blob: ce6ca5538b68ce5c421131d3b3cfac716a494d0a [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkColorMatrixFilter.h"
#include "SkColorMatrix.h"
#include "SkColorPriv.h"
#include "SkNx.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkUnPreMultiply.h"
#include "SkString.h"
#define SK_PMORDER_INDEX_A (SK_A32_SHIFT / 8)
#define SK_PMORDER_INDEX_R (SK_R32_SHIFT / 8)
#define SK_PMORDER_INDEX_G (SK_G32_SHIFT / 8)
#define SK_PMORDER_INDEX_B (SK_B32_SHIFT / 8)
static void transpose_to_pmorder(float dst[20], const float src[20]) {
const float* srcR = src + 0;
const float* srcG = src + 5;
const float* srcB = src + 10;
const float* srcA = src + 15;
for (int i = 0; i < 20; i += 4) {
dst[i + SK_PMORDER_INDEX_A] = *srcA++;
dst[i + SK_PMORDER_INDEX_R] = *srcR++;
dst[i + SK_PMORDER_INDEX_G] = *srcG++;
dst[i + SK_PMORDER_INDEX_B] = *srcB++;
}
}
// src is [20] but some compilers won't accept __restrict__ on anything
// but an raw pointer or reference
void SkColorMatrixFilter::initState(const SkScalar* SK_RESTRICT src) {
transpose_to_pmorder(fTranspose, src);
const float* array = fMatrix.fMat;
// check if we have to munge Alpha
bool changesAlpha = (array[15] || array[16] || array[17] || (array[18] - 1) || array[19]);
bool usesAlpha = (array[3] || array[8] || array[13]);
if (changesAlpha || usesAlpha) {
fFlags = changesAlpha ? 0 : SkColorFilter::kAlphaUnchanged_Flag;
} else {
fFlags = SkColorFilter::kAlphaUnchanged_Flag;
}
}
///////////////////////////////////////////////////////////////////////////////
SkColorMatrixFilter::SkColorMatrixFilter(const SkColorMatrix& cm) : fMatrix(cm) {
this->initState(cm.fMat);
}
SkColorMatrixFilter::SkColorMatrixFilter(const SkScalar array[20]) {
memcpy(fMatrix.fMat, array, 20 * sizeof(SkScalar));
this->initState(array);
}
uint32_t SkColorMatrixFilter::getFlags() const {
return this->INHERITED::getFlags() | fFlags;
}
static Sk4f scale_rgb(float scale) {
static_assert(SK_A32_SHIFT == 24, "Alpha is lane 3");
return Sk4f(scale, scale, scale, 1);
}
static Sk4f premul(const Sk4f& x) {
return x * scale_rgb(x.kth<SK_A32_SHIFT/8>());
}
static Sk4f unpremul(const Sk4f& x) {
return x * scale_rgb(1 / x.kth<SK_A32_SHIFT/8>()); // TODO: fast/approx invert?
}
static Sk4f clamp_0_1(const Sk4f& x) {
return Sk4f::Max(Sk4f::Min(x, Sk4f(1)), Sk4f(0));
}
static SkPMColor round(const Sk4f& x) {
SkPMColor c;
SkNx_cast<uint8_t>(x * Sk4f(255) + Sk4f(0.5f)).store((uint8_t*)&c);
return c;
}
void SkColorMatrixFilter::filterSpan(const SkPMColor src[], int count, SkPMColor dst[]) const {
// c0-c3 are already in [0,1].
const Sk4f c0 = Sk4f::Load(fTranspose + 0);
const Sk4f c1 = Sk4f::Load(fTranspose + 4);
const Sk4f c2 = Sk4f::Load(fTranspose + 8);
const Sk4f c3 = Sk4f::Load(fTranspose + 12);
// c4 (the translate vector) is in [0, 255]. Bring it back to [0,1].
const Sk4f c4 = Sk4f::Load(fTranspose + 16)*Sk4f(1.0f/255);
// todo: we could cache this in the constructor...
SkPMColor matrix_translate_pmcolor = round(premul(clamp_0_1(c4)));
for (int i = 0; i < count; i++) {
const SkPMColor src_c = src[i];
if (0 == src_c) {
dst[i] = matrix_translate_pmcolor;
continue;
}
Sk4f srcf = SkNx_cast<float>(Sk4b::Load((const uint8_t*)&src_c)) * Sk4f(1.0f/255);
if (0xFF != SkGetPackedA32(src_c)) {
srcf = unpremul(srcf);
}
Sk4f r4 = SkNx_dup<SK_R32_SHIFT/8>(srcf);
Sk4f g4 = SkNx_dup<SK_G32_SHIFT/8>(srcf);
Sk4f b4 = SkNx_dup<SK_B32_SHIFT/8>(srcf);
Sk4f a4 = SkNx_dup<SK_A32_SHIFT/8>(srcf);
// apply matrix
Sk4f dst4 = c0 * r4 + c1 * g4 + c2 * b4 + c3 * a4 + c4;
// clamp, re-premul, and write
dst[i] = round(premul(clamp_0_1(dst4)));
}
}
///////////////////////////////////////////////////////////////////////////////
void SkColorMatrixFilter::flatten(SkWriteBuffer& buffer) const {
SkASSERT(sizeof(fMatrix.fMat)/sizeof(SkScalar) == 20);
buffer.writeScalarArray(fMatrix.fMat, 20);
}
SkFlattenable* SkColorMatrixFilter::CreateProc(SkReadBuffer& buffer) {
SkColorMatrix matrix;
if (buffer.readScalarArray(matrix.fMat, 20)) {
return Create(matrix);
}
return nullptr;
}
bool SkColorMatrixFilter::asColorMatrix(SkScalar matrix[20]) const {
if (matrix) {
memcpy(matrix, fMatrix.fMat, 20 * sizeof(SkScalar));
}
return true;
}
SkColorFilter* SkColorMatrixFilter::newComposed(const SkColorFilter* innerFilter) const {
SkScalar innerMatrix[20];
if (innerFilter->asColorMatrix(innerMatrix) && !SkColorMatrix::NeedsClamping(innerMatrix)) {
SkScalar concat[20];
SkColorMatrix::SetConcat(concat, fMatrix.fMat, innerMatrix);
return SkColorMatrixFilter::Create(concat);
}
return nullptr;
}
#if SK_SUPPORT_GPU
#include "GrFragmentProcessor.h"
#include "GrInvariantOutput.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
class ColorMatrixEffect : public GrFragmentProcessor {
public:
static const GrFragmentProcessor* Create(const SkColorMatrix& matrix) {
return new ColorMatrixEffect(matrix);
}
const char* name() const override { return "Color Matrix"; }
GR_DECLARE_FRAGMENT_PROCESSOR_TEST;
class GLSLProcessor : public GrGLSLFragmentProcessor {
public:
// this class always generates the same code.
static void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder* b) {}
GLSLProcessor(const GrProcessor&) {}
virtual void emitCode(EmitArgs& args) override {
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
fMatrixHandle = uniformHandler->addUniform(GrGLSLUniformHandler::kFragment_Visibility,
kMat44f_GrSLType, kDefault_GrSLPrecision,
"ColorMatrix");
fVectorHandle = uniformHandler->addUniform(GrGLSLUniformHandler::kFragment_Visibility,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"ColorMatrixVector");
if (nullptr == args.fInputColor) {
// could optimize this case, but we aren't for now.
args.fInputColor = "vec4(1)";
}
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
// The max() is to guard against 0 / 0 during unpremul when the incoming color is
// transparent black.
fragBuilder->codeAppendf("\tfloat nonZeroAlpha = max(%s.a, 0.00001);\n",
args.fInputColor);
fragBuilder->codeAppendf("\t%s = %s * vec4(%s.rgb / nonZeroAlpha, nonZeroAlpha) + %s;\n",
args.fOutputColor,
uniformHandler->getUniformCStr(fMatrixHandle),
args.fInputColor,
uniformHandler->getUniformCStr(fVectorHandle));
fragBuilder->codeAppendf("\t%s = clamp(%s, 0.0, 1.0);\n",
args.fOutputColor, args.fOutputColor);
fragBuilder->codeAppendf("\t%s.rgb *= %s.a;\n", args.fOutputColor, args.fOutputColor);
}
protected:
virtual void onSetData(const GrGLSLProgramDataManager& uniManager,
const GrProcessor& proc) override {
const ColorMatrixEffect& cme = proc.cast<ColorMatrixEffect>();
const float* m = cme.fMatrix.fMat;
// The GL matrix is transposed from SkColorMatrix.
float mt[] = {
m[0], m[5], m[10], m[15],
m[1], m[6], m[11], m[16],
m[2], m[7], m[12], m[17],
m[3], m[8], m[13], m[18],
};
static const float kScale = 1.0f / 255.0f;
float vec[] = {
m[4] * kScale, m[9] * kScale, m[14] * kScale, m[19] * kScale,
};
uniManager.setMatrix4fv(fMatrixHandle, 1, mt);
uniManager.set4fv(fVectorHandle, 1, vec);
}
private:
GrGLSLProgramDataManager::UniformHandle fMatrixHandle;
GrGLSLProgramDataManager::UniformHandle fVectorHandle;
typedef GrGLSLFragmentProcessor INHERITED;
};
private:
ColorMatrixEffect(const SkColorMatrix& matrix) : fMatrix(matrix) {
this->initClassID<ColorMatrixEffect>();
}
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
return new GLSLProcessor(*this);
}
virtual void onGetGLSLProcessorKey(const GrGLSLCaps& caps,
GrProcessorKeyBuilder* b) const override {
GLSLProcessor::GenKey(*this, caps, b);
}
bool onIsEqual(const GrFragmentProcessor& s) const override {
const ColorMatrixEffect& cme = s.cast<ColorMatrixEffect>();
return cme.fMatrix == fMatrix;
}
void onComputeInvariantOutput(GrInvariantOutput* inout) const override {
// We only bother to check whether the alpha channel will be constant. If SkColorMatrix had
// type flags it might be worth checking the other components.
// The matrix is defined such the 4th row determines the output alpha. The first four
// columns of that row multiply the input r, g, b, and a, respectively, and the last column
// is the "translation".
static const uint32_t kRGBAFlags[] = {
kR_GrColorComponentFlag,
kG_GrColorComponentFlag,
kB_GrColorComponentFlag,
kA_GrColorComponentFlag
};
static const int kShifts[] = {
GrColor_SHIFT_R, GrColor_SHIFT_G, GrColor_SHIFT_B, GrColor_SHIFT_A,
};
enum {
kAlphaRowStartIdx = 15,
kAlphaRowTranslateIdx = 19,
};
SkScalar outputA = 0;
for (int i = 0; i < 4; ++i) {
// If any relevant component of the color to be passed through the matrix is non-const
// then we can't know the final result.
if (0 != fMatrix.fMat[kAlphaRowStartIdx + i]) {
if (!(inout->validFlags() & kRGBAFlags[i])) {
inout->setToUnknown(GrInvariantOutput::kWill_ReadInput);
return;
} else {
uint32_t component = (inout->color() >> kShifts[i]) & 0xFF;
outputA += fMatrix.fMat[kAlphaRowStartIdx + i] * component;
}
}
}
outputA += fMatrix.fMat[kAlphaRowTranslateIdx];
// We pin the color to [0,1]. This would happen to the *final* color output from the frag
// shader but currently the effect does not pin its own output. So in the case of over/
// underflow this may deviate from the actual result. Maybe the effect should pin its
// result if the matrix could over/underflow for any component?
inout->setToOther(kA_GrColorComponentFlag,
static_cast<uint8_t>(SkScalarPin(outputA, 0, 255)) << GrColor_SHIFT_A,
GrInvariantOutput::kWill_ReadInput);
}
SkColorMatrix fMatrix;
typedef GrFragmentProcessor INHERITED;
};
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(ColorMatrixEffect);
const GrFragmentProcessor* ColorMatrixEffect::TestCreate(GrProcessorTestData* d) {
SkColorMatrix colorMatrix;
for (size_t i = 0; i < SK_ARRAY_COUNT(colorMatrix.fMat); ++i) {
colorMatrix.fMat[i] = d->fRandom->nextSScalar1();
}
return ColorMatrixEffect::Create(colorMatrix);
}
const GrFragmentProcessor* SkColorMatrixFilter::asFragmentProcessor(GrContext*) const {
return ColorMatrixEffect::Create(fMatrix);
}
#endif
#ifndef SK_IGNORE_TO_STRING
void SkColorMatrixFilter::toString(SkString* str) const {
str->append("SkColorMatrixFilter: ");
str->append("matrix: (");
for (int i = 0; i < 20; ++i) {
str->appendScalar(fMatrix.fMat[i]);
if (i < 19) {
str->append(", ");
}
}
str->append(")");
}
#endif
///////////////////////////////////////////////////////////////////////////////
static SkScalar byte_to_scale(U8CPU byte) {
if (0xFF == byte) {
// want to get this exact
return 1;
} else {
return byte * 0.00392156862745f;
}
}
SkColorFilter* SkColorMatrixFilter::CreateLightingFilter(SkColor mul, SkColor add) {
SkColorMatrix matrix;
matrix.setScale(byte_to_scale(SkColorGetR(mul)),
byte_to_scale(SkColorGetG(mul)),
byte_to_scale(SkColorGetB(mul)),
1);
matrix.postTranslate(SkIntToScalar(SkColorGetR(add)),
SkIntToScalar(SkColorGetG(add)),
SkIntToScalar(SkColorGetB(add)),
0);
return SkColorMatrixFilter::Create(matrix);
}