blob: e526e50442e4d71fbe7febe443311105aa3066f1 [file] [log] [blame]
#pragma once
#include <algorithm>
#include <cmath>
#include <exception>
#include <iostream>
#include <limits>
#include <memory>
#include <utility>
#include <vector>
namespace delaunator {
//@see https://stackoverflow.com/questions/33333363/built-in-mod-vs-custom-mod-function-improve-the-performance-of-modulus-op/33333636#33333636
inline size_t fast_mod(const size_t i, const size_t c) {
return i >= c ? i % c : i;
}
// Kahan and Babuska summation, Neumaier variant; accumulates less FP error
inline double sum(const std::vector<double>& x) {
double sum = x[0];
double err = 0.0;
for (size_t i = 1; i < x.size(); i++) {
const double k = x[i];
const double m = sum + k;
err += std::fabs(sum) >= std::fabs(k) ? sum - m + k : k - m + sum;
sum = m;
}
return sum + err;
}
inline double dist(
const double ax,
const double ay,
const double bx,
const double by) {
const double dx = ax - bx;
const double dy = ay - by;
return dx * dx + dy * dy;
}
inline double circumradius(
const double ax,
const double ay,
const double bx,
const double by,
const double cx,
const double cy) {
const double dx = bx - ax;
const double dy = by - ay;
const double ex = cx - ax;
const double ey = cy - ay;
const double bl = dx * dx + dy * dy;
const double cl = ex * ex + ey * ey;
const double d = dx * ey - dy * ex;
const double x = (ey * bl - dy * cl) * 0.5 / d;
const double y = (dx * cl - ex * bl) * 0.5 / d;
if ((bl > 0.0 || bl < 0.0) && (cl > 0.0 || cl < 0.0) && (d > 0.0 || d < 0.0)) {
return x * x + y * y;
} else {
return std::numeric_limits<double>::max();
}
}
inline bool orient(
const double px,
const double py,
const double qx,
const double qy,
const double rx,
const double ry) {
return (qy - py) * (rx - qx) - (qx - px) * (ry - qy) < 0.0;
}
inline std::pair<double, double> circumcenter(
const double ax,
const double ay,
const double bx,
const double by,
const double cx,
const double cy) {
const double dx = bx - ax;
const double dy = by - ay;
const double ex = cx - ax;
const double ey = cy - ay;
const double bl = dx * dx + dy * dy;
const double cl = ex * ex + ey * ey;
const double d = dx * ey - dy * ex;
const double x = ax + (ey * bl - dy * cl) * 0.5 / d;
const double y = ay + (dx * cl - ex * bl) * 0.5 / d;
return std::make_pair(x, y);
}
struct compare {
std::vector<double> const& coords;
double cx;
double cy;
bool operator()(std::size_t i, std::size_t j) {
const double d1 = dist(coords[2 * i], coords[2 * i + 1], cx, cy);
const double d2 = dist(coords[2 * j], coords[2 * j + 1], cx, cy);
const double diff1 = d1 - d2;
const double diff2 = coords[2 * i] - coords[2 * j];
const double diff3 = coords[2 * i + 1] - coords[2 * j + 1];
if (diff1 > 0.0 || diff1 < 0.0) {
return diff1 < 0;
} else if (diff2 > 0.0 || diff2 < 0.0) {
return diff2 < 0;
} else {
return diff3 < 0;
}
}
};
inline bool in_circle(
const double ax,
const double ay,
const double bx,
const double by,
const double cx,
const double cy,
const double px,
const double py) {
const double dx = ax - px;
const double dy = ay - py;
const double ex = bx - px;
const double ey = by - py;
const double fx = cx - px;
const double fy = cy - py;
const double ap = dx * dx + dy * dy;
const double bp = ex * ex + ey * ey;
const double cp = fx * fx + fy * fy;
return (dx * (ey * cp - bp * fy) -
dy * (ex * cp - bp * fx) +
ap * (ex * fy - ey * fx)) < 0.0;
}
constexpr double EPSILON = std::numeric_limits<double>::epsilon();
constexpr std::size_t INVALID_INDEX = std::numeric_limits<std::size_t>::max();
//@see https://stackoverflow.com/questions/30208196/maximum-recursive-function-calls-in-c-c-before-stack-is-full-and-gives-a-segme
constexpr std::size_t LEGALIZE_STACK_SIZE = 1024;
inline bool check_pts_equal(double x1, double y1, double x2, double y2) {
return std::fabs(x1 - x2) <= EPSILON &&
std::fabs(y1 - y2) <= EPSILON;
}
// monotonically increases with real angle, but doesn't need expensive trigonometry
inline double pseudo_angle(const double dx, const double dy) {
const double p = dx / (std::abs(dx) + std::abs(dy));
return (dy > 0.0 ? 3.0 - p : 1.0 + p) / 4.0; // [0..1)
}
struct DelaunatorPoint {
std::size_t i;
double x;
double y;
std::size_t t;
std::size_t prev;
std::size_t next;
bool removed;
};
class Delaunator {
public:
std::vector<double> const& coords;
std::vector<std::size_t> triangles;
std::vector<std::size_t> halfedges;
std::vector<std::size_t> hull_prev;
std::vector<std::size_t> hull_next;
std::vector<std::size_t> hull_tri;
std::size_t hull_start;
Delaunator(std::vector<double> const& in_coords);
double get_hull_area();
private:
std::vector<std::size_t> m_hash;
double m_center_x;
double m_center_y;
std::size_t m_hash_size;
std::size_t m_legalize_stack[LEGALIZE_STACK_SIZE];
std::size_t legalize(std::size_t a);
std::size_t hash_key(double x, double y) const;
std::size_t add_triangle(
std::size_t i0,
std::size_t i1,
std::size_t i2,
std::size_t a,
std::size_t b,
std::size_t c);
void link(std::size_t a, std::size_t b);
};
Delaunator::Delaunator(std::vector<double> const& in_coords)
: coords(in_coords),
triangles(),
halfedges(),
hull_prev(),
hull_next(),
hull_tri(),
hull_start(),
m_hash(),
m_center_x(),
m_center_y(),
m_hash_size(),
m_legalize_stack() {
std::size_t n = coords.size() >> 1;
double max_x = std::numeric_limits<double>::min();
double max_y = std::numeric_limits<double>::min();
double min_x = std::numeric_limits<double>::max();
double min_y = std::numeric_limits<double>::max();
std::vector<std::size_t> ids;
ids.reserve(n);
for (std::size_t i = 0; i < n; i++) {
const double x = coords[2 * i];
const double y = coords[2 * i + 1];
if (x < min_x) min_x = x;
if (y < min_y) min_y = y;
if (x > max_x) max_x = x;
if (y > max_y) max_y = y;
ids.push_back(i);
}
const double cx = (min_x + max_x) / 2;
const double cy = (min_y + max_y) / 2;
double min_dist = std::numeric_limits<double>::max();
std::size_t i0 = INVALID_INDEX;
std::size_t i1 = INVALID_INDEX;
std::size_t i2 = INVALID_INDEX;
// pick a seed point close to the centroid
for (std::size_t i = 0; i < n; i++) {
const double d = dist(cx, cy, coords[2 * i], coords[2 * i + 1]);
if (d < min_dist) {
i0 = i;
min_dist = d;
}
}
const double i0x = coords[2 * i0];
const double i0y = coords[2 * i0 + 1];
min_dist = std::numeric_limits<double>::max();
// find the point closest to the seed
for (std::size_t i = 0; i < n; i++) {
if (i == i0) continue;
const double d = dist(i0x, i0y, coords[2 * i], coords[2 * i + 1]);
if (d < min_dist && d > 0.0) {
i1 = i;
min_dist = d;
}
}
double i1x = coords[2 * i1];
double i1y = coords[2 * i1 + 1];
double min_radius = std::numeric_limits<double>::max();
// find the third point which forms the smallest circumcircle with the first two
for (std::size_t i = 0; i < n; i++) {
if (i == i0 || i == i1) continue;
const double r = circumradius(
i0x, i0y, i1x, i1y, coords[2 * i], coords[2 * i + 1]);
if (r < min_radius) {
i2 = i;
min_radius = r;
}
}
if (!(min_radius < std::numeric_limits<double>::max())) {
throw std::runtime_error("not triangulation");
}
double i2x = coords[2 * i2];
double i2y = coords[2 * i2 + 1];
if (orient(i0x, i0y, i1x, i1y, i2x, i2y)) {
std::swap(i1, i2);
std::swap(i1x, i2x);
std::swap(i1y, i2y);
}
std::tie(m_center_x, m_center_y) = circumcenter(i0x, i0y, i1x, i1y, i2x, i2y);
// sort the points by distance from the seed triangle circumcenter
std::sort(ids.begin(), ids.end(), compare{ coords, m_center_x, m_center_y });
// initialize a hash table for storing edges of the advancing convex hull
m_hash_size = static_cast<std::size_t>(std::llround(std::ceil(std::sqrt(n))));
m_hash.resize(m_hash_size);
std::fill(m_hash.begin(), m_hash.end(), INVALID_INDEX);
// initialize arrays for tracking the edges of the advancing convex hull
hull_prev.resize(n);
hull_next.resize(n);
hull_tri.resize(n);
hull_start = i0;
size_t hull_size = 3;
hull_next[i0] = hull_prev[i2] = i1;
hull_next[i1] = hull_prev[i0] = i2;
hull_next[i2] = hull_prev[i1] = i0;
hull_tri[i0] = 0;
hull_tri[i1] = 1;
hull_tri[i2] = 2;
m_hash[hash_key(i0x, i0y)] = i0;
m_hash[hash_key(i1x, i1y)] = i1;
m_hash[hash_key(i2x, i2y)] = i2;
std::size_t max_triangles = n < 3 ? 1 : 2 * n - 5;
triangles.reserve(max_triangles * 3);
halfedges.reserve(max_triangles * 3);
add_triangle(i0, i1, i2, INVALID_INDEX, INVALID_INDEX, INVALID_INDEX);
double xp = std::numeric_limits<double>::quiet_NaN();
double yp = std::numeric_limits<double>::quiet_NaN();
for (std::size_t k = 0; k < n; k++) {
const std::size_t i = ids[k];
const double x = coords[2 * i];
const double y = coords[2 * i + 1];
// skip near-duplicate points
if (k > 0 && check_pts_equal(x, y, xp, yp)) continue;
xp = x;
yp = y;
// skip seed triangle points
if (
check_pts_equal(x, y, i0x, i0y) ||
check_pts_equal(x, y, i1x, i1y) ||
check_pts_equal(x, y, i2x, i2y)) continue;
// find a visible edge on the convex hull using edge hash
std::size_t start = 0;
size_t key = hash_key(x, y);
for (size_t j = 0; j < m_hash_size; j++) {
start = m_hash[fast_mod(key + j, m_hash_size)];
if (start != INVALID_INDEX && start != hull_next[start]) break;
}
start = hull_prev[start];
size_t e = start;
size_t q;
while (q = hull_next[e], !orient(x, y, coords[2 * e], coords[2 * e + 1], coords[2 * q], coords[2 * q + 1])) { //TODO: does it works in a same way as in JS
e = q;
if (e == start) {
e = INVALID_INDEX;
break;
}
}
if (e == INVALID_INDEX) continue; // likely a near-duplicate point; skip it
// add the first triangle from the point
std::size_t t = add_triangle(
e,
i,
hull_next[e],
INVALID_INDEX,
INVALID_INDEX,
hull_tri[e]);
hull_tri[i] = legalize(t + 2);
hull_tri[e] = t;
hull_size++;
// walk forward through the hull, adding more triangles and flipping recursively
std::size_t next = hull_next[e];
while (
q = hull_next[next],
orient(x, y, coords[2 * next], coords[2 * next + 1], coords[2 * q], coords[2 * q + 1])) {
t = add_triangle(next, i, q, hull_tri[i], INVALID_INDEX, hull_tri[next]);
hull_tri[i] = legalize(t + 2);
hull_next[next] = next; // mark as removed
hull_size--;
next = q;
}
// walk backward from the other side, adding more triangles and flipping
if (e == start) {
while (
q = hull_prev[e],
orient(x, y, coords[2 * q], coords[2 * q + 1], coords[2 * e], coords[2 * e + 1])) {
t = add_triangle(q, i, e, INVALID_INDEX, hull_tri[e], hull_tri[q]);
legalize(t + 2);
hull_tri[q] = t;
hull_next[e] = e; // mark as removed
hull_size--;
e = q;
}
}
// update the hull indices
hull_prev[i] = e;
hull_start = e;
hull_prev[next] = i;
hull_next[e] = i;
hull_next[i] = next;
m_hash[hash_key(x, y)] = i;
m_hash[hash_key(coords[2 * e], coords[2 * e + 1])] = e;
}
}
double Delaunator::get_hull_area() {
std::vector<double> hull_area;
size_t e = hull_start;
do {
hull_area.push_back((coords[2 * e] - coords[2 * hull_prev[e]]) * (coords[2 * e + 1] + coords[2 * hull_prev[e] + 1]));
e = hull_next[e];
} while (e != hull_start);
return sum(hull_area);
}
std::size_t Delaunator::legalize(std::size_t ia) {
std::size_t b;
std::size_t a0;
std::size_t b0;
std::size_t al;
std::size_t ar;
std::size_t bl;
unsigned int i = 0;
m_legalize_stack[i] = ia;
size_t size = 1;
while (i < size) {
auto const a = m_legalize_stack[i];
i++;
/* if the pair of triangles doesn't satisfy the Delaunay condition
* (p1 is inside the circumcircle of [p0, pl, pr]), flip them,
* then do the same check/flip recursively for the new pair of triangles
*
* pl pl
* /||\ / \
* al/ || \bl al/ \a
* / || \ / \
* / a||b \ flip /___ar___\
* p0\ || /p1 => p0\---bl---/p1
* \ || / \ /
* ar\ || /br b\ /br
* \||/ \ /
* pr pr
*/
b = halfedges[a];
//@see https://embeddedgurus.com/stack-overflow/2011/02/efficient-c-tip-13-use-the-modulus-operator-with-caution/
a0 = 3 * (a / 3); //a - a % 3;
b0 = 3 * (b / 3); //b - b % 3;
al = a0 + (a + 1) % 3;
ar = a0 + (a + 2) % 3;
bl = b0 + (b + 2) % 3;
const std::size_t p0 = triangles[ar];
const std::size_t pr = triangles[a];
const std::size_t pl = triangles[al];
const std::size_t p1 = triangles[bl];
if (b == INVALID_INDEX) {
continue;
}
const bool illegal = in_circle(
coords[2 * p0],
coords[2 * p0 + 1],
coords[2 * pr],
coords[2 * pr + 1],
coords[2 * pl],
coords[2 * pl + 1],
coords[2 * p1],
coords[2 * p1 + 1]);
if (illegal) {
triangles[a] = p1;
triangles[b] = p0;
auto hbl = halfedges[bl];
// edge swapped on the other side of the hull (rare); fix the halfedge reference
if (hbl == INVALID_INDEX) {
std::size_t e = hull_start;
do {
if (hull_tri[e] == bl) {
hull_tri[e] = a;
break;
}
e = hull_next[e];
} while (e != hull_start);
}
link(a, hbl);
link(b, halfedges[ar]);
link(ar, bl);
std::size_t br = b0 + (b + 1) % 3;
if (size + 2 >= (LEGALIZE_STACK_SIZE)) {
throw std::runtime_error("Legalize stack overflow");
}
if (i < size) {
//move elements down the stack
for (auto mi = size - 1; mi >= i; mi--) {
m_legalize_stack[mi + 2] = m_legalize_stack[mi];
}
}
m_legalize_stack[i] = a;
m_legalize_stack[i + 1] = br;
size += 2;
}
}
return ar;
}
inline std::size_t Delaunator::hash_key(const double x, const double y) const {
const double dx = x - m_center_x;
const double dy = y - m_center_y;
return fast_mod(
static_cast<std::size_t>(std::llround(std::floor(pseudo_angle(dx, dy) * static_cast<double>(m_hash_size)))),
m_hash_size);
}
std::size_t Delaunator::add_triangle(
std::size_t i0,
std::size_t i1,
std::size_t i2,
std::size_t a,
std::size_t b,
std::size_t c) {
std::size_t t = triangles.size();
triangles.push_back(i0);
triangles.push_back(i1);
triangles.push_back(i2);
link(t, a);
link(t + 1, b);
link(t + 2, c);
return t;
}
void Delaunator::link(const std::size_t a, const std::size_t b) {
std::size_t s = halfedges.size();
if (a == s) {
halfedges.push_back(b);
} else if (a < s) {
halfedges[a] = b;
} else {
throw std::runtime_error("Cannot link edge");
}
if (b != INVALID_INDEX) {
std::size_t s2 = halfedges.size();
if (b == s2) {
halfedges.push_back(a);
} else if (b < s2) {
halfedges[b] = a;
} else {
throw std::runtime_error("Cannot link edge");
}
}
}
} //namespace delaunator