blob: 11e009b344bbf35ad41d6b71353c616138c61182 [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "../skcms.h"
#include "GaussNewton.h"
#include "PortableMath.h"
#include "TransferFunction.h"
#include <limits.h>
#include <string.h>
// Evaluating skcms_TF15{A,B,C,D} at x:
// f(x) = Ax^5 + Bx^4 + Cx^3 + Dx^2 + (1 - A - B - C - D)x
//
// ∂f/∂A = x^5 - x
// ∂f/∂B = x^4 - x
// ∂f/∂C = x^3 - x
// ∂f/∂D = x^2 - x
static float eval_15(float x, const float P[4]) {
return P[0]*x*x*x*x*x
+ P[1]*x*x*x*x
+ P[2]*x*x*x
+ P[3]*x*x
+ (1 - P[0] - P[1] - P[2] - P[3]) * x;
}
static void grad_15(float x, float dfdP[4]) {
dfdP[0] = x*x*x*x*x - x;
dfdP[1] = x*x*x*x - x;
dfdP[2] = x*x*x - x;
dfdP[3] = x*x - x;
}
static float eval_curve(float x, const void* vctx) {
const skcms_Curve* curve = (const skcms_Curve*)vctx;
if (curve->table_entries == 0) {
return skcms_TransferFunction_eval(&curve->parametric, x);
}
// TODO: today we should always hit an entry exactly, but if that changes, lerp?
int ix = (int)( x * (curve->table_entries - 1) );
if (curve->table_8) {
return curve->table_8[ix] * (1/255.0f);
} else {
uint16_t be;
memcpy(&be, curve->table_16 + 2*ix, 2);
uint16_t le = ((be << 8) | (be >> 8)) & 0xffff;
return le * (1/65535.0f);
}
}
bool skcms_ApproximateCurve15(const skcms_Curve* curve, skcms_TF15* approx, float* max_error) {
// Start a guess at skcms_TF15{0,0,1}, i.e. f(x) = x^2, i.e. gamma = 2.
// TODO: guess better somehow, like we do in skcms_ApproximateCurve()?
float P[4] = { 0,0,1, 0 };
if (curve->table_entries > (uint32_t)INT_MAX) {
// That's just crazy.
return false;
}
const int N = curve->table_entries == 0 ? 257 /*TODO: tune?*/
: (int)curve->table_entries;
for (int i = 0; i < 3/*TODO: Tune???*/; i++) {
if (!skcms_gauss_newton_step(eval_curve, curve,
eval_15, grad_15,
P, 0,1,N,
NULL)) {
return false;
}
}
*max_error = 0;
for (int i = 0; i < N; i++) {
float x = i * (1.0f / (N-1));
float err = fabsf_( eval_curve(x, curve) - eval_15(x, P) );
if (err > *max_error) {
*max_error = err;
}
}
approx->A = P[0];
approx->B = P[1];
approx->C = P[2];
approx->D = P[3];
return true;
}