blob: 0c63dfe606048c31285012004c7dec44edc9adb2 [file] [log] [blame] [edit]
/*
* Copyright 2021 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Initial import from skia:src/gpu/tessellate/Tessellation.h
* skia:src/core/SkGeometry.h
*
* Copyright 2022 Rive
*/
#pragma once
#include "rive/math/simd.hpp"
#include "rive/math/vec2d.hpp"
#include <math.h>
namespace rive
{
namespace math
{
// Finds the cubic bezier's power basis coefficients. These define the bezier
// curve as:
//
// |T^3|
// Cubic(T) = x,y = |A 3B 3C| * |T^2| + P0
// |. . .| |T |
//
// And the tangent:
//
// |T^2|
// Tangent(T) = dx,dy = |3A 6B 3C| * |T |
// | . . .| |1 |
//
struct CubicCoeffs
{
RIVE_ALWAYS_INLINE CubicCoeffs(const Vec2D pts[4]) :
CubicCoeffs(simd::load2f(&pts[0].x),
simd::load2f(&pts[1].x),
simd::load2f(&pts[2].x),
simd::load2f(&pts[3].x))
{}
RIVE_ALWAYS_INLINE CubicCoeffs(float2 p0, float2 p1, float2 p2, float2 p3)
{
C = p1 - p0;
float2 D = p2 - p1;
float2 E = p3 - p0;
B = D - C;
A = -3.f * D + E;
}
float2 A, B, C;
};
// Optimized SIMD helper for evaluating a single cubic at many points.
class EvalCubic
{
public:
RIVE_ALWAYS_INLINE EvalCubic(const Vec2D pts[]) :
EvalCubic(CubicCoeffs(pts), pts[0])
{}
RIVE_ALWAYS_INLINE EvalCubic(const CubicCoeffs& coeffs, Vec2D p0) :
EvalCubic(coeffs, simd::load2f(&p0))
{}
RIVE_ALWAYS_INLINE EvalCubic(const CubicCoeffs& coeffs, float2 p0) :
// Duplicate coefficients across a float4 so we can evaluate two at
// once.
A(coeffs.A.xyxy),
B((3.f * coeffs.B).xyxy),
C((3.f * coeffs.C).xyxy),
D(p0.xyxy)
{}
// Evaluates [x, y] at location t.
RIVE_ALWAYS_INLINE float2 operator()(float t) const
{
// At^3 + Bt^2 + Ct + P0
return ((A.xy * t + B.xy) * t + C.xy) * t + D.xy;
}
// Evaluates [Xa, Ya, Xb, Yb] at locations [Ta, Ta, Tb, Tb].
RIVE_ALWAYS_INLINE float4 operator()(float4 t) const
{
// At^3 + Bt^2 + Ct + P0
return ((A * t + B) * t + C) * t + D;
}
RIVE_ALWAYS_INLINE float4 at(float4 t) const
{
// At^3 + Bt^2 + Ct + P0
return ((A * t + B) * t + C) * t + D;
}
private:
const float4 A;
const float4 B;
const float4 C;
const float4 D;
};
// Decides the number of polar segments the tessellator adds for each curve.
// (Uniform steps in tangent angle.) The tessellator will add this number of
// polar segments for each radian of rotation in local path space.
template <int Precision>
float calc_polar_segments_per_radian(float approxDevStrokeRadius)
{
float cosTheta = 1.f - (1.f / Precision) / approxDevStrokeRadius;
return .5f / acosf(std::max(cosTheta, -1.f));
}
Vec2D eval_cubic_at(const Vec2D p[4], float t);
// Given a src cubic bezier, chop it at the specified t value,
// where 0 <= t <= 1, and return the two new cubics in dst:
// dst[0..3] and dst[3..6]
void chop_cubic_at(const Vec2D src[4], Vec2D dst[7], float t);
// Given a src cubic bezier, chop it at the specified t0 and t1 values,
// where 0 <= t0 <= t1 <= 1, and return the three new cubics in dst:
// dst[0..3], dst[3..6], and dst[6..9]
void chop_cubic_at(const Vec2D src[4], Vec2D dst[10], float t0, float t1);
// Given a src cubic bezier, chop it at the specified t values,
// where 0 <= t0 <= t1 <= ... <= 1, and return the new cubics in dst:
// dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)]
void chop_cubic_at(const Vec2D src[4],
Vec2D dst[],
const float tValues[],
int tCount);
// Measures the angle between two vectors, in the range [0, pi].
float measure_angle_between_vectors(Vec2D a, Vec2D b);
// Returns 0, 1, or 2 T values at which to chop the given curve in order to
// guarantee the resulting cubics are convex and rotate no more than 180
// degrees.
//
// - If the cubic is "serpentine", then the T values are any inflection points
// in [0 < T < 1].
// - If the cubic is linear, then the T values are any 180-degree cusp points
// in [0 < T < 1].
// - Otherwise the T value is the point at which rotation reaches 180 degrees,
// iff in [0 < T < 1].
//
// 'areCusps' is set to true if the chop point occurred at a cusp (within
// tolerance), or if the chop point(s) occurred at 180-degree turnaround points
// on a degenerate flat line.
int find_cubic_convex_180_chops(const Vec2D[], float T[2], bool* areCusps);
// Finds the tangents of the curve at T=0 and T=1 respectively.
RIVE_ALWAYS_INLINE Vec2D find_cubic_tan0(const Vec2D p[4])
{
Vec2D tan0 = (p[0] != p[1] ? p[1] : p[1] != p[2] ? p[2] : p[3]) - p[0];
return tan0;
}
RIVE_ALWAYS_INLINE Vec2D find_cubic_tan1(const Vec2D p[4])
{
Vec2D tan1 = p[3] - (p[3] != p[2] ? p[2] : p[2] != p[1] ? p[1] : p[0]);
return tan1;
}
RIVE_ALWAYS_INLINE void find_cubic_tangents(const Vec2D p[4], Vec2D tangents[2])
{
tangents[0] = find_cubic_tan0(p);
tangents[1] = find_cubic_tan1(p);
}
RIVE_ALWAYS_INLINE constexpr float pow2(float x) { return x * x; }
RIVE_ALWAYS_INLINE constexpr float pow3(float x) { return x * pow2(x); }
RIVE_ALWAYS_INLINE constexpr float length_pow2(Vec2D v)
{
return pow2(v.x) + pow2(v.y);
}
} // namespace math
} // namespace rive