blob: eec6e05be9514b3b00bee42f7c1184c85907ccd7 [file] [log] [blame] [edit]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#pragma once
// skcms_public.h contains the entire public API for skcms.
#ifndef SKCMS_API
#define SKCMS_API
#endif
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#ifdef __cplusplus
extern "C" {
#endif
// A row-major 3x3 matrix (ie vals[row][col])
typedef struct skcms_Matrix3x3 {
float vals[3][3];
} skcms_Matrix3x3;
// It is _not_ safe to alias the pointers to invert in-place.
SKCMS_API bool skcms_Matrix3x3_invert(const skcms_Matrix3x3*, skcms_Matrix3x3*);
SKCMS_API skcms_Matrix3x3 skcms_Matrix3x3_concat(const skcms_Matrix3x3*, const skcms_Matrix3x3*);
// A row-major 3x4 matrix (ie vals[row][col])
typedef struct skcms_Matrix3x4 {
float vals[3][4];
} skcms_Matrix3x4;
// A transfer function mapping encoded values to linear values,
// represented by this 7-parameter piecewise function:
//
// linear = sign(encoded) * (c*|encoded| + f) , 0 <= |encoded| < d
// = sign(encoded) * ((a*|encoded| + b)^g + e), d <= |encoded|
//
// (A simple gamma transfer function sets g to gamma and a to 1.)
typedef struct skcms_TransferFunction {
float g, a,b,c,d,e,f;
} skcms_TransferFunction;
SKCMS_API float skcms_TransferFunction_eval (const skcms_TransferFunction*, float);
SKCMS_API bool skcms_TransferFunction_invert(const skcms_TransferFunction*,
skcms_TransferFunction*);
typedef enum skcms_TFType {
skcms_TFType_Invalid,
skcms_TFType_sRGBish,
skcms_TFType_PQish,
skcms_TFType_HLGish,
skcms_TFType_HLGinvish,
} skcms_TFType;
// Identify which kind of transfer function is encoded in an skcms_TransferFunction
SKCMS_API skcms_TFType skcms_TransferFunction_getType(const skcms_TransferFunction*);
// We can jam a couple alternate transfer function forms into skcms_TransferFunction,
// including those matching the general forms of the SMPTE ST 2084 PQ function or HLG.
//
// PQish:
// max(A + B|encoded|^C, 0)
// linear = sign(encoded) * (------------------------) ^ F
// D + E|encoded|^C
SKCMS_API bool skcms_TransferFunction_makePQish(skcms_TransferFunction*,
float A, float B, float C,
float D, float E, float F);
// HLGish:
// { K * sign(encoded) * ( (R|encoded|)^G ) when 0 <= |encoded| <= 1/R
// linear = { K * sign(encoded) * ( e^(a(|encoded|-c)) + b ) when 1/R < |encoded|
SKCMS_API bool skcms_TransferFunction_makeScaledHLGish(skcms_TransferFunction*,
float K, float R, float G,
float a, float b, float c);
// Compatibility shim with K=1 for old callers.
static inline bool skcms_TransferFunction_makeHLGish(skcms_TransferFunction* fn,
float R, float G,
float a, float b, float c) {
return skcms_TransferFunction_makeScaledHLGish(fn, 1.0f, R,G, a,b,c);
}
// PQ mapping encoded [0,1] to linear [0,1].
static inline bool skcms_TransferFunction_makePQ(skcms_TransferFunction* tf) {
return skcms_TransferFunction_makePQish(tf, -107/128.0f, 1.0f, 32/2523.0f
, 2413/128.0f, -2392/128.0f, 8192/1305.0f);
}
// HLG mapping encoded [0,1] to linear [0,12].
static inline bool skcms_TransferFunction_makeHLG(skcms_TransferFunction* tf) {
return skcms_TransferFunction_makeHLGish(tf, 2.0f, 2.0f
, 1/0.17883277f, 0.28466892f, 0.55991073f);
}
// Is this an ordinary sRGB-ish transfer function, or one of the HDR forms we support?
SKCMS_API bool skcms_TransferFunction_isSRGBish(const skcms_TransferFunction*);
SKCMS_API bool skcms_TransferFunction_isPQish (const skcms_TransferFunction*);
SKCMS_API bool skcms_TransferFunction_isHLGish (const skcms_TransferFunction*);
// Unified representation of 'curv' or 'para' tag data, or a 1D table from 'mft1' or 'mft2'
typedef union skcms_Curve {
struct {
uint32_t alias_of_table_entries;
skcms_TransferFunction parametric;
};
struct {
uint32_t table_entries;
const uint8_t* table_8;
const uint8_t* table_16;
};
} skcms_Curve;
// Complex transforms between device space (A) and profile connection space (B):
// A2B: device -> [ "A" curves -> CLUT ] -> [ "M" curves -> matrix ] -> "B" curves -> PCS
// B2A: device <- [ "A" curves <- CLUT ] <- [ "M" curves <- matrix ] <- "B" curves <- PCS
typedef struct skcms_A2B {
// Optional: N 1D "A" curves, followed by an N-dimensional CLUT.
// If input_channels == 0, these curves and CLUT are skipped,
// Otherwise, input_channels must be in [1, 4].
uint32_t input_channels;
skcms_Curve input_curves[4];
uint8_t grid_points[4];
const uint8_t* grid_8;
const uint8_t* grid_16;
// Optional: 3 1D "M" curves, followed by a color matrix.
// If matrix_channels == 0, these curves and matrix are skipped,
// Otherwise, matrix_channels must be 3.
uint32_t matrix_channels;
skcms_Curve matrix_curves[3];
skcms_Matrix3x4 matrix;
// Required: 3 1D "B" curves. Always present, and output_channels must be 3.
uint32_t output_channels;
skcms_Curve output_curves[3];
} skcms_A2B;
typedef struct skcms_B2A {
// Required: 3 1D "B" curves. Always present, and input_channels must be 3.
uint32_t input_channels;
skcms_Curve input_curves[3];
// Optional: a color matrix, followed by 3 1D "M" curves.
// If matrix_channels == 0, this matrix and these curves are skipped,
// Otherwise, matrix_channels must be 3.
uint32_t matrix_channels;
skcms_Matrix3x4 matrix;
skcms_Curve matrix_curves[3];
// Optional: an N-dimensional CLUT, followed by N 1D "A" curves.
// If output_channels == 0, this CLUT and these curves are skipped,
// Otherwise, output_channels must be in [1, 4].
uint32_t output_channels;
uint8_t grid_points[4];
const uint8_t* grid_8;
const uint8_t* grid_16;
skcms_Curve output_curves[4];
} skcms_B2A;
typedef struct skcms_CICP {
uint8_t color_primaries;
uint8_t transfer_characteristics;
uint8_t matrix_coefficients;
uint8_t video_full_range_flag;
} skcms_CICP;
typedef struct skcms_ICCProfile {
const uint8_t* buffer;
uint32_t size;
uint32_t data_color_space;
uint32_t pcs;
uint32_t tag_count;
// skcms_Parse() will set commonly-used fields for you when possible:
// If we can parse red, green and blue transfer curves from the profile,
// trc will be set to those three curves, and has_trc will be true.
bool has_trc;
skcms_Curve trc[3];
// If this profile's gamut can be represented by a 3x3 transform to XYZD50,
// skcms_Parse() sets toXYZD50 to that transform and has_toXYZD50 to true.
bool has_toXYZD50;
skcms_Matrix3x3 toXYZD50;
// If the profile has a valid A2B0 or A2B1 tag, skcms_Parse() sets A2B to
// that data, and has_A2B to true. skcms_ParseWithA2BPriority() does the
// same following any user-provided prioritization of A2B0, A2B1, or A2B2.
bool has_A2B;
skcms_A2B A2B;
// If the profile has a valid B2A0 or B2A1 tag, skcms_Parse() sets B2A to
// that data, and has_B2A to true. skcms_ParseWithA2BPriority() does the
// same following any user-provided prioritization of B2A0, B2A1, or B2A2.
bool has_B2A;
skcms_B2A B2A;
// If the profile has a valid CICP tag, skcms_Parse() sets CICP to that data,
// and has_CICP to true.
bool has_CICP;
skcms_CICP CICP;
} skcms_ICCProfile;
// The sRGB color profile is so commonly used that we offer a canonical skcms_ICCProfile for it.
SKCMS_API const skcms_ICCProfile* skcms_sRGB_profile(void);
// Ditto for XYZD50, the most common profile connection space.
SKCMS_API const skcms_ICCProfile* skcms_XYZD50_profile(void);
SKCMS_API const skcms_TransferFunction* skcms_sRGB_TransferFunction(void);
SKCMS_API const skcms_TransferFunction* skcms_sRGB_Inverse_TransferFunction(void);
SKCMS_API const skcms_TransferFunction* skcms_Identity_TransferFunction(void);
// Practical equality test for two skcms_ICCProfiles.
// The implementation is subject to change, but it will always try to answer
// "can I substitute A for B?" and "can I skip transforming from A to B?".
SKCMS_API bool skcms_ApproximatelyEqualProfiles(const skcms_ICCProfile* A,
const skcms_ICCProfile* B);
// Practical test that answers: Is curve roughly the inverse of inv_tf? Typically used by passing
// the inverse of a known parametric transfer function (like sRGB), to determine if a particular
// curve is very close to sRGB.
SKCMS_API bool skcms_AreApproximateInverses(const skcms_Curve* curve,
const skcms_TransferFunction* inv_tf);
// Similar to above, answering the question for all three TRC curves of the given profile. Again,
// passing skcms_sRGB_InverseTransferFunction as inv_tf will answer the question:
// "Does this profile have a transfer function that is very close to sRGB?"
SKCMS_API bool skcms_TRCs_AreApproximateInverse(const skcms_ICCProfile* profile,
const skcms_TransferFunction* inv_tf);
// Parse an ICC profile and return true if possible, otherwise return false.
// Selects an A2B profile (if present) according to priority list (each entry 0-2).
// The buffer is not copied; it must remain valid as long as the skcms_ICCProfile will be used.
SKCMS_API bool skcms_ParseWithA2BPriority(const void*, size_t,
const int priority[], int priorities,
skcms_ICCProfile*);
static inline bool skcms_Parse(const void* buf, size_t len, skcms_ICCProfile* profile) {
// For continuity of existing user expectations,
// prefer A2B0 (perceptual) over A2B1 (relative colormetric), and ignore A2B2 (saturation).
const int priority[] = {0,1};
return skcms_ParseWithA2BPriority(buf, len,
priority, sizeof(priority)/sizeof(*priority),
profile);
}
SKCMS_API bool skcms_ApproximateCurve(const skcms_Curve* curve,
skcms_TransferFunction* approx,
float* max_error);
SKCMS_API bool skcms_GetCHAD(const skcms_ICCProfile*, skcms_Matrix3x3*);
SKCMS_API bool skcms_GetWTPT(const skcms_ICCProfile*, float xyz[3]);
// Returns the number of channels of input data that are expected on the "A" side of the profile.
// This is useful for image codecs, where the image data and the accompanying profile might have
// conflicting data shapes. In some cases, the result is unclear or invalid. In that case, the
// function will return a negative value to signal an error.
SKCMS_API int skcms_GetInputChannelCount(const skcms_ICCProfile*);
// These are common ICC signature values
enum {
// common data_color_space values
skcms_Signature_CMYK = 0x434D594B,
skcms_Signature_Gray = 0x47524159,
skcms_Signature_RGB = 0x52474220,
// pcs (or data_color_space)
skcms_Signature_Lab = 0x4C616220,
skcms_Signature_XYZ = 0x58595A20,
// other, less common data_color_space values
skcms_Signature_CIELUV = 0x4C757620,
skcms_Signature_YCbCr = 0x59436272,
skcms_Signature_CIEYxy = 0x59787920,
skcms_Signature_HSV = 0x48535620,
skcms_Signature_HLS = 0x484C5320,
skcms_Signature_CMY = 0x434D5920,
skcms_Signature_2CLR = 0x32434C52,
skcms_Signature_3CLR = 0x33434C52,
skcms_Signature_4CLR = 0x34434C52,
skcms_Signature_5CLR = 0x35434C52,
skcms_Signature_6CLR = 0x36434C52,
skcms_Signature_7CLR = 0x37434C52,
skcms_Signature_8CLR = 0x38434C52,
skcms_Signature_9CLR = 0x39434C52,
skcms_Signature_10CLR = 0x41434C52,
skcms_Signature_11CLR = 0x42434C52,
skcms_Signature_12CLR = 0x43434C52,
skcms_Signature_13CLR = 0x44434C52,
skcms_Signature_14CLR = 0x45434C52,
skcms_Signature_15CLR = 0x46434C52,
};
typedef enum skcms_PixelFormat {
skcms_PixelFormat_A_8,
skcms_PixelFormat_A_8_,
skcms_PixelFormat_G_8,
skcms_PixelFormat_G_8_,
skcms_PixelFormat_GA_88, // Grayscale with alpha.
skcms_PixelFormat_GA_88_,
skcms_PixelFormat_RGB_565,
skcms_PixelFormat_BGR_565,
skcms_PixelFormat_ABGR_4444,
skcms_PixelFormat_ARGB_4444,
skcms_PixelFormat_RGB_888,
skcms_PixelFormat_BGR_888,
skcms_PixelFormat_RGBA_8888,
skcms_PixelFormat_BGRA_8888,
skcms_PixelFormat_RGBA_8888_sRGB, // Automatic sRGB encoding / decoding.
skcms_PixelFormat_BGRA_8888_sRGB, // (Generally used with linear transfer functions.)
skcms_PixelFormat_RGBA_1010102,
skcms_PixelFormat_BGRA_1010102,
skcms_PixelFormat_RGB_161616LE, // Little-endian. Pointers must be 16-bit aligned.
skcms_PixelFormat_BGR_161616LE,
skcms_PixelFormat_RGBA_16161616LE,
skcms_PixelFormat_BGRA_16161616LE,
skcms_PixelFormat_RGB_161616BE, // Big-endian. Pointers must be 16-bit aligned.
skcms_PixelFormat_BGR_161616BE,
skcms_PixelFormat_RGBA_16161616BE,
skcms_PixelFormat_BGRA_16161616BE,
skcms_PixelFormat_RGB_hhh_Norm, // 1-5-10 half-precision float in [0,1]
skcms_PixelFormat_BGR_hhh_Norm, // Pointers must be 16-bit aligned.
skcms_PixelFormat_RGBA_hhhh_Norm,
skcms_PixelFormat_BGRA_hhhh_Norm,
skcms_PixelFormat_RGB_hhh, // 1-5-10 half-precision float.
skcms_PixelFormat_BGR_hhh, // Pointers must be 16-bit aligned.
skcms_PixelFormat_RGBA_hhhh,
skcms_PixelFormat_BGRA_hhhh,
skcms_PixelFormat_RGB_fff, // 1-8-23 single-precision float (the normal kind).
skcms_PixelFormat_BGR_fff, // Pointers must be 32-bit aligned.
skcms_PixelFormat_RGBA_ffff,
skcms_PixelFormat_BGRA_ffff,
skcms_PixelFormat_RGB_101010x_XR, // Note: This is located here to signal no clamping.
skcms_PixelFormat_BGR_101010x_XR, // Compatible with MTLPixelFormatBGR10_XR.
skcms_PixelFormat_RGBA_10101010_XR, // Note: This is located here to signal no clamping.
skcms_PixelFormat_BGRA_10101010_XR, // Compatible with MTLPixelFormatBGRA10_XR.
} skcms_PixelFormat;
// We always store any alpha channel linearly. In the chart below, tf-1() is the inverse
// transfer function for the given color profile (applying the transfer function linearizes).
// We treat opaque as a strong requirement, not just a performance hint: we will ignore
// any source alpha and treat it as 1.0, and will make sure that any destination alpha
// channel is filled with the equivalent of 1.0.
// We used to offer multiple types of premultiplication, but now just one, PremulAsEncoded.
// This is the premul you're probably used to working with.
typedef enum skcms_AlphaFormat {
skcms_AlphaFormat_Opaque, // alpha is always opaque
// tf-1(r), tf-1(g), tf-1(b), 1.0
skcms_AlphaFormat_Unpremul, // alpha and color are unassociated
// tf-1(r), tf-1(g), tf-1(b), a
skcms_AlphaFormat_PremulAsEncoded, // premultiplied while encoded
// tf-1(r)*a, tf-1(g)*a, tf-1(b)*a, a
} skcms_AlphaFormat;
// Convert npixels pixels from src format and color profile to dst format and color profile
// and return true, otherwise return false. It is safe to alias dst == src if dstFmt == srcFmt.
SKCMS_API bool skcms_Transform(const void* src,
skcms_PixelFormat srcFmt,
skcms_AlphaFormat srcAlpha,
const skcms_ICCProfile* srcProfile,
void* dst,
skcms_PixelFormat dstFmt,
skcms_AlphaFormat dstAlpha,
const skcms_ICCProfile* dstProfile,
size_t npixels);
// If profile can be used as a destination in skcms_Transform, return true. Otherwise, attempt to
// rewrite it with approximations where reasonable. If successful, return true. If no reasonable
// approximation exists, leave the profile unchanged and return false.
SKCMS_API bool skcms_MakeUsableAsDestination(skcms_ICCProfile* profile);
// If profile can be used as a destination with a single parametric transfer function (ie for
// rasterization), return true. Otherwise, attempt to rewrite it with approximations where
// reasonable. If successful, return true. If no reasonable approximation exists, leave the
// profile unchanged and return false.
SKCMS_API bool skcms_MakeUsableAsDestinationWithSingleCurve(skcms_ICCProfile* profile);
// Returns a matrix to adapt XYZ color from given the whitepoint to D50.
SKCMS_API bool skcms_AdaptToXYZD50(float wx, float wy,
skcms_Matrix3x3* toXYZD50);
// Returns a matrix to convert RGB color into XYZ adapted to D50, given the
// primaries and whitepoint of the RGB model.
SKCMS_API bool skcms_PrimariesToXYZD50(float rx, float ry,
float gx, float gy,
float bx, float by,
float wx, float wy,
skcms_Matrix3x3* toXYZD50);
// Call before your first call to skcms_Transform() to skip runtime CPU detection.
SKCMS_API void skcms_DisableRuntimeCPUDetection(void);
// Utilities for programmatically constructing profiles
static inline void skcms_Init(skcms_ICCProfile* p) {
memset(p, 0, sizeof(*p));
p->data_color_space = skcms_Signature_RGB;
p->pcs = skcms_Signature_XYZ;
}
static inline void skcms_SetTransferFunction(skcms_ICCProfile* p,
const skcms_TransferFunction* tf) {
p->has_trc = true;
for (int i = 0; i < 3; ++i) {
p->trc[i].table_entries = 0;
p->trc[i].parametric = *tf;
}
}
static inline void skcms_SetXYZD50(skcms_ICCProfile* p, const skcms_Matrix3x3* m) {
p->has_toXYZD50 = true;
p->toXYZD50 = *m;
}
#ifdef __cplusplus
}
#endif