blob: e6dc9631ab3a39a36b6e37698b108b5fcfe60fca [file] [log] [blame]
#define _USE_MATH_DEFINES
#include <cmath>
#include <algorithm>
#include "rive/constraints/rotation_constraint.hpp"
#include "rive/transform_component.hpp"
#include "rive/math/mat2d.hpp"
using namespace rive;
void RotationConstraint::constrain(TransformComponent* component)
{
const Mat2D& transformA = component->worldTransform();
Mat2D transformB;
Mat2D::decompose(m_ComponentsA, transformA);
if (m_Target == nullptr)
{
Mat2D::copy(transformB, transformA);
TransformComponents::copy(m_ComponentsB, m_ComponentsA);
}
else
{
Mat2D::copy(transformB, m_Target->worldTransform());
if (sourceSpace() == TransformSpace::local)
{
Mat2D inverse;
if (!Mat2D::invert(inverse, getParentWorld(*m_Target)))
{
return;
}
Mat2D::multiply(transformB, inverse, transformB);
}
Mat2D::decompose(m_ComponentsB, transformB);
if (!doesCopy())
{
m_ComponentsB.rotation(destSpace() == TransformSpace::local
? 0.0f
: m_ComponentsA.rotation());
}
else
{
m_ComponentsB.rotation(m_ComponentsB.rotation() * copyFactor());
if (offset())
{
m_ComponentsB.rotation(m_ComponentsB.rotation() +
component->rotation());
}
}
if (destSpace() == TransformSpace::local)
{
// Destination space is in parent transform coordinates. Recompose
// the parent local transform and get it in world, then decompose
// the world for interpolation.
Mat2D::compose(transformB, m_ComponentsB);
Mat2D::multiply(transformB, getParentWorld(*component), transformB);
Mat2D::decompose(m_ComponentsB, transformB);
}
}
bool clampLocal = minMaxSpace() == TransformSpace::local;
if (clampLocal)
{
// Apply min max in local space, so transform to local coordinates
// first.
Mat2D::compose(transformB, m_ComponentsB);
Mat2D inverse = Mat2D();
if (!Mat2D::invert(inverse, getParentWorld(*component)))
{
return;
}
Mat2D::multiply(transformB, inverse, transformB);
Mat2D::decompose(m_ComponentsB, transformB);
}
if (max() && m_ComponentsB.rotation() > maxValue())
{
m_ComponentsB.rotation(maxValue());
}
if (min() && m_ComponentsB.rotation() < minValue())
{
m_ComponentsB.rotation(minValue());
}
if (clampLocal)
{
// Transform back to world.
Mat2D::compose(transformB, m_ComponentsB);
Mat2D::multiply(transformB, getParentWorld(*component), transformB);
Mat2D::decompose(m_ComponentsB, transformB);
}
float angleA = std::fmod(m_ComponentsA.rotation(), (float)M_PI * 2);
float angleB = std::fmod(m_ComponentsB.rotation(), (float)M_PI * 2);
float diff = angleB - angleA;
if (diff > M_PI)
{
diff -= M_PI * 2;
}
else if (diff < -M_PI)
{
diff += M_PI * 2;
}
m_ComponentsB.rotation(m_ComponentsA.rotation() + diff * strength());
m_ComponentsB.x(m_ComponentsA.x());
m_ComponentsB.y(m_ComponentsA.y());
m_ComponentsB.scaleX(m_ComponentsA.scaleX());
m_ComponentsB.scaleY(m_ComponentsA.scaleY());
m_ComponentsB.skew(m_ComponentsA.skew());
Mat2D::compose(component->mutableWorldTransform(), m_ComponentsB);
}