blob: bbd60f642b0db7946f5c9a92fcf3894496e3a40b [file] [log] [blame] [edit]
#requires pip install python-opencv-headless
import argparse
import cv2 as cv
import numpy as np
import os
parser = argparse.ArgumentParser(description=
"""
Compares to images by pixels, outputing two different images for the differences.
output file {status}
output file {name}.diff0.png
The exact abs(A - B) of each pixel
output file {name}.diff1.png
A mask which has 1 for difference and 0 for no difference at a given pixel
""")
parser.add_argument("-n", "--name", type=str, required=True, help="name used for output images")
parser.add_argument("-c", "--candidate", type=str, required=True, help="candidate for image diffing")
parser.add_argument("-g", "--golden", type=str, required=True, help="golden to compare against")
parser.add_argument("-s", "--status", type=str, required=True, help="output stats file name and location")
parser.add_argument("-o", "--outdir", type=str, help="output directory to store image diffs, if not provided then no output image is saved")
parser.add_argument("-v", "--verbose", action='store_true', help="enable verbose logging")
parser.add_argument("-l", "--log", action='store_true', help="redirect all verbose logging to a file with --name")
parser.add_argument("-H", "--histogram", action='store_true', help="compare images using histograms as an additional method for ruling out 'same' images. This should prevent subtle differences in the image that should not be visible from preventing a passing result")
args = parser.parse_args()
def verbose_log(val):
if not args.verbose:
return
if args.log:
with open(f"tmp/{args.name}.log", "a") as log_file:
log_file.write(val+"\n")
else:
print(val)
def main():
if args.log:
os.makedirs("tmp", exist_ok=True)
size_match = False
failed = False
try:
verbose_log(f"loading {args.candidate}")
candidate = cv.imread(args.candidate)
verbose_log(f"loading {args.golden}")
golden = cv.imread(args.golden)
if candidate is not None and golden is not None:
size_match = candidate.shape == golden.shape
# get absolute difference between golden and candidate
diff = cv.absdiff(golden, candidate)
#convert diff to grey scale to make calculations easier
grey_diff = cv.cvtColor(diff, cv.COLOR_BGR2GRAY)
#convert to rgb for output png
rgb_diff = cv.cvtColor(diff, cv.COLOR_BGR2RGB)
# convert the diff to just white where a difference is
_, mask = cv.threshold(grey_diff, 0, 255, cv.THRESH_BINARY)
# get the total number of different pixels
total_diff_count = cv.countNonZero(grey_diff)
# get the max channel independent difference
max_diff = int(diff.max())
# get average pixel diff, this result is slitely different then imageDiff but its very close.
# the only difference is that we first convert the diff to grey scale rather than adding the max of every channel
avg = grey_diff.sum() / (grey_diff.shape[0]*grey_diff.shape[1]*255)
if args.histogram:
# convert to HSV
hsv_candidate = cv.cvtColor(candidate, cv.COLOR_BGR2HSV)
hsv_golden = cv.cvtColor(golden, cv.COLOR_BGR2HSV)
# down sample to 32x32 for the histogram
h_bins = 32
s_bins = 32
histSize = [h_bins, s_bins]
# available range for hue and saturation
h_ranges = [0, 180]
s_ranges = [0, 256]
ranges = h_ranges + s_ranges
# get our histograms
hist_candidate = cv.calcHist(hsv_candidate, [0,1], None, histSize, ranges, accumulate=False)
hist_golden = cv.calcHist(hsv_golden, [0,1], None, histSize, ranges, accumulate=False)
# compare using CORREL histogram algorithm. the different options are detailed here
# https://docs.opencv.org/3.4/d6/dc7/group__imgproc__hist.html#ga994f53817d621e2e4228fc646342d386
# a hist_result of 1.0 means identical with this method. any variance results in a number less then 1.0
hist_result = cv.compareHist(hist_candidate, hist_golden, cv.HISTCMP_CORREL)
except Exception as E:
print(f"Failed to load and process images {E}")
failed = True
# make path to stats file if necessary
if os.path.dirname(args.status):
verbose_log(f"making status file path {os.path.dirname(args.status)}")
os.makedirs(os.path.dirname(args.status), exist_ok=True)
verbose_log(f"making status file {args.status}")
with open(args.status, "a") as status:
status.write(args.name + "\t");
if candidate is None:
status.write("missing_candidate\n")
verbose_log("missing golden for " + args.name)
return
if golden is None:
status.write("missing_golden\n")
verbose_log("missing golden for " + args.name)
return
if failed:
status.write("failed\n")
verbose_log("failed to load golden or candidate")
return
if total_diff_count == 0:
status.write("identical\n")
verbose_log("files are identical")
return
if not size_match:
status.write("sizemismatch\n")
verbose_log("files are not the same size")
return
status.write(str(max_diff)+"\t")
# prevent python from writing out in scientific notation
status.write(f"{float(avg):.5f}\t")
status.write(str(total_diff_count)+"\t")
status.write(str(diff.shape[0]*diff.shape[1]))
# add our histogram result as the last value of the status file or write a new line to say we are finished with this status
if args.histogram:
status.write(f"\t{float(hist_result):.5f}\n")
else:
status.write("\n")
verbose_log("status file finished")
# save the output file if location provided
if args.outdir:
# color diff file location
c_diff_path = os.path.join(args.outdir, args.name + ".diff0.png")
# mask diff file location
c_mask_path = os.path.join(args.outdir, args.name + ".diff1.png")
# create output dir if needed
verbose_log(f"making output directory {args.outdir}")
os.makedirs(args.outdir, exist_ok=True)
verbose_log(f"writing images {c_diff_path} and {c_mask_path}")
cv.imwrite(c_diff_path, rgb_diff)
cv.imwrite(c_mask_path, mask)
verbose_log("finished writing output images")
if __name__ == '__main__':
main()