| /* |
| * Copyright 2021 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| * |
| * Initial import from skia:src/gpu/tessellate/Tessellation.h |
| * skia:src/core/SkGeometry.h |
| * |
| * Copyright 2022 Rive |
| */ |
| |
| #pragma once |
| |
| #include "rive/math/simd.hpp" |
| #include "rive/math/vec2d.hpp" |
| #include <math.h> |
| |
| namespace rive |
| { |
| namespace math |
| { |
| // Finds the cubic bezier's power basis coefficients. These define the bezier |
| // curve as: |
| // |
| // |T^3| |
| // Cubic(T) = x,y = |A 3B 3C| * |T^2| + P0 |
| // |. . .| |T | |
| // |
| // And the tangent: |
| // |
| // |T^2| |
| // Tangent(T) = dx,dy = |3A 6B 3C| * |T | |
| // | . . .| |1 | |
| // |
| struct CubicCoeffs |
| { |
| RIVE_ALWAYS_INLINE CubicCoeffs(const Vec2D pts[4]) : |
| CubicCoeffs(simd::load2f(&pts[0].x), |
| simd::load2f(&pts[1].x), |
| simd::load2f(&pts[2].x), |
| simd::load2f(&pts[3].x)) |
| {} |
| |
| RIVE_ALWAYS_INLINE CubicCoeffs(float2 p0, float2 p1, float2 p2, float2 p3) |
| { |
| C = p1 - p0; |
| float2 D = p2 - p1; |
| float2 E = p3 - p0; |
| B = D - C; |
| A = -3.f * D + E; |
| } |
| |
| float2 A, B, C; |
| }; |
| |
| // Optimized SIMD helper for evaluating a single cubic at many points. |
| class EvalCubic |
| { |
| public: |
| RIVE_ALWAYS_INLINE EvalCubic(const Vec2D pts[]) : |
| EvalCubic(CubicCoeffs(pts), pts[0]) |
| {} |
| |
| RIVE_ALWAYS_INLINE EvalCubic(const CubicCoeffs& coeffs, Vec2D p0) : |
| EvalCubic(coeffs, simd::load2f(&p0)) |
| {} |
| |
| RIVE_ALWAYS_INLINE EvalCubic(const CubicCoeffs& coeffs, float2 p0) : |
| // Duplicate coefficients across a float4 so we can evaluate two at |
| // once. |
| A(coeffs.A.xyxy), |
| B((3.f * coeffs.B).xyxy), |
| C((3.f * coeffs.C).xyxy), |
| D(p0.xyxy) |
| {} |
| |
| // Evaluates [x, y] at location t. |
| RIVE_ALWAYS_INLINE float2 operator()(float t) const |
| { |
| // At^3 + Bt^2 + Ct + P0 |
| return ((A.xy * t + B.xy) * t + C.xy) * t + D.xy; |
| } |
| |
| // Evaluates [Xa, Ya, Xb, Yb] at locations [Ta, Ta, Tb, Tb]. |
| RIVE_ALWAYS_INLINE float4 operator()(float4 t) const |
| { |
| // At^3 + Bt^2 + Ct + P0 |
| return ((A * t + B) * t + C) * t + D; |
| } |
| |
| RIVE_ALWAYS_INLINE float4 at(float4 t) const |
| { |
| // At^3 + Bt^2 + Ct + P0 |
| return ((A * t + B) * t + C) * t + D; |
| } |
| |
| private: |
| const float4 A; |
| const float4 B; |
| const float4 C; |
| const float4 D; |
| }; |
| |
| // Decides the number of polar segments the tessellator adds for each curve. |
| // (Uniform steps in tangent angle.) The tessellator will add this number of |
| // polar segments for each radian of rotation in local path space. |
| template <int Precision> |
| float calc_polar_segments_per_radian(float approxDevStrokeRadius) |
| { |
| float cosTheta = 1.f - (1.f / Precision) / approxDevStrokeRadius; |
| return .5f / acosf(std::max(cosTheta, -1.f)); |
| } |
| |
| Vec2D eval_cubic_at(const Vec2D p[4], float t); |
| |
| // Given a src cubic bezier, chop it at the specified t value, |
| // where 0 <= t <= 1, and return the two new cubics in dst: |
| // dst[0..3] and dst[3..6] |
| void chop_cubic_at(const Vec2D src[4], Vec2D dst[7], float t); |
| |
| // Given a src cubic bezier, chop it at the specified t0 and t1 values, |
| // where 0 <= t0 <= t1 <= 1, and return the three new cubics in dst: |
| // dst[0..3], dst[3..6], and dst[6..9] |
| void chop_cubic_at(const Vec2D src[4], Vec2D dst[10], float t0, float t1); |
| |
| // Given a src cubic bezier, chop it at the specified t values, |
| // where 0 <= t0 <= t1 <= ... <= 1, and return the new cubics in dst: |
| // dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)] |
| void chop_cubic_at(const Vec2D src[4], |
| Vec2D dst[], |
| const float tValues[], |
| int tCount); |
| |
| // Measures the angle between two vectors, in the range [0, pi]. |
| float measure_angle_between_vectors(Vec2D a, Vec2D b); |
| |
| // Returns 0, 1, or 2 T values at which to chop the given curve in order to |
| // guarantee the resulting cubics are convex and rotate no more than 180 |
| // degrees. |
| // |
| // - If the cubic is "serpentine", then the T values are any inflection points |
| // in [0 < T < 1]. |
| // - If the cubic is linear, then the T values are any 180-degree cusp points |
| // in [0 < T < 1]. |
| // - Otherwise the T value is the point at which rotation reaches 180 degrees, |
| // iff in [0 < T < 1]. |
| // |
| // 'areCusps' is set to true if the chop point occurred at a cusp (within |
| // tolerance), or if the chop point(s) occurred at 180-degree turnaround points |
| // on a degenerate flat line. |
| int find_cubic_convex_180_chops(const Vec2D[], float T[2], bool* areCusps); |
| |
| // Finds the tangents of the curve at T=0 and T=1 respectively. |
| RIVE_ALWAYS_INLINE Vec2D find_cubic_tan0(const Vec2D p[4]) |
| { |
| Vec2D tan0 = (p[0] != p[1] ? p[1] : p[1] != p[2] ? p[2] : p[3]) - p[0]; |
| return tan0; |
| } |
| RIVE_ALWAYS_INLINE Vec2D find_cubic_tan1(const Vec2D p[4]) |
| { |
| Vec2D tan1 = p[3] - (p[3] != p[2] ? p[2] : p[2] != p[1] ? p[1] : p[0]); |
| return tan1; |
| } |
| RIVE_ALWAYS_INLINE void find_cubic_tangents(const Vec2D p[4], Vec2D tangents[2]) |
| { |
| tangents[0] = find_cubic_tan0(p); |
| tangents[1] = find_cubic_tan1(p); |
| } |
| |
| RIVE_ALWAYS_INLINE constexpr float pow2(float x) { return x * x; } |
| RIVE_ALWAYS_INLINE constexpr float pow3(float x) { return x * pow2(x); } |
| RIVE_ALWAYS_INLINE constexpr float length_pow2(Vec2D v) |
| { |
| return pow2(v.x) + pow2(v.y); |
| } |
| } // namespace math |
| } // namespace rive |