blob: aa1f3c402f16e3a30c394f9a2d6efe3531f8e1f6 [file] [log] [blame]
/*
* Copyright 2020 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Initial import from skia:src/gpu/tessellate/WangsFormula.h
*
* Copyright 2023 Rive
*/
#pragma once
#include "rive/math/simd.hpp"
#include "rive/math/vec2d.hpp"
#include "rive/math/mat2d.hpp"
#include <math.h>
#define AI RIVE_MAYBE_UNUSED RIVE_ALWAYS_INLINE
// Wang's formula gives the minimum number of evenly spaced (in the parametric sense) line segments
// that a bezier curve must be chopped into in order to guarantee all lines stay within a distance
// of "1/precision" pixels from the true curve. Its definition for a bezier curve of degree "n" is
// as follows:
//
// maxLength = max([length(p[i+2] - 2p[i+1] + p[i]) for (0 <= i <= n-2)])
// numParametricSegments = sqrt(maxLength * precision * n*(n - 1)/8)
//
// (Goldman, Ron. (2003). 5.6.3 Wang's Formula. "Pyramid Algorithms: A Dynamic Programming Approach
// to Curves and Surfaces for Geometric Modeling". Morgan Kaufmann Publishers.)
namespace rive
{
namespace wangs_formula
{
// Returns the value by which to multiply length in Wang's formula. (See above.)
template <int Degree> constexpr float length_term(float precision)
{
return (Degree * (Degree - 1) / 8.f) * precision;
}
template <int Degree> constexpr float length_term_pow2(float precision)
{
return ((Degree * Degree) * ((Degree - 1) * (Degree - 1)) / 64.f) * (precision * precision);
}
AI static float root4(float x) { return sqrtf(sqrtf(x)); }
// Returns the log2 of the provided value, were that value to be rounded up to the next power of 2.
// Returns 0 if value <= 0:
// Never returns a negative number, even if value is NaN.
//
// sk_float_nextlog2((-inf..1]) -> 0
// sk_float_nextlog2((1..2]) -> 1
// sk_float_nextlog2((2..4]) -> 2
// sk_float_nextlog2((4..8]) -> 3
// ...
AI static int sk_float_nextlog2(float x)
{
uint32_t bits;
RIVE_INLINE_MEMCPY(&bits, &x, 4);
bits += (1u << 23) - 1u; // Increment the exponent for non-powers-of-2.
int exp = ((int32_t)bits >> 23) - 127;
return exp & ~(exp >> 31); // Return 0 for negative or denormalized floats, and exponents < 0.
}
// Returns nextlog2(sqrt(x)):
//
// log2(sqrt(x)) == log2(x^(1/2)) == log2(x)/2 == log2(x)/log2(4) == log4(x)
//
AI static int nextlog4(float x) { return (sk_float_nextlog2(x) + 1) >> 1; }
// Returns nextlog2(sqrt(sqrt(x))):
//
// log2(sqrt(sqrt(x))) == log2(x^(1/4)) == log2(x)/4 == log2(x)/log2(16) == log16(x)
//
AI static int nextlog16(float x) { return (sk_float_nextlog2(x) + 3) >> 2; }
// Represents the upper-left 2x2 matrix of an affine transform for applying to vectors:
//
// VectorXform(p1 - p0) == M * float3(p1, 1) - M * float3(p0, 1)
//
class alignas(32) VectorXform
{
public:
AI VectorXform() : m_scale(1), m_skew(0) {}
AI explicit VectorXform(const Mat2D& m) { *this = m; }
AI VectorXform& operator=(const Mat2D& m)
{
m_scale = float2{m[0], m[3]}.xyxy;
m_skew = simd::load2f(&m[1]).yxyx;
return *this;
}
AI float2 operator()(float2 vector) const
{
return m_scale.xy * vector + m_skew.xy * vector.yx;
}
AI float4 operator()(float4 vectors) const { return m_scale * vectors + m_skew * vectors.yxwz; }
private:
float4 m_scale;
float4 m_skew;
};
// Returns Wang's formula, raised to the 4th power, specialized for a quadratic curve.
AI static float quadratic_pow4(float2 p0,
float2 p1,
float2 p2,
float precision,
const VectorXform& vectorXform = VectorXform())
{
float2 v = -2.f * p1 + p0 + p2;
v = vectorXform(v);
float2 vv = v * v;
return (vv[0] + vv[1]) * length_term_pow2<2>(precision);
}
AI static float quadratic_pow4(const Vec2D pts[],
float precision,
const VectorXform& vectorXform = VectorXform())
{
return quadratic_pow4(simd::load2f(&pts[0].x),
simd::load2f(&pts[1].x),
simd::load2f(&pts[2].x),
precision,
vectorXform);
}
// Returns Wang's formula specialized for a quadratic curve.
AI static float quadratic(const Vec2D pts[],
float precision,
const VectorXform& vectorXform = VectorXform())
{
return root4(quadratic_pow4(pts, precision, vectorXform));
}
// Returns the log2 value of Wang's formula specialized for a quadratic curve, rounded up to the
// next int.
AI static int quadratic_log2(const Vec2D pts[],
float precision,
const VectorXform& vectorXform = VectorXform())
{
// nextlog16(x) == ceil(log2(sqrt(sqrt(x))))
return nextlog16(quadratic_pow4(pts, precision, vectorXform));
}
// Returns Wang's formula, raised to the 4th power, specialized for a cubic curve.
AI static float cubic_pow4(const Vec2D pts[],
float precision,
const VectorXform& vectorXform = VectorXform())
{
float4 p01 = simd::load4f(pts);
float4 p12 = simd::load4f(pts + 1);
float4 p23 = simd::load4f(pts + 2);
float4 v = -2.f * p12 + p01 + p23;
v = vectorXform(v);
float4 vv = v * v;
return std::max(vv[0] + vv[1], vv[2] + vv[3]) * length_term_pow2<3>(precision);
}
// Returns Wang's formula specialized for a cubic curve.
AI static float cubic(const Vec2D pts[],
float precision,
const VectorXform& vectorXform = VectorXform())
{
return root4(cubic_pow4(pts, precision, vectorXform));
}
// Returns the log2 value of Wang's formula specialized for a cubic curve, rounded up to the next
// int.
AI static int cubic_log2(const Vec2D pts[],
float precision,
const VectorXform& vectorXform = VectorXform())
{
// nextlog16(x) == ceil(log2(sqrt(sqrt(x))))
return nextlog16(cubic_pow4(pts, precision, vectorXform));
}
// Returns the maximum number of line segments a cubic with the given device-space bounding box size
// would ever need to be divided into, raised to the 4th power. This is simply a special case of the
// cubic formula where we maximize its value by placing control points on specific corners of the
// bounding box.
AI static float worst_case_cubic_pow4(float devWidth, float devHeight, float precision)
{
float kk = length_term_pow2<3>(precision);
return 4 * kk * (devWidth * devWidth + devHeight * devHeight);
}
// Returns the maximum number of line segments a cubic with the given device-space bounding box size
// would ever need to be divided into.
AI static float worst_case_cubic(float devWidth, float devHeight, float precision)
{
return root4(worst_case_cubic_pow4(devWidth, devHeight, precision));
}
// Returns the maximum log2 number of line segments a cubic with the given device-space bounding box
// size would ever need to be divided into.
AI static int worst_case_cubic_log2(float devWidth, float devHeight, float precision)
{
// nextlog16(x) == ceil(log2(sqrt(sqrt(x))))
return nextlog16(worst_case_cubic_pow4(devWidth, devHeight, precision));
}
// Returns Wang's formula specialized for a conic curve, raised to the second power.
// Input points should be in projected space.
//
// This is not actually due to Wang, but is an analogue from (Theorem 3, corollary 1):
// J. Zheng, T. Sederberg. "Estimating Tessellation Parameter Intervals for
// Rational Curves and Surfaces." ACM Transactions on Graphics 19(1). 2000.
AI static float conic_pow2(float precision,
float2 p0,
float2 p1,
float2 p2,
float w,
const VectorXform& vectorXform = VectorXform())
{
p0 = vectorXform(p0);
p1 = vectorXform(p1);
p2 = vectorXform(p2);
// Compute center of bounding box in projected space
const float2 C = 0.5f * (simd::min(simd::min(p0, p1), p2) + simd::max(simd::max(p0, p1), p2));
// Translate by -C. This improves translation-invariance of the formula,
// see Sec. 3.3 of cited paper
p0 -= C;
p1 -= C;
p2 -= C;
// Compute max length
const float max_len =
sqrtf(std::max(simd::dot(p0, p0), std::max(simd::dot(p1, p1), simd::dot(p2, p2))));
// Compute forward differences
const float2 dp = -2.f * w * p1 + p0 + p2;
const float dw = fabsf(-2.f * w + 2);
// Compute numerator and denominator for parametric step size of linearization. Here, the
// epsilon referenced from the cited paper is 1/precision.
const float rp_minus_1 = std::max(0.f, max_len * precision - 1);
const float numer = sqrtf(simd::dot(dp, dp)) * precision + rp_minus_1 * dw;
const float denom = 4 * std::min(w, 1.f);
// Number of segments = sqrt(numer / denom).
// This assumes parametric interval of curve being linearized is [t0,t1] = [0, 1].
// If not, the number of segments is (tmax - tmin) / sqrt(denom / numer).
return numer / denom;
}
AI static float conic_pow2(float precision,
const Vec2D pts[],
float w,
const VectorXform& vectorXform = VectorXform())
{
return conic_pow2(precision,
simd::load2f(&pts[0].x),
simd::load2f(&pts[1].x),
simd::load2f(&pts[2].x),
w,
vectorXform);
}
// Returns the value of Wang's formula specialized for a conic curve.
AI static float conic(float tolerance,
const Vec2D pts[],
float w,
const VectorXform& vectorXform = VectorXform())
{
return sqrtf(conic_pow2(tolerance, pts, w, vectorXform));
}
// Returns the log2 value of Wang's formula specialized for a conic curve, rounded up to the next
// int.
AI static int conic_log2(float tolerance,
const Vec2D pts[],
float w,
const VectorXform& vectorXform = VectorXform())
{
// nextlog4(x) == ceil(log2(sqrt(x)))
return nextlog4(conic_pow2(tolerance, pts, w, vectorXform));
}
} // namespace wangs_formula
} // namespace rive
#undef AI