blob: 92470bf3a0ca2dc77cc7baee665a3046d9a6988b [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkCodecPriv.h"
#include "SkColorPriv.h"
#include "SkColorTable.h"
#include "SkGifCodec.h"
#include "SkStream.h"
#include "SkSwizzler.h"
#include "SkUtils.h"
/*
* Checks the start of the stream to see if the image is a gif
*/
bool SkGifCodec::IsGif(const void* buf, size_t bytesRead) {
if (bytesRead >= GIF_STAMP_LEN) {
if (memcmp(GIF_STAMP, buf, GIF_STAMP_LEN) == 0 ||
memcmp(GIF87_STAMP, buf, GIF_STAMP_LEN) == 0 ||
memcmp(GIF89_STAMP, buf, GIF_STAMP_LEN) == 0)
{
return true;
}
}
return false;
}
/*
* Error function
*/
static SkCodec::Result gif_error(const char* msg, SkCodec::Result result = SkCodec::kInvalidInput) {
SkCodecPrintf("Gif Error: %s\n", msg);
return result;
}
/*
* Read function that will be passed to gif_lib
*/
static int32_t read_bytes_callback(GifFileType* fileType, GifByteType* out, int32_t size) {
SkStream* stream = (SkStream*) fileType->UserData;
return (int32_t) stream->read(out, size);
}
/*
* Open the gif file
*/
static GifFileType* open_gif(SkStream* stream) {
return DGifOpen(stream, read_bytes_callback, nullptr);
}
/*
* Check if a there is an index of the color table for a transparent pixel
*/
static uint32_t find_trans_index(const SavedImage& image) {
// If there is a transparent index specified, it will be contained in an
// extension block. We will loop through extension blocks in reverse order
// to check the most recent extension blocks first.
for (int32_t i = image.ExtensionBlockCount - 1; i >= 0; i--) {
// Get an extension block
const ExtensionBlock& extBlock = image.ExtensionBlocks[i];
// Specifically, we need to check for a graphics control extension,
// which may contain transparency information. Also, note that a valid
// graphics control extension is always four bytes. The fourth byte
// is the transparent index (if it exists), so we need at least four
// bytes.
if (GRAPHICS_EXT_FUNC_CODE == extBlock.Function && extBlock.ByteCount >= 4) {
// Check the transparent color flag which indicates whether a
// transparent index exists. It is the least significant bit of
// the first byte of the extension block.
if (1 == (extBlock.Bytes[0] & 1)) {
// Use uint32_t to prevent sign extending
return extBlock.Bytes[3];
}
// There should only be one graphics control extension for the image frame
break;
}
}
// Use maximum unsigned int (surely an invalid index) to indicate that a valid
// index was not found.
return SK_MaxU32;
}
inline uint32_t ceil_div(uint32_t a, uint32_t b) {
return (a + b - 1) / b;
}
/*
* Gets the output row corresponding to the encoded row for interlaced gifs
*/
inline uint32_t get_output_row_interlaced(uint32_t encodedRow, uint32_t height) {
SkASSERT(encodedRow < height);
// First pass
if (encodedRow * 8 < height) {
return encodedRow * 8;
}
// Second pass
if (encodedRow * 4 < height) {
return 4 + 8 * (encodedRow - ceil_div(height, 8));
}
// Third pass
if (encodedRow * 2 < height) {
return 2 + 4 * (encodedRow - ceil_div(height, 4));
}
// Fourth pass
return 1 + 2 * (encodedRow - ceil_div(height, 2));
}
/*
* This function cleans up the gif object after the decode completes
* It is used in a SkAutoTCallIProc template
*/
void SkGifCodec::CloseGif(GifFileType* gif) {
DGifCloseFile(gif, NULL);
}
/*
* This function free extension data that has been saved to assist the image
* decoder
*/
void SkGifCodec::FreeExtension(SavedImage* image) {
if (NULL != image->ExtensionBlocks) {
GifFreeExtensions(&image->ExtensionBlockCount, &image->ExtensionBlocks);
}
}
/*
* Read enough of the stream to initialize the SkGifCodec.
* Returns a bool representing success or failure.
*
* @param codecOut
* If it returned true, and codecOut was not nullptr,
* codecOut will be set to a new SkGifCodec.
*
* @param gifOut
* If it returned true, and codecOut was nullptr,
* gifOut must be non-nullptr and gifOut will be set to a new
* GifFileType pointer.
*
* @param stream
* Deleted on failure.
* codecOut will take ownership of it in the case where we created a codec.
* Ownership is unchanged when we returned a gifOut.
*
*/
bool SkGifCodec::ReadHeader(SkStream* stream, SkCodec** codecOut, GifFileType** gifOut) {
SkAutoTDelete<SkStream> streamDeleter(stream);
// Read gif header, logical screen descriptor, and global color table
SkAutoTCallVProc<GifFileType, CloseGif> gif(open_gif(stream));
if (nullptr == gif) {
gif_error("DGifOpen failed.\n");
return false;
}
// Read through gif extensions to get to the image data. Set the
// transparent index based on the extension data.
uint32_t transIndex;
SkCodec::Result result = ReadUpToFirstImage(gif, &transIndex);
if (kSuccess != result){
return false;
}
// Read the image descriptor
if (GIF_ERROR == DGifGetImageDesc(gif)) {
return false;
}
// If reading the image descriptor is successful, the image count will be
// incremented.
SkASSERT(gif->ImageCount >= 1);
if (nullptr != codecOut) {
SkISize size;
SkIRect frameRect;
if (!GetDimensions(gif, &size, &frameRect)) {
gif_error("Invalid gif size.\n");
return false;
}
bool frameIsSubset = (size != frameRect.size());
// Determine the recommended alpha type. The transIndex might be valid if it less
// than 256. We are not certain that the index is valid until we process the color
// table, since some gifs have color tables with less than 256 colors. If
// there might be a valid transparent index, we must indicate that the image has
// alpha.
// In the case where we must support alpha, we have the option to set the
// suggested alpha type to kPremul or kUnpremul. Both are valid since the alpha
// component will always be 0xFF or the entire 32-bit pixel will be set to zero.
// We prefer kPremul because we support kPremul, and it is more efficient to use
// kPremul directly even when kUnpremul is supported.
SkAlphaType alphaType = (transIndex < 256) ? kPremul_SkAlphaType : kOpaque_SkAlphaType;
// Return the codec
// kIndex is the most natural color type for gifs, so we set this as
// the default.
SkImageInfo imageInfo = SkImageInfo::Make(size.width(), size.height(), kIndex_8_SkColorType,
alphaType);
*codecOut = new SkGifCodec(imageInfo, streamDeleter.detach(), gif.detach(), transIndex,
frameRect, frameIsSubset);
} else {
SkASSERT(nullptr != gifOut);
streamDeleter.detach();
*gifOut = gif.detach();
}
return true;
}
/*
* Assumes IsGif was called and returned true
* Creates a gif decoder
* Reads enough of the stream to determine the image format
*/
SkCodec* SkGifCodec::NewFromStream(SkStream* stream) {
SkCodec* codec = nullptr;
if (ReadHeader(stream, &codec, nullptr)) {
return codec;
}
return nullptr;
}
SkGifCodec::SkGifCodec(const SkImageInfo& srcInfo, SkStream* stream, GifFileType* gif,
uint32_t transIndex, const SkIRect& frameRect, bool frameIsSubset)
: INHERITED(srcInfo, stream)
, fGif(gif)
, fSrcBuffer(new uint8_t[this->getInfo().width()])
, fFrameRect(frameRect)
// If it is valid, fTransIndex will be used to set fFillIndex. We don't know if
// fTransIndex is valid until we process the color table, since fTransIndex may
// be greater than the size of the color table.
, fTransIndex(transIndex)
// Default fFillIndex is 0. We will overwrite this if fTransIndex is valid, or if
// there is a valid background color.
, fFillIndex(0)
, fFrameIsSubset(frameIsSubset)
, fSwizzler(NULL)
, fColorTable(NULL)
{}
bool SkGifCodec::onRewind() {
GifFileType* gifOut = nullptr;
if (!ReadHeader(this->stream(), nullptr, &gifOut)) {
return false;
}
SkASSERT(nullptr != gifOut);
fGif.reset(gifOut);
return true;
}
SkCodec::Result SkGifCodec::ReadUpToFirstImage(GifFileType* gif, uint32_t* transIndex) {
// Use this as a container to hold information about any gif extension
// blocks. This generally stores transparency and animation instructions.
SavedImage saveExt;
SkAutoTCallVProc<SavedImage, FreeExtension> autoFreeExt(&saveExt);
saveExt.ExtensionBlocks = nullptr;
saveExt.ExtensionBlockCount = 0;
GifByteType* extData;
int32_t extFunction;
// We will loop over components of gif images until we find an image. Once
// we find an image, we will decode and return it. While many gif files
// contain more than one image, we will simply decode the first image.
GifRecordType recordType;
do {
// Get the current record type
if (GIF_ERROR == DGifGetRecordType(gif, &recordType)) {
return gif_error("DGifGetRecordType failed.\n", kInvalidInput);
}
switch (recordType) {
case IMAGE_DESC_RECORD_TYPE: {
*transIndex = find_trans_index(saveExt);
// FIXME: Gif files may have multiple images stored in a single
// file. This is most commonly used to enable
// animations. Since we are leaving animated gifs as a
// TODO, we will return kSuccess after decoding the
// first image in the file. This is the same behavior
// as SkImageDecoder_libgif.
//
// Most times this works pretty well, but sometimes it
// doesn't. For example, I have an animated test image
// where the first image in the file is 1x1, but the
// subsequent images are meaningful. This currently
// displays the 1x1 image, which is not ideal. Right
// now I am leaving this as an issue that will be
// addressed when we implement animated gifs.
//
// It is also possible (not explicitly disallowed in the
// specification) that gif files provide multiple
// images in a single file that are all meant to be
// displayed in the same frame together. I will
// currently leave this unimplemented until I find a
// test case that expects this behavior.
return kSuccess;
}
// Extensions are used to specify special properties of the image
// such as transparency or animation.
case EXTENSION_RECORD_TYPE:
// Read extension data
if (GIF_ERROR == DGifGetExtension(gif, &extFunction, &extData)) {
return gif_error("Could not get extension.\n", kIncompleteInput);
}
// Create an extension block with our data
while (nullptr != extData) {
// Add a single block
if (GIF_ERROR == GifAddExtensionBlock(&saveExt.ExtensionBlockCount,
&saveExt.ExtensionBlocks,
extFunction, extData[0], &extData[1]))
{
return gif_error("Could not add extension block.\n", kIncompleteInput);
}
// Move to the next block
if (GIF_ERROR == DGifGetExtensionNext(gif, &extData)) {
return gif_error("Could not get next extension.\n", kIncompleteInput);
}
}
break;
// Signals the end of the gif file
case TERMINATE_RECORD_TYPE:
break;
default:
// DGifGetRecordType returns an error if the record type does
// not match one of the above cases. This should not be
// reached.
SkASSERT(false);
break;
}
} while (TERMINATE_RECORD_TYPE != recordType);
return gif_error("Could not find any images to decode in gif file.\n", kInvalidInput);
}
bool SkGifCodec::GetDimensions(GifFileType* gif, SkISize* size, SkIRect* frameRect) {
// Get the encoded dimension values
SavedImage* image = &gif->SavedImages[gif->ImageCount - 1];
const GifImageDesc& desc = image->ImageDesc;
int frameLeft = desc.Left;
int frameTop = desc.Top;
int frameWidth = desc.Width;
int frameHeight = desc.Height;
int width = gif->SWidth;
int height = gif->SHeight;
// Ensure that the decode dimensions are large enough to contain the frame
width = SkTMax(width, frameWidth + frameLeft);
height = SkTMax(height, frameHeight + frameTop);
// All of these dimensions should be positive, as they are encoded as unsigned 16-bit integers.
// It is unclear why giflib casts them to ints. We will go ahead and check that they are
// in fact positive.
if (frameLeft < 0 || frameTop < 0 || frameWidth < 0 || frameHeight < 0 || width <= 0 ||
height <= 0) {
return false;
}
frameRect->setXYWH(frameLeft, frameTop, frameWidth, frameHeight);
size->set(width, height);
return true;
}
void SkGifCodec::initializeColorTable(const SkImageInfo& dstInfo, SkPMColor* inputColorPtr,
int* inputColorCount) {
// Set up our own color table
const uint32_t maxColors = 256;
SkPMColor colorPtr[256];
if (NULL != inputColorCount) {
// We set the number of colors to maxColors in order to ensure
// safe memory accesses. Otherwise, an invalid pixel could
// access memory outside of our color table array.
*inputColorCount = maxColors;
}
// Get local color table
ColorMapObject* colorMap = fGif->Image.ColorMap;
// If there is no local color table, use the global color table
if (NULL == colorMap) {
colorMap = fGif->SColorMap;
}
uint32_t colorCount = 0;
if (NULL != colorMap) {
colorCount = colorMap->ColorCount;
// giflib guarantees these properties
SkASSERT(colorCount == (unsigned) (1 << (colorMap->BitsPerPixel)));
SkASSERT(colorCount <= 256);
for (uint32_t i = 0; i < colorCount; i++) {
colorPtr[i] = SkPackARGB32(0xFF, colorMap->Colors[i].Red,
colorMap->Colors[i].Green, colorMap->Colors[i].Blue);
}
}
// Gifs have the option to specify the color at a single index of the color
// table as transparent. If the transparent index is greater than the
// colorCount, we know that there is no valid transparent color in the color
// table. If there is not valid transparent index, we will try to use the
// backgroundIndex as the fill index. If the backgroundIndex is also not
// valid, we will let fFillIndex default to 0 (it is set to zero in the
// constructor). This behavior is not specified but matches
// SkImageDecoder_libgif.
uint32_t backgroundIndex = fGif->SBackGroundColor;
if (fTransIndex < colorCount) {
colorPtr[fTransIndex] = SK_ColorTRANSPARENT;
fFillIndex = fTransIndex;
} else if (backgroundIndex < colorCount) {
fFillIndex = backgroundIndex;
}
// Fill in the color table for indices greater than color count.
// This allows for predictable, safe behavior.
for (uint32_t i = colorCount; i < maxColors; i++) {
colorPtr[i] = colorPtr[fFillIndex];
}
fColorTable.reset(new SkColorTable(colorPtr, maxColors));
copy_color_table(dstInfo, this->fColorTable, inputColorPtr, inputColorCount);
}
SkCodec::Result SkGifCodec::prepareToDecode(const SkImageInfo& dstInfo, SkPMColor* inputColorPtr,
int* inputColorCount, const Options& opts) {
// Check for valid input parameters
if (!conversion_possible(dstInfo, this->getInfo())) {
return gif_error("Cannot convert input type to output type.\n",
kInvalidConversion);
}
// Initialize color table and copy to the client if necessary
this->initializeColorTable(dstInfo, inputColorPtr, inputColorCount);
return this->initializeSwizzler(dstInfo, opts);
}
SkCodec::Result SkGifCodec::initializeSwizzler(const SkImageInfo& dstInfo, const Options& opts) {
const SkPMColor* colorPtr = get_color_ptr(fColorTable.get());
const SkIRect* frameRect = fFrameIsSubset ? &fFrameRect : nullptr;
fSwizzler.reset(SkSwizzler::CreateSwizzler(SkSwizzler::kIndex, colorPtr, dstInfo, opts,
frameRect));
if (nullptr != fSwizzler.get()) {
return kSuccess;
}
return kUnimplemented;
}
bool SkGifCodec::readRow() {
return GIF_ERROR != DGifGetLine(fGif, fSrcBuffer.get(), fFrameRect.width());
}
/*
* Initiates the gif decode
*/
SkCodec::Result SkGifCodec::onGetPixels(const SkImageInfo& dstInfo,
void* dst, size_t dstRowBytes,
const Options& opts,
SkPMColor* inputColorPtr,
int* inputColorCount,
int* rowsDecoded) {
Result result = this->prepareToDecode(dstInfo, inputColorPtr, inputColorCount, opts);
if (kSuccess != result) {
return result;
}
if (dstInfo.dimensions() != this->getInfo().dimensions()) {
return gif_error("Scaling not supported.\n", kInvalidScale);
}
// Initialize the swizzler
if (fFrameIsSubset) {
// Fill the background
SkSampler::Fill(dstInfo, dst, dstRowBytes,
this->getFillValue(dstInfo.colorType(), dstInfo.alphaType()),
opts.fZeroInitialized);
}
// Iterate over rows of the input
for (int y = fFrameRect.top(); y < fFrameRect.bottom(); y++) {
if (!this->readRow()) {
*rowsDecoded = y;
return gif_error("Could not decode line.\n", kIncompleteInput);
}
void* dstRow = SkTAddOffset<void>(dst, dstRowBytes * this->outputScanline(y));
fSwizzler->swizzle(dstRow, fSrcBuffer.get());
}
return kSuccess;
}
// FIXME: This is similar to the implementation for bmp and png. Can we share more code or
// possibly make this non-virtual?
uint32_t SkGifCodec::onGetFillValue(SkColorType colorType, SkAlphaType alphaType) const {
const SkPMColor* colorPtr = get_color_ptr(fColorTable.get());
return get_color_table_fill_value(colorType, colorPtr, fFillIndex);
}
SkCodec::Result SkGifCodec::onStartScanlineDecode(const SkImageInfo& dstInfo,
const SkCodec::Options& opts, SkPMColor inputColorPtr[], int* inputColorCount) {
return this->prepareToDecode(dstInfo, inputColorPtr, inputColorCount, this->options());
}
void SkGifCodec::handleScanlineFrame(int count, int* rowsBeforeFrame, int* rowsInFrame) {
if (fFrameIsSubset) {
const int currRow = this->currScanline();
// The number of rows that remain to be skipped before reaching rows that we
// actually must decode into.
// This must be at least zero. We also make sure that it is less than or
// equal to count, since we will skip at most count rows.
*rowsBeforeFrame = SkTMin(count, SkTMax(0, fFrameRect.top() - currRow));
// Rows left to decode once we reach the start of the frame.
const int rowsLeft = count - *rowsBeforeFrame;
// Count the number of that extend beyond the bottom of the frame. We do not
// need to decode into these rows.
const int rowsAfterFrame = SkTMax(0, currRow + rowsLeft - fFrameRect.bottom());
// Set the actual number of source rows that we need to decode.
*rowsInFrame = rowsLeft - rowsAfterFrame;
} else {
*rowsBeforeFrame = 0;
*rowsInFrame = count;
}
}
int SkGifCodec::onGetScanlines(void* dst, int count, size_t rowBytes) {
int rowsBeforeFrame;
int rowsInFrame;
this->handleScanlineFrame(count, &rowsBeforeFrame, &rowsInFrame);
if (fFrameIsSubset) {
// Fill the requested rows
SkImageInfo fillInfo = this->dstInfo().makeWH(this->dstInfo().width(), count);
uint32_t fillValue = this->onGetFillValue(this->dstInfo().colorType(),
this->dstInfo().alphaType());
fSwizzler->fill(fillInfo, dst, rowBytes, fillValue, this->options().fZeroInitialized);
// Start to write pixels at the start of the image frame
dst = SkTAddOffset<void>(dst, rowBytes * rowsBeforeFrame);
}
for (int i = 0; i < rowsInFrame; i++) {
if (!this->readRow()) {
return i + rowsBeforeFrame;
}
fSwizzler->swizzle(dst, fSrcBuffer.get());
dst = SkTAddOffset<void>(dst, rowBytes);
}
return count;
}
bool SkGifCodec::onSkipScanlines(int count) {
int rowsBeforeFrame;
int rowsInFrame;
this->handleScanlineFrame(count, &rowsBeforeFrame, &rowsInFrame);
for (int i = 0; i < rowsInFrame; i++) {
if (!this->readRow()) {
return false;
}
}
return true;
}
SkCodec::SkScanlineOrder SkGifCodec::onGetScanlineOrder() const {
if (fGif->Image.Interlace) {
return kOutOfOrder_SkScanlineOrder;
}
return kTopDown_SkScanlineOrder;
}
int SkGifCodec::onOutputScanline(int inputScanline) const {
if (fGif->Image.Interlace) {
if (inputScanline < fFrameRect.top() || inputScanline >= fFrameRect.bottom()) {
return inputScanline;
}
return get_output_row_interlaced(inputScanline - fFrameRect.top(), fFrameRect.height()) +
fFrameRect.top();
}
return inputScanline;
}