blob: c69d003c0f584fd5f5e6edf9a678d6d517b5ddc0 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkCodec.h"
#include "SkCodecPriv.h"
#include "SkSampler.h"
#include "SkUtils.h"
void SkSampler::Fill(const SkImageInfo& info, void* dst, size_t rowBytes,
uint32_t colorOrIndex, SkCodec::ZeroInitialized zeroInit) {
SkASSERT(dst != nullptr);
// Calculate bytes to fill. We use getSafeSize since the last row may not be padded.
const size_t bytesToFill = info.getSafeSize(rowBytes);
const int width = info.width();
const int numRows = info.height();
// Use the proper memset routine to fill the remaining bytes
switch (info.colorType()) {
case kN32_SkColorType: {
// If memory is zero initialized, we may not need to fill
uint32_t color = colorOrIndex;
if (SkCodec::kYes_ZeroInitialized == zeroInit && 0 == color) {
return;
}
// We must fill row by row in the case of unaligned row bytes
if (SkIsAlign4((size_t) dst) && SkIsAlign4(rowBytes)) {
sk_memset32((uint32_t*) dst, color,
(uint32_t) bytesToFill / sizeof(SkPMColor));
} else {
// We must fill row by row in the case of unaligned row bytes. This is an
// unlikely, slow case.
SkCodecPrintf("Warning: Strange number of row bytes, fill will be slow.\n");
uint32_t* dstRow = (uint32_t*) dst;
for (int row = 0; row < numRows; row++) {
for (int col = 0; col < width; col++) {
dstRow[col] = color;
}
dstRow = SkTAddOffset<uint32_t>(dstRow, rowBytes);
}
}
break;
}
case kRGB_565_SkColorType: {
// If the destination is k565, the caller passes in a 16-bit color.
// We will not assert that the high bits of colorOrIndex must be zeroed.
// This allows us to take advantage of the fact that the low 16 bits of an
// SKPMColor may be a valid a 565 color. For example, the low 16
// bits of SK_ColorBLACK are identical to the 565 representation
// for black.
// If memory is zero initialized, we may not need to fill
uint16_t color = (uint16_t) colorOrIndex;
if (SkCodec::kYes_ZeroInitialized == zeroInit && 0 == color) {
return;
}
if (SkIsAlign2((size_t) dst) && SkIsAlign2(rowBytes)) {
sk_memset16((uint16_t*) dst, color, (uint32_t) bytesToFill / sizeof(uint16_t));
} else {
// We must fill row by row in the case of unaligned row bytes. This is an
// unlikely, slow case.
SkCodecPrintf("Warning: Strange number of row bytes, fill will be slow.\n");
uint16_t* dstRow = (uint16_t*) dst;
for (int row = 0; row < numRows; row++) {
for (int col = 0; col < width; col++) {
dstRow[col] = color;
}
dstRow = SkTAddOffset<uint16_t>(dstRow, rowBytes);
}
}
break;
}
case kIndex_8_SkColorType:
// On an index destination color type, always assume the input is an index.
// Fall through
case kGray_8_SkColorType:
// If the destination is kGray, the caller passes in an 8-bit color.
// We will not assert that the high bits of colorOrIndex must be zeroed.
// This allows us to take advantage of the fact that the low 8 bits of an
// SKPMColor may be a valid a grayscale color. For example, the low 8
// bits of SK_ColorBLACK are identical to the grayscale representation
// for black.
// If memory is zero initialized, we may not need to fill
if (SkCodec::kYes_ZeroInitialized == zeroInit && 0 == (uint8_t) colorOrIndex) {
return;
}
memset(dst, (uint8_t) colorOrIndex, bytesToFill);
break;
default:
SkCodecPrintf("Error: Unsupported dst color type for fill(). Doing nothing.\n");
SkASSERT(false);
break;
}
}