blob: c76d0946ccab37b2b50a84920313ff0bbc1f8174 [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "../skcms.h"
#include "LinearAlgebra.h"
#include "Macros.h"
#include "PortableMath.h"
#include "TransferFunction.h"
#include <assert.h>
#include <string.h>
// Enable to do thorough logging of the nonlinear regression to stderr
#if 0
#include <stdio.h>
#define LOG(...) fprintf(stderr, __VA_ARGS__)
#else
#define LOG(...) do {} while(false)
#endif
#define LOG_TF(tf) \
LOG("[%.25g %.25g %.25g %.25g]\n", \
tf->g, tf->a, tf->b, tf->e)
#define LOG_VEC(v) \
LOG("[%.25g %.25g %.25g %.25g]\n", \
v.vals[0], v.vals[1], v.vals[2], v.vals[3])
#define LOG_MTX(m) \
LOG("| %.25g %.25g %.25g %.25g |\n" \
"| %.25g %.25g %.25g %.25g |\n" \
"| %.25g %.25g %.25g %.25g |\n" \
"| %.25g %.25g %.25g %.25g |\n", \
m.vals[0][0], m.vals[0][1], m.vals[0][2], m.vals[0][3], \
m.vals[1][0], m.vals[1][1], m.vals[1][2], m.vals[1][3], \
m.vals[2][0], m.vals[2][1], m.vals[2][2], m.vals[2][3], \
m.vals[3][0], m.vals[3][1], m.vals[3][2], m.vals[3][3])
float skcms_TransferFunction_eval(const skcms_TransferFunction* fn, float x) {
float sign = x < 0 ? -1.0f : 1.0f;
x *= sign;
return sign * (x < fn->d ? fn->c * x + fn->f
: powf_(fn->a * x + fn->b, fn->g) + fn->e);
}
static float TF_Nonlinear_eval(const skcms_TransferFunction* fn, float x) {
// We strive to never allow negative ax+b, but values can drift slightly. Guard against NaN.
float base = fmaxf_(fn->a * x + fn->b, 0.0f);
return powf_(base, fn->g) + fn->e;
}
// Evaluate the gradient of the nonlinear component of fn
static void tf_eval_gradient_nonlinear(const skcms_TransferFunction* fn,
float x,
float* d_fn_d_A_at_x,
float* d_fn_d_B_at_x,
float* d_fn_d_E_at_x,
float* d_fn_d_G_at_x) {
float base = fn->a * x + fn->b;
if (base > 0.0f) {
*d_fn_d_A_at_x = fn->g * x * powf_(base, fn->g - 1.0f);
*d_fn_d_B_at_x = fn->g * powf_(base, fn->g - 1.0f);
*d_fn_d_E_at_x = 1.0f;
// Scale by 1/log_2(e)
*d_fn_d_G_at_x = powf_(base, fn->g) * log2f_(base) * 0.69314718f;
} else {
*d_fn_d_A_at_x = 0.0f;
*d_fn_d_B_at_x = 0.0f;
*d_fn_d_E_at_x = 0.0f;
*d_fn_d_G_at_x = 0.0f;
}
}
// Take one Gauss-Newton step updating A, B, E, and G, given D.
static bool tf_gauss_newton_step_nonlinear(skcms_TableFunc* t, const void* ctx, int start, int n,
skcms_TransferFunction* fn, float* error_Linfty_after) {
LOG("tf_gauss_newton_step_nonlinear (%d, %d)\n", start, n);
LOG("fn: "); LOG_TF(fn);
// Let ne_lhs be the left hand side of the normal equations, and let ne_rhs
// be the right hand side. Zero the diagonal [sic] of |ne_lhs| and all of |ne_rhs|.
skcms_Matrix4x4 ne_lhs;
skcms_Vector4 ne_rhs;
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
ne_lhs.vals[row][col] = 0;
}
ne_rhs.vals[row] = 0;
}
// Add the contributions from each sample to the normal equations.
for (int i = start; i < n; ++i) {
float xi = i / (n - 1.0f);
LOG("%d (%.25g)\n", i, xi);
// Let J be the gradient of fn with respect to parameters A, B, E, and G,
// evaulated at this point.
skcms_Vector4 J;
tf_eval_gradient_nonlinear(fn, xi, &J.vals[0], &J.vals[1], &J.vals[2], &J.vals[3]);
LOG("J: "); LOG_VEC(J);
// Let r be the residual at this point;
float r = t(i, ctx) - TF_Nonlinear_eval(fn, xi);
LOG("r: %.25g\n", r);
if (i == start) {
// Weight the D point much higher, so that the two pieces of the approximation line up
float w = (n - start) * 0.5f;
J.vals[0] *= w;
J.vals[1] *= w;
J.vals[2] *= w;
J.vals[3] *= w;
r *= w;
}
// Update the normal equations left hand side with the outer product of J
// with itself.
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
ne_lhs.vals[row][col] += J.vals[row] * J.vals[col];
}
// Update the normal equations right hand side the product of J with the
// residual
ne_rhs.vals[row] += J.vals[row] * r;
}
LOG("LHS/RHS:\n"); LOG_MTX(ne_lhs); LOG_VEC(ne_rhs);
}
// Note that if G = 1, then the normal equations will be singular
// (because when G = 1, B and E are equivalent parameters).
// To avoid problems, fix E (row/column 3) in these circumstances.
const float kEpsilonForG = 1.0f / 1024.0f;
if (fabsf_(fn->g - 1.0f) < kEpsilonForG) {
LOG("G ~= 1, pinning E\n");
for (int row = 0; row < 4; ++row) {
float value = (row == 2) ? 1.0f : 0.0f;
ne_lhs.vals[row][2] = value;
ne_lhs.vals[2][row] = value;
}
ne_rhs.vals[2] = 0.0f;
}
// Solve the normal equations.
skcms_Matrix4x4 ne_lhs_inv;
if (!skcms_Matrix4x4_invert(&ne_lhs, &ne_lhs_inv)) {
return false;
}
LOG("LHS Inverse:\n"); LOG_MTX(ne_lhs_inv);
skcms_Vector4 step = skcms_Matrix4x4_Vector4_mul(&ne_lhs_inv, &ne_rhs);
LOG("step: "); LOG_VEC(step);
// Update the transfer function.
fn->a += step.vals[0];
fn->b += step.vals[1];
fn->e += step.vals[2];
fn->g += step.vals[3];
// A should always be positive.
fn->a = fmaxf_(fn->a, 0.0f);
// Ensure that fn be defined at D.
if (fn->a * fn->d + fn->b < 0.0f) {
LOG("AD+B = %.25g, ", fn->a * fn->d + fn->b);
fn->b = -fn->a * fn->d;
LOG("B -> %.25g\n", fn->b);
}
// Compute the Linfinity error.
*error_Linfty_after = 0;
for (int i = start; i < n; ++i) {
float xi = i / (n - 1.0f);
float error = fabsf_(t(i, ctx) - TF_Nonlinear_eval(fn, xi));
*error_Linfty_after = fmaxf_(error, *error_Linfty_after);
}
return true;
}
// Solve for A, B, E, and G, given D. The initial value of |fn| is the
// point from which iteration starts.
static bool tf_solve_nonlinear(skcms_TableFunc* t, const void* ctx, int start, int n,
skcms_TransferFunction* fn) {
// Take a maximum of 16 Gauss-Newton steps.
enum { kNumSteps = 16 };
// The L-infinity error after each step.
float step_error[kNumSteps] = { 0 };
int step = 0;
for (;; ++step) {
// If the normal equations are singular, we can't continue.
if (!tf_gauss_newton_step_nonlinear(t, ctx, start, n, fn, &step_error[step])) {
return false;
}
// If the error is inf or nan, we are clearly not converging.
if (!isfinitef_(step_error[step])) {
return false;
}
// Stop if our error is tiny.
const float kEarlyOutTinyErrorThreshold = (1.0f / 16.0f) / 256.0f;
if (step_error[step] < kEarlyOutTinyErrorThreshold) {
break;
}
// Stop if our error is not changing, or changing in the wrong direction.
if (step > 1) {
// If our error is is huge for two iterations, we're probably not in the
// region of convergence.
if (step_error[step] > 1.0f && step_error[step - 1] > 1.0f) {
return false;
}
// If our error didn't change by ~1%, assume we've converged as much as we
// are going to.
const float kEarlyOutByPercentChangeThreshold = 32.0f / 256.0f;
const float kMinimumPercentChange = 1.0f / 128.0f;
float percent_change =
fabsf_(step_error[step] - step_error[step - 1]) / step_error[step];
if (percent_change < kMinimumPercentChange &&
step_error[step] < kEarlyOutByPercentChangeThreshold) {
break;
}
}
if (step == kNumSteps - 1) {
break;
}
}
// Declare failure if our error is obviously too high.
const float kDidNotConvergeThreshold = 64.0f / 256.0f;
if (step_error[step] > kDidNotConvergeThreshold) {
return false;
}
return true;
}
// Returns the number of points that are approximated by the line, to within tol.
static int tf_fit_linear(skcms_TableFunc* t, const void* ctx, int n, float tol,
skcms_TransferFunction* fn) {
// Idea: We fit the first N points to the linear portion of the TF. We want the line to pass
// through the first and last points exactly.
//
// We walk along the points, and find the minimum and maximum slope of the line before the
// error would exceed our tolerance. Once the range [slope_min, slope_max] would be empty,
// we definitely can't add any more points, so we're done.
//
// However, some points error intervals' may intersect the running interval, but not lie within
// it. So we keep track of the last point we saw that is a valid candidate for being the end
// point, and once the search is done, back up to build the line through *that* point.
const float x_scale = 1.0f / (n - 1);
int lin_points = 1;
fn->f = t(0, ctx);
float slope_min = -INFINITY_;
float slope_max = INFINITY_;
for (int i = 1; i < n; ++i) {
float xi = i * x_scale;
float yi = t(i, ctx);
float slope_max_i = (yi + tol - fn->f) / xi;
float slope_min_i = (yi - tol - fn->f) / xi;
if (slope_max_i < slope_min || slope_max < slope_min_i) {
// Slope intervals no longer overlap.
break;
}
slope_max = fminf_(slope_max, slope_max_i);
slope_min = fmaxf_(slope_min, slope_min_i);
float cur_slope = (yi - fn->f) / xi;
if (slope_min <= cur_slope && cur_slope <= slope_max) {
lin_points = i + 1;
fn->c = cur_slope;
}
}
// Set D to the last point from above
fn->d = (lin_points - 1) * x_scale;
return lin_points;
}
static float tf_max_error(skcms_TableFunc* t, const void* ctx, int n,
const skcms_TransferFunction* fn) {
const float x_scale = 1.0f / (n - 1);
float max_error = 0;
for (int i = 0; i < n; ++i) {
float xi = i * x_scale;
float fn_of_xi = skcms_TransferFunction_eval(fn, xi);
float error_at_xi = fabsf_(t(i, ctx) - fn_of_xi);
max_error = fmaxf_(max_error, error_at_xi);
}
return max_error;
}
bool skcms_TransferFunction_approximate(skcms_TableFunc* t, const void* ctx, int n,
skcms_TransferFunction* fn, float* max_error) {
if (n < 2) {
return false;
}
const float x_scale = 1.0f / (n - 1);
const float kTolerances[] = { 1.5f / 65535.0f, 1.0f / 512.0f };
float min_error = INFINITY_;
for (int tol = 0; tol < ARRAY_COUNT(kTolerances); ++tol) {
skcms_TransferFunction tf;
int lin_points = tf_fit_linear(t, ctx, n,kTolerances[tol], &tf);
// If the entire data set was linear, move the coefficients to the nonlinear portion with
// G == 1. This lets use a canonical representation with D == 0.
if (lin_points == n) {
tf.g = 1;
tf.b = tf.f;
tf.a = tf.c;
tf.c = tf.d = tf.e = tf.f = 0;
} else if (lin_points == n - 1) {
// Degenerate case with only two points in the nonlinear segment. Solve directly.
tf.g = 1;
tf.a = (t(n - 1, ctx) - t(n - 2, ctx)) * (n - 1);
tf.b = t(n - 2, ctx) - (tf.a * (n - 2) * x_scale);
tf.e = 0;
} else {
// Do a nonlinear regression on the nonlinear segment. Include the 'D' point in the
// nonlinear regression, so the two pieces are more likely to line up.
int start = lin_points > 0 ? lin_points - 1 : 0;
// We need G to be in right vicinity, or the regression may not converge. Solve exactly for
// for midpoint of the nonlinear range, assuming B = E = 0 & A = 1.
int mid = (start + n) / 2;
float mid_x = mid / (n - 1.0f);
float mid_y = t(mid, ctx);
tf.g = log2f_(mid_y) / log2f_(mid_x);;
tf.a = 1;
tf.b = 0;
tf.e = 0;
if (!tf_solve_nonlinear(t, ctx, start, n, &tf)) {
continue;
}
}
float err = tf_max_error(t, ctx, n, &tf);
if (min_error > err) {
min_error = err;
*fn = tf;
}
}
if (!isfinitef_(min_error)) {
return false;
}
if (max_error) {
*max_error = min_error;
}
return true;
}
// TODO: Adjust logic here? This still assumes that purely linear inputs will have D > 1, which
// we never generate. It also emits inverted linear using the same formulation. Standardize on
// G == 1 here, too?
bool skcms_TransferFunction_invert(const skcms_TransferFunction* src, skcms_TransferFunction* dst) {
// Original equation is: y = (ax + b)^g + e for x >= d
// y = cx + f otherwise
//
// so 1st inverse is: (y - e)^(1/g) = ax + b
// x = ((y - e)^(1/g) - b) / a
//
// which can be re-written as: x = (1/a)(y - e)^(1/g) - b/a
// x = ((1/a)^g)^(1/g) * (y - e)^(1/g) - b/a
// x = ([(1/a)^g]y + [-((1/a)^g)e]) ^ [1/g] + [-b/a]
//
// and 2nd inverse is: x = (y - f) / c
// which can be re-written as: x = [1/c]y + [-f/c]
//
// and now both can be expressed in terms of the same parametric form as the
// original - parameters are enclosed in square brackets.
skcms_TransferFunction fn_inv = { 0, 0, 0, 0, 0, 0, 0 };
// Reject obviously malformed inputs
if (!isfinitef_(src->a + src->b + src->c + src->d + src->e + src->f + src->g)) {
return false;
}
bool has_nonlinear = (src->d <= 1);
bool has_linear = (src->d > 0);
// Is the linear section decreasing or not invertible?
if (has_linear && src->c <= 0) {
return false;
}
// Is the nonlinear section decreasing or not invertible?
if (has_nonlinear && (src->a <= 0 || src->g <= 0)) {
return false;
}
// If both segments are present, they need to line up
if (has_linear && has_nonlinear) {
float l_at_d = src->c * src->d + src->f;
float n_at_d = powf_(src->a * src->d + src->b, src->g) + src->e;
if (fabsf_(l_at_d - n_at_d) > (1 / 512.0f)) {
return false;
}
}
// Invert linear segment
if (has_linear) {
fn_inv.c = 1.0f / src->c;
fn_inv.f = -src->f / src->c;
}
// Invert nonlinear segment
if (has_nonlinear) {
fn_inv.g = 1.0f / src->g;
fn_inv.a = powf_(1.0f / src->a, src->g);
fn_inv.b = -fn_inv.a * src->e;
fn_inv.e = -src->b / src->a;
}
if (!has_linear) {
fn_inv.d = 0;
} else if (!has_nonlinear) {
// Any value larger than 1 works
fn_inv.d = 2.0f;
} else {
fn_inv.d = src->c * src->d + src->f;
}
*dst = fn_inv;
return true;
}