blob: 1db64437592b28f07236181fc05110efd5b4b340 [file] [log] [blame] [edit]
/*
* Copyright 2021 Google LLC.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Initial import from skia:src/core/SkGeometry.cpp
* skia:src/gpu/tessellate/Tessellation.cpp
*
* Copyright 2022 Rive
*/
#include "rive/math/bezier_utils.hpp"
#include "rive/math/math_types.hpp"
namespace rive
{
namespace math
{
Vec2D eval_cubic_at(const Vec2D p[4], float t)
{
float2 p0 = simd::load2f(p + 0);
float2 p1 = simd::load2f(p + 1);
float2 p2 = simd::load2f(p + 2);
float2 p3 = simd::load2f(p + 3);
float2 a = p3 + 3.f * (p1 - p2) - p0;
float2 b = 3.f * (p2 - 2.f * p1 + p0);
float2 c = 3.f * (p1 - p0);
float2 d = p0;
return math::bit_cast<Vec2D>(((a * t + b) * t + c) * t + d);
}
void chop_cubic_at(const Vec2D src[4], Vec2D dst[7], float t)
{
assert(0 <= t && t <= 1);
if (t == 1)
{
memcpy(dst, src, sizeof(Vec2D) * 4);
dst[4] = dst[5] = dst[6] = src[3];
return;
}
float4 p0p1 = simd::load4f(src);
float4 p1p2 = simd::load4f(src + 1);
float4 p2p3 = simd::load4f(src + 2);
float4 T = t;
float4 ab_bc = simd::mix(p0p1, p1p2, T);
float4 bc_cd = simd::mix(p1p2, p2p3, T);
float4 abc_bcd = simd::mix(ab_bc, bc_cd, T);
float2 abcd = simd::mix(abc_bcd.xy, abc_bcd.zw, T.xy);
simd::store(dst + 0, p0p1.xy);
simd::store(dst + 1, ab_bc.xy);
simd::store(dst + 2, abc_bcd.xy);
simd::store(dst + 3, abcd);
simd::store(dst + 4, abc_bcd.zw);
simd::store(dst + 5, bc_cd.zw);
simd::store(dst + 6, p2p3.zw);
}
void chop_cubic_at(const Vec2D src[4], Vec2D dst[10], float t0, float t1)
{
assert(0 <= t0 && t0 <= t1 && t1 <= 1);
if (t1 == 1)
{
chop_cubic_at(src, dst, t0);
dst[7] = dst[8] = dst[9] = src[3];
return;
}
// Perform both chops in parallel using 4-lane SIMD.
float4 p00, p11, p22, p33, T;
p00 = simd::load2f(src + 0).xyxy;
p11 = simd::load2f(src + 1).xyxy;
p22 = simd::load2f(src + 2).xyxy;
p33 = simd::load2f(src + 3).xyxy;
T.xy = t0;
T.zw = t1;
float4 ab = simd::mix(p00, p11, T);
float4 bc = simd::mix(p11, p22, T);
float4 cd = simd::mix(p22, p33, T);
float4 abc = simd::mix(ab, bc, T);
float4 bcd = simd::mix(bc, cd, T);
float4 abcd = simd::mix(abc, bcd, T);
float4 middle = simd::mix(abc, bcd, T.zwxy);
simd::store(dst + 0, p00.xy);
simd::store(dst + 1, ab.xy);
simd::store(dst + 2, abc.xy);
simd::store(dst + 3, abcd.xy);
simd::store(dst + 4, middle); // 2 points!
// dst + 5 written above.
simd::store(dst + 6, abcd.zw);
simd::store(dst + 7, bcd.zw);
simd::store(dst + 8, cd.zw);
simd::store(dst + 9, p33.zw);
}
void chop_cubic_at(const Vec2D src[4],
Vec2D dst[],
const float tValues[],
int tCount)
{
assert(tValues == nullptr ||
std::all_of(tValues, tValues + tCount, [](float t) {
return t >= 0 && t <= 1;
}));
assert(tValues == nullptr || std::is_sorted(tValues, tValues + tCount));
if (dst)
{
if (tCount == 0)
{
// nothing to chop
memcpy(dst, src, 4 * sizeof(Vec2D));
}
else
{
int i = 0;
float lastT = 0;
for (; i < tCount - 1; i += 2)
{
// Do two chops at once.
float2 tt;
if (tValues != nullptr)
{
tt = simd::load2f(tValues + i);
tt = simd::clamp((tt - lastT) / (1 - lastT),
float2(0),
float2(1));
lastT = tValues[i + 1];
}
else
{
tt = float2{1, 2} / static_cast<float>(tCount + 1 - i);
}
chop_cubic_at(src, dst, tt[0], tt[1]);
src = dst = dst + 6;
}
if (i < tCount)
{
// Chop the final cubic if there was an odd number of chops.
assert(i + 1 == tCount);
float t = tValues != nullptr ? tValues[i] : .5f;
t = simd::clamp<float, 1>(
math::ieee_float_divide(t - lastT, 1 - lastT),
0,
1)
.x;
chop_cubic_at(src, dst, t);
}
}
}
}
float measure_angle_between_vectors(Vec2D a, Vec2D b)
{
float cosTheta =
math::ieee_float_divide(Vec2D::dot(a, b),
sqrtf(Vec2D::dot(a, a) * Vec2D::dot(b, b)));
// Pin cosTheta such that if it is NaN (e.g., if a or b was 0), then we
// return acos(1) = 0.
cosTheta = std::max(std::min(1.f, cosTheta), -1.f);
return acosf(cosTheta);
}
// If a chop falls within a distance of "TESS_EPSILON" from 0 or 1, throw it
// out. Tangents become unstable when we chop too close to the boundary. This
// works out because the tessellation shaders don't allow more than 2^10
// parametric segments, and they snap the beginning and ending edges at 0 and 1.
// So if we overstep an inflection or point of 180-degree rotation by a fraction
// of a tessellation segment, it just gets snapped.
constexpr static float TESS_EPSILON = 1.f / (1 << 10);
int find_cubic_convex_180_chops(const Vec2D pts[], float T[2], bool* areCusps)
{
assert(pts);
assert(T);
assert(areCusps);
// Floating-point representation of "1 - 2*TESS_EPSILON".
constexpr static uint32_t kIEEE_one_minus_2_epsilon =
(127 << 23) - 2 * (1 << (24 - 10));
// Unfortunately we don't have a way to static_assert this, but we can
// runtime assert that the kIEEE_one_minus_2_epsilon bits are correct.
assert(math::bit_cast<float>(kIEEE_one_minus_2_epsilon) ==
1 - 2 * TESS_EPSILON);
float2 p0 = simd::load2f(&pts[0].x);
float2 p1 = simd::load2f(&pts[1].x);
float2 p2 = simd::load2f(&pts[2].x);
float2 p3 = simd::load2f(&pts[3].x);
CubicCoeffs coeffs(p0, p1, p2, p3);
// Now find the cubic's inflection function.
// There are inflections where F' x F'' == 0.
//
// We formulate this as a quadratic equation:
//
// F' x F'' == aT^2 + bT + c == 0.
//
// See:
// https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
// NOTE: We only need the roots, so a uniform scale factor does not affect
// the solution.
float a = simd::cross(coeffs.A, coeffs.B);
float b = simd::cross(coeffs.A, coeffs.C);
float c = simd::cross(coeffs.B, coeffs.C);
float b_over_minus_2 = -.5f * b;
float discr_over_4 = b_over_minus_2 * b_over_minus_2 - a * c;
// If -cuspThreshold <= discr_over_4 <= cuspThreshold, it means the two
// roots are within TESS_EPSILON of one another (in parametric space). This
// is close enough for our purposes to consider them a single cusp.
float cuspThreshold = a * (TESS_EPSILON / 2);
cuspThreshold *= cuspThreshold;
if (discr_over_4 < -cuspThreshold)
{
// The curve does not inflect or cusp. This means it might rotate more
// than 180 degrees instead. Chop were rotation == 180 deg. (This is the
// 2nd root where the tangent is parallel to tan0.)
//
// Tangent_Direction(T) x tan0 == 0
// (AT^2 x tan0) + (2BT x tan0) + (C x tan0) == 0
// (A x C)T^2 + (2B x C)T + (C x C) == 0
// [[because tan0 == P1 - P0 == C]]
// bT^2 + 2cT + 0 == 0 [[because A x C == b, B x C == c]]
// T = [0, -2c/b]
//
// NOTE: if C == 0, then C != tan0. But this is fine because the curve
// is definitely convex-180 if any points are colocated, and T[0] will
// equal NaN which returns 0 chops.
*areCusps = false;
float root = math::ieee_float_divide(c, b_over_minus_2);
// Is "root" inside the range [TESS_EPSILON, 1 - TESS_EPSILON)?
if (math::bit_cast<uint32_t>(root - TESS_EPSILON) <
kIEEE_one_minus_2_epsilon)
{
T[0] = root;
return 1;
}
return 0;
}
*areCusps = discr_over_4 <= cuspThreshold;
if (*areCusps)
{
// The two roots are close enough that we can consider them a single
// cusp.
if (a != 0 || b_over_minus_2 != 0 || c != 0)
{
// Pick the average of both roots.
float root = math::ieee_float_divide(b_over_minus_2, a);
// Is "root" inside the range [TESS_EPSILON, 1 - TESS_EPSILON)?
if (math::bit_cast<uint32_t>(root - TESS_EPSILON) <
kIEEE_one_minus_2_epsilon)
{
T[0] = root;
return 1;
}
*areCusps = false;
return 0;
}
// The curve is a flat line. If the points are ordered, there are no
// inflections.
float2 base = p3 - p0;
float4 pX = {pts[0].x, pts[1].x, pts[2].x, pts[3].x};
float4 pY = {pts[0].y, pts[1].y, pts[2].y, pts[3].y};
float4 dotProds = pX * base.x + pY * base.y;
if (simd::all(dotProds.yzw > dotProds.xyz))
{
// Flat line with no cusps.
*areCusps = false;
return 0;
}
// The curve is a flat line with inflections. The standard inflection
// function doesn't detect cusps from flat lines. Find cusps by
// searching instead for points where the tangent is perpendicular to
// tan0. This will find any cusp point.
//
// dot(tan0, Tangent_Direction(T)) == 0
//
// |T^2|
// tan0 * |A 2B C| * |T | == 0
// |. . .| |1 |
//
float2 tan0 = simd::any(coeffs.C != 0.f) ? coeffs.C : p2 - p0;
a = simd::dot(tan0, coeffs.A);
b_over_minus_2 = -simd::dot(tan0, coeffs.B);
c = simd::dot(tan0, coeffs.C);
discr_over_4 = std::max(b_over_minus_2 * b_over_minus_2 - a * c, 0.f);
}
// Solve our quadratic equation to find where to chop. See the quadratic
// formula from Numerical Recipes in C.
float q = sqrtf(discr_over_4);
q = copysignf(q, b_over_minus_2);
q = q + b_over_minus_2;
float2 roots = float2{q, c} / float2{a, q};
auto inside = (roots > TESS_EPSILON) & (roots < (1 - TESS_EPSILON));
if (inside[0])
{
if (inside[1] && roots[0] != roots[1])
{
if (roots[0] > roots[1])
{
roots = roots.yx; // Sort.
}
simd::store(T, roots);
return 2;
}
T[0] = roots[0];
return 1;
}
if (inside[1])
{
T[0] = roots[1];
return 1;
}
return 0;
}
} // namespace math
} // namespace rive