x8_t sum = vdupq_n_u16(0);
const SkPMColor* p = *src;
for (int i = 0; i < rightBorder; i++) {
sum = vaddw_u8(sum, load_2_pixels(p));
p += srcStrideX;
}
const SkPMColor* sptr = *src;
SkPMColor* dptr = *dst;
for (int x = 0; x < width; x++) {
// val = (sum * scale * 2 + 0x8000) >> 16
uint16x8_t resultPixels = vreinterpretq_u16_s16(vqrdmulhq_s16(
vreinterpretq_s16_u16(sum), vreinterpretq_s16_u16(scale)));
if (dstDirection == BlurDirection::kX) {
uint32x2_t px2 = vreinterpret_u32_u8(vmovn_u16(resultPixels));
vst1_lane_u32(dptr + 0, px2, 0);
vst1_lane_u32(dptr + width, px2, 1);
} else {
vst1_u8((uint8_t*)dptr, vmovn_u16(resultPixels));
}
if (x >= leftOffset) {
sum = vsubw_u8(sum, load_2_pixels(sptr - leftOffset * srcStrideX));
}
if (x + rightOffset + 1 < width) {
sum = vaddw_u8(sum, load_2_pixels(sptr + (rightOffset + 1) * srcStrideX));
}
sptr += srcStrideX;
dptr += dstStrideX;
}
*src += srcStrideY * 2;
*dst += dstStrideY * 2;
}
}
template<BlurDirection srcDirection, BlurDirection dstDirection>
void box_blur(const SkPMColor* src, int srcStride, SkPMColor* dst, int kernelSize,
int leftOffset, int rightOffset, int width, int height) {
// ARGB -> 0A0R 0G0B
auto expand = [](uint32_t p) {
return vget_low_u16(vmovl_u8(vreinterpret_u8_u32(vdup_n_u32(p))));
};
const int rightBorder = SkMin32(rightOffset + 1, width);
const int srcStrideX = srcDirection == BlurDirection::kX ? 1 : srcStride;
const int dstStrideX = dstDirection == BlurDirection::kX ? 1 : height;
const int srcStrideY = srcDirection == BlurDirection::kX ? srcStride : 1;
const int dstStrideY = dstDirection == BlurDirection::kX ? width : 1;
const uint32x4_t scale = vdupq_n_u32((1 << 24) / kernelSize);
const uint32x4_t half = vdupq_n_u32(1 << 23);
if (1 < kernelSize && kernelSize < 128) {
box_blur_double<srcDirection, dstDirection>(&src, srcStride, &dst, kernelSize,
leftOffset, rightOffset, width, &height);
}
for (; height > 0; height--) {
uint32x4_t sum = vdupq_n_u32(0);
const SkPMColor* p = src;
for (int i = 0; i < rightBorder; ++i) {
sum = vaddw_u16(sum, expand(*p));
p += srcStrideX;
}
const SkPMColor* sptr = src;
SkPMColor* dptr = dst;
for (int x = 0; x < width; ++x) {
// ( half+sumA*scale half+sumR*scale half+sumG*scale half+sumB*scale )
uint32x4_t result = vmlaq_u32(half, sum, scale);
// Saturated conversion to 16-bit.
// ( AAAA RRRR GGGG BBBB ) -> ( 0A 0R 0G 0B )
uint16x4_t result16 = vqshrn_n_u32(result, 16);
// Saturated conversion to 8-bit.
// ( 0A 0R 0G 0B ) -> ( 0A 0R 0G 0B 0A 0R 0G 0B ) -> ( A R G B A R G B )
uint8x8_t result8 = vqshrn_n_u16(vcombine_u16(result16, result16), 8);
// ( A R G B A R G B ) -> ( ARGB ARGB ) -> ( ARGB )
// Store low 32 bits to destination.
vst1_lane_u32(dptr, vreinterpret_u32_u8(result8), 0);
if (x >= leftOffset) {
const SkPMColor* l = sptr - leftOffset * srcStrideX;
sum = vsubw_u16(sum, expand(*l));
}
if (x + rightOffset + 1 < width) {
const SkPMColor* r = sptr + (rightOffset + 1) * srcStrideX;
sum = vaddw_u16(sum, expand(*r));
}
sptr += srcStrideX;
if (srcDirection == BlurDirection::kX) {
SK_PREFETCH(sptr + (rightOffset + 16) * srcStrideX);
}
dptr += dstStrideX;
}
src += srcStrideY;
dst += dstStrideY;
}
}
#else // Neither NEON nor >=SSE2.
template<BlurDirection srcDirection, BlurDirection dstDirection>
static void box_blur(const SkPMColor* src, int srcStride, SkPMColor* dst, int kernelSize,
int leftOffset, int rightOffset, int width, int height) {
int rightBorder = SkMin32(rightOffset + 1, width);
int srcStrideX = srcDirection == BlurDirection::kX ? 1 : srcStride;
int dstStrideX = dstDirection == BlurDirection::kX ? 1 : height;
int srcStrideY = srcDirection == BlurDirection::kX ? srcStride : 1;
int dstStrideY = dstDirection == BlurDirection::kX ? width : 1;
uint32_t scale = (1 << 24) / kernelSize;
uint32_t half = 1 << 23;
for (int y = 0; y < height; ++y) {
int sumA = 0, sumR = 0, sumG = 0, sumB = 0;
const SkPMColor* p = src;
for (int i = 0; i < rightBorder; ++i) {
sumA += SkGetPackedA32(*p);
sumR += SkGetPackedR32(*p);
sumG += SkGetPackedG32(*p);
sumB += SkGetPackedB32(*p);
p += srcStrideX;
}
const SkPMColor* sptr = src;
SkColor* dptr = dst;
for (int x = 0; x < width; ++x) {
*dptr = SkPackARGB32((sumA * scale + half) >> 24,
(sumR * scale + half) >> 24,
(sumG * scale + half) >> 24,
(sumB * scale + half) >> 24);
if (x >= leftOffset) {
SkColor l = *(sptr - leftOffset * srcStrideX);
sumA -= SkGetPackedA32(l);
sumR -= SkGetPackedR32(l);
sumG -= SkGetPackedG32(l);
sumB -= SkGetPackedB32(l);
}
if (x + rightOffset + 1 < width) {
SkColor r = *(sptr + (rightOffset + 1) * srcStrideX);
sumA += SkGetPackedA32(r);
sumR += SkGetPackedR32(r);
sumG += SkGetPackedG32(r);
sumB += SkGetPackedB32(r);
}
sptr += srcStrideX;
if (srcDirection == BlurDirection::kY) {
SK_PREFETCH(sptr + (rightOffset + 1) * srcStrideX);
}
dptr += dstStrideX;
}
src += srcStrideY;
dst += dstStrideY;
}
}
#endif
static auto box_blur_xx = &box_blur<BlurDirection::kX, BlurDirection::kX>,
box_blur_xy = &box_blur<BlurDirection::kX, BlurDirection::kY>,
box_blur_yx = &box_blur<BlurDirection::kY, BlurDirection::kX>;
} // namespace SK_OPTS_NS
#endif