| /* |
| * Copyright 2021 Google LLC. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| * |
| * Initial import from skia:src/core/SkGeometry.cpp |
| * skia:src/gpu/tessellate/Tessellation.cpp |
| * |
| * Copyright 2022 Rive |
| */ |
| |
| #include "rive/math/bezier_utils.hpp" |
| |
| #include "rive/math/math_types.hpp" |
| |
| namespace rive |
| { |
| namespace math |
| { |
| Vec2D eval_cubic_at(const Vec2D p[4], float t) |
| { |
| float2 p0 = simd::load2f(p + 0); |
| float2 p1 = simd::load2f(p + 1); |
| float2 p2 = simd::load2f(p + 2); |
| float2 p3 = simd::load2f(p + 3); |
| float2 a = p3 + 3.f * (p1 - p2) - p0; |
| float2 b = 3.f * (p2 - 2.f * p1 + p0); |
| float2 c = 3.f * (p1 - p0); |
| float2 d = p0; |
| return math::bit_cast<Vec2D>(((a * t + b) * t + c) * t + d); |
| } |
| |
| void chop_cubic_at(const Vec2D src[4], Vec2D dst[7], float t) |
| { |
| assert(0 <= t && t <= 1); |
| |
| if (t == 1) |
| { |
| memcpy(dst, src, sizeof(Vec2D) * 4); |
| dst[4] = dst[5] = dst[6] = src[3]; |
| return; |
| } |
| |
| float4 p0p1 = simd::load4f(src); |
| float4 p1p2 = simd::load4f(src + 1); |
| float4 p2p3 = simd::load4f(src + 2); |
| float4 T = t; |
| |
| float4 ab_bc = simd::mix(p0p1, p1p2, T); |
| float4 bc_cd = simd::mix(p1p2, p2p3, T); |
| float4 abc_bcd = simd::mix(ab_bc, bc_cd, T); |
| float2 abcd = simd::mix(abc_bcd.xy, abc_bcd.zw, T.xy); |
| |
| simd::store(dst + 0, p0p1.xy); |
| simd::store(dst + 1, ab_bc.xy); |
| simd::store(dst + 2, abc_bcd.xy); |
| simd::store(dst + 3, abcd); |
| simd::store(dst + 4, abc_bcd.zw); |
| simd::store(dst + 5, bc_cd.zw); |
| simd::store(dst + 6, p2p3.zw); |
| } |
| |
| void chop_cubic_at(const Vec2D src[4], Vec2D dst[10], float t0, float t1) |
| { |
| assert(0 <= t0 && t0 <= t1 && t1 <= 1); |
| |
| if (t1 == 1) |
| { |
| chop_cubic_at(src, dst, t0); |
| dst[7] = dst[8] = dst[9] = src[3]; |
| return; |
| } |
| |
| // Perform both chops in parallel using 4-lane SIMD. |
| float4 p00, p11, p22, p33, T; |
| p00 = simd::load2f(src + 0).xyxy; |
| p11 = simd::load2f(src + 1).xyxy; |
| p22 = simd::load2f(src + 2).xyxy; |
| p33 = simd::load2f(src + 3).xyxy; |
| T.xy = t0; |
| T.zw = t1; |
| |
| float4 ab = simd::mix(p00, p11, T); |
| float4 bc = simd::mix(p11, p22, T); |
| float4 cd = simd::mix(p22, p33, T); |
| float4 abc = simd::mix(ab, bc, T); |
| float4 bcd = simd::mix(bc, cd, T); |
| float4 abcd = simd::mix(abc, bcd, T); |
| float4 middle = simd::mix(abc, bcd, T.zwxy); |
| |
| simd::store(dst + 0, p00.xy); |
| simd::store(dst + 1, ab.xy); |
| simd::store(dst + 2, abc.xy); |
| simd::store(dst + 3, abcd.xy); |
| simd::store(dst + 4, middle); // 2 points! |
| // dst + 5 written above. |
| simd::store(dst + 6, abcd.zw); |
| simd::store(dst + 7, bcd.zw); |
| simd::store(dst + 8, cd.zw); |
| simd::store(dst + 9, p33.zw); |
| } |
| |
| void chop_cubic_at(const Vec2D src[4], |
| Vec2D dst[], |
| const float tValues[], |
| int tCount) |
| { |
| assert(tValues == nullptr || |
| std::all_of(tValues, tValues + tCount, [](float t) { |
| return t >= 0 && t <= 1; |
| })); |
| assert(tValues == nullptr || std::is_sorted(tValues, tValues + tCount)); |
| |
| if (dst) |
| { |
| if (tCount == 0) |
| { |
| // nothing to chop |
| memcpy(dst, src, 4 * sizeof(Vec2D)); |
| } |
| else |
| { |
| int i = 0; |
| float lastT = 0; |
| for (; i < tCount - 1; i += 2) |
| { |
| // Do two chops at once. |
| float2 tt; |
| if (tValues != nullptr) |
| { |
| tt = simd::load2f(tValues + i); |
| tt = simd::clamp((tt - lastT) / (1 - lastT), |
| float2(0), |
| float2(1)); |
| lastT = tValues[i + 1]; |
| } |
| else |
| { |
| tt = float2{1, 2} / static_cast<float>(tCount + 1 - i); |
| } |
| chop_cubic_at(src, dst, tt[0], tt[1]); |
| src = dst = dst + 6; |
| } |
| if (i < tCount) |
| { |
| // Chop the final cubic if there was an odd number of chops. |
| assert(i + 1 == tCount); |
| float t = tValues != nullptr ? tValues[i] : .5f; |
| t = simd::clamp<float, 1>( |
| math::ieee_float_divide(t - lastT, 1 - lastT), |
| 0, |
| 1) |
| .x; |
| chop_cubic_at(src, dst, t); |
| } |
| } |
| } |
| } |
| |
| float measure_angle_between_vectors(Vec2D a, Vec2D b) |
| { |
| float cosTheta = |
| math::ieee_float_divide(Vec2D::dot(a, b), |
| sqrtf(Vec2D::dot(a, a) * Vec2D::dot(b, b))); |
| // Pin cosTheta such that if it is NaN (e.g., if a or b was 0), then we |
| // return acos(1) = 0. |
| cosTheta = std::max(std::min(1.f, cosTheta), -1.f); |
| return acosf(cosTheta); |
| } |
| |
| // If a chop falls within a distance of "TESS_EPSILON" from 0 or 1, throw it |
| // out. Tangents become unstable when we chop too close to the boundary. This |
| // works out because the tessellation shaders don't allow more than 2^10 |
| // parametric segments, and they snap the beginning and ending edges at 0 and 1. |
| // So if we overstep an inflection or point of 180-degree rotation by a fraction |
| // of a tessellation segment, it just gets snapped. |
| constexpr static float TESS_EPSILON = 1.f / (1 << 10); |
| |
| int find_cubic_convex_180_chops(const Vec2D pts[], float T[2], bool* areCusps) |
| { |
| assert(pts); |
| assert(T); |
| assert(areCusps); |
| |
| // Floating-point representation of "1 - 2*TESS_EPSILON". |
| constexpr static uint32_t kIEEE_one_minus_2_epsilon = |
| (127 << 23) - 2 * (1 << (24 - 10)); |
| // Unfortunately we don't have a way to static_assert this, but we can |
| // runtime assert that the kIEEE_one_minus_2_epsilon bits are correct. |
| assert(math::bit_cast<float>(kIEEE_one_minus_2_epsilon) == |
| 1 - 2 * TESS_EPSILON); |
| |
| float2 p0 = simd::load2f(&pts[0].x); |
| float2 p1 = simd::load2f(&pts[1].x); |
| float2 p2 = simd::load2f(&pts[2].x); |
| float2 p3 = simd::load2f(&pts[3].x); |
| CubicCoeffs coeffs(p0, p1, p2, p3); |
| |
| // Now find the cubic's inflection function. |
| // There are inflections where F' x F'' == 0. |
| // |
| // We formulate this as a quadratic equation: |
| // |
| // F' x F'' == aT^2 + bT + c == 0. |
| // |
| // See: |
| // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf |
| // NOTE: We only need the roots, so a uniform scale factor does not affect |
| // the solution. |
| float a = simd::cross(coeffs.A, coeffs.B); |
| float b = simd::cross(coeffs.A, coeffs.C); |
| float c = simd::cross(coeffs.B, coeffs.C); |
| float b_over_minus_2 = -.5f * b; |
| float discr_over_4 = b_over_minus_2 * b_over_minus_2 - a * c; |
| |
| // If -cuspThreshold <= discr_over_4 <= cuspThreshold, it means the two |
| // roots are within TESS_EPSILON of one another (in parametric space). This |
| // is close enough for our purposes to consider them a single cusp. |
| float cuspThreshold = a * (TESS_EPSILON / 2); |
| cuspThreshold *= cuspThreshold; |
| |
| if (discr_over_4 < -cuspThreshold) |
| { |
| // The curve does not inflect or cusp. This means it might rotate more |
| // than 180 degrees instead. Chop were rotation == 180 deg. (This is the |
| // 2nd root where the tangent is parallel to tan0.) |
| // |
| // Tangent_Direction(T) x tan0 == 0 |
| // (AT^2 x tan0) + (2BT x tan0) + (C x tan0) == 0 |
| // (A x C)T^2 + (2B x C)T + (C x C) == 0 |
| // [[because tan0 == P1 - P0 == C]] |
| // bT^2 + 2cT + 0 == 0 [[because A x C == b, B x C == c]] |
| // T = [0, -2c/b] |
| // |
| // NOTE: if C == 0, then C != tan0. But this is fine because the curve |
| // is definitely convex-180 if any points are colocated, and T[0] will |
| // equal NaN which returns 0 chops. |
| *areCusps = false; |
| float root = math::ieee_float_divide(c, b_over_minus_2); |
| // Is "root" inside the range [TESS_EPSILON, 1 - TESS_EPSILON)? |
| if (math::bit_cast<uint32_t>(root - TESS_EPSILON) < |
| kIEEE_one_minus_2_epsilon) |
| { |
| T[0] = root; |
| return 1; |
| } |
| return 0; |
| } |
| |
| *areCusps = discr_over_4 <= cuspThreshold; |
| if (*areCusps) |
| { |
| // The two roots are close enough that we can consider them a single |
| // cusp. |
| if (a != 0 || b_over_minus_2 != 0 || c != 0) |
| { |
| // Pick the average of both roots. |
| float root = math::ieee_float_divide(b_over_minus_2, a); |
| // Is "root" inside the range [TESS_EPSILON, 1 - TESS_EPSILON)? |
| if (math::bit_cast<uint32_t>(root - TESS_EPSILON) < |
| kIEEE_one_minus_2_epsilon) |
| { |
| T[0] = root; |
| return 1; |
| } |
| *areCusps = false; |
| return 0; |
| } |
| |
| // The curve is a flat line. If the points are ordered, there are no |
| // inflections. |
| float2 base = p3 - p0; |
| float4 pX = {pts[0].x, pts[1].x, pts[2].x, pts[3].x}; |
| float4 pY = {pts[0].y, pts[1].y, pts[2].y, pts[3].y}; |
| float4 dotProds = pX * base.x + pY * base.y; |
| if (simd::all(dotProds.yzw > dotProds.xyz)) |
| { |
| // Flat line with no cusps. |
| *areCusps = false; |
| return 0; |
| } |
| |
| // The curve is a flat line with inflections. The standard inflection |
| // function doesn't detect cusps from flat lines. Find cusps by |
| // searching instead for points where the tangent is perpendicular to |
| // tan0. This will find any cusp point. |
| // |
| // dot(tan0, Tangent_Direction(T)) == 0 |
| // |
| // |T^2| |
| // tan0 * |A 2B C| * |T | == 0 |
| // |. . .| |1 | |
| // |
| float2 tan0 = simd::any(coeffs.C != 0.f) ? coeffs.C : p2 - p0; |
| a = simd::dot(tan0, coeffs.A); |
| b_over_minus_2 = -simd::dot(tan0, coeffs.B); |
| c = simd::dot(tan0, coeffs.C); |
| discr_over_4 = std::max(b_over_minus_2 * b_over_minus_2 - a * c, 0.f); |
| } |
| |
| // Solve our quadratic equation to find where to chop. See the quadratic |
| // formula from Numerical Recipes in C. |
| float q = sqrtf(discr_over_4); |
| q = copysignf(q, b_over_minus_2); |
| q = q + b_over_minus_2; |
| float2 roots = float2{q, c} / float2{a, q}; |
| |
| auto inside = (roots > TESS_EPSILON) & (roots < (1 - TESS_EPSILON)); |
| if (inside[0]) |
| { |
| if (inside[1] && roots[0] != roots[1]) |
| { |
| if (roots[0] > roots[1]) |
| { |
| roots = roots.yx; // Sort. |
| } |
| simd::store(T, roots); |
| return 2; |
| } |
| T[0] = roots[0]; |
| return 1; |
| } |
| if (inside[1]) |
| { |
| T[0] = roots[1]; |
| return 1; |
| } |
| return 0; |
| } |
| |
| int find_cubic_convex_90_chops(const Vec2D pts[], |
| float outT[4], |
| float cuspPadding, |
| bool* areCusps) |
| { |
| assert(pts); |
| assert(outT); |
| assert(areCusps); |
| |
| // Now find the cubic's inflection function. |
| // There are inflections where F' x F'' == 0. |
| // |
| // We formulate this as a quadratic equation: |
| // |
| // F' x F'' == a * T^2 + b * T + c == 0. |
| // |
| // See: |
| // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf |
| // NOTE: We only need the roots, so a uniform scale factor does not affect |
| // the solution. |
| CubicCoeffs coeffs(pts); |
| float a = simd::cross(coeffs.A, coeffs.B); |
| float b_over_2 = simd::cross(coeffs.A, coeffs.C) * .5f; |
| float c = simd::cross(coeffs.B, coeffs.C); |
| float discr_over_4 = b_over_2 * b_over_2 - a * c; |
| |
| // If -cuspThreshold <= discr_over_4 <= cuspThreshold, it means the two |
| // roots are within TESS_EPSILON of one another (in parametric space). This |
| // is close enough for our purposes to consider them a single cusp. |
| float cuspThreshold = a * (TESS_EPSILON / 2); |
| cuspThreshold *= cuspThreshold; |
| |
| // Find the first two chops, based on curve classification. Also fill in |
| // "tan90", which will define the second pair of chops as the two points |
| // perpendicular to "tan90". |
| float4 T; |
| float2 tan90; |
| if (discr_over_4 < -cuspThreshold || |
| // Check if it's quadratic. |
| std::max(fabs(a), fabs(b_over_2)) < fabs(c) * TESS_EPSILON) |
| { |
| // The curve is a loop or quadratic. |
| // One chop is where rotation == 180 deg (which happens at infinity if |
| // the curve is quadratic). |
| // (This is the 2nd root where the tangent is parallel to tan0.) |
| // |
| // Tangent_Direction(T) x tan0 == 0 |
| // (AT^2 x tan0) + (2BT x tan0) + (C x tan0) == 0 |
| // (A x C)T^2 + (2B x C)T + (C x C) == 0 |
| // [[because tan0 == P1 - P0 == C]] |
| // bT^2 + 2cT + 0 == 0 [[because A x C == b, B x C == c]] |
| // T = [0, -2c/b] |
| // |
| // NOTE: if C == 0, then C != tan0. But this is fine because the curve |
| // can only rotate 180 degrees if the endpoints are colocated, and this |
| // gets handled next. |
| T.xy = {-c / b_over_2, 1}; |
| |
| // Next chop 90 degrees from the starting tangent of the curve. |
| tan90 = simd::any(coeffs.C != 0.f) |
| ? coeffs.C |
| : math::bit_cast<float2>(pts[2] - pts[0]); |
| *areCusps = false; |
| } |
| else if (discr_over_4 > cuspThreshold) |
| { |
| // The curve is serpentine. Solve for the two inflection points. |
| float q = sqrtf(discr_over_4); |
| q = -b_over_2 - copysignf(q, b_over_2); |
| T.xy = float2{q, c} / float2{a, q}; |
| |
| // Next chop 90 degrees from the whichever inflection point is closest |
| // to the middle. |
| float t = fabsf(T.x - .5f) < fabsf(T.y - .5f) ? T.x : T.y; |
| tan90 = (coeffs.A * t + 2.f * coeffs.B) * t + coeffs.C; |
| *areCusps = false; |
| } |
| else |
| { |
| // The curve is a cusp. A proper cusp is at T=-b/2a, but just solving |
| // for 90 degrees from the starting tangent will also find it, in |
| // addition to finding cusps from degenerate flat lines reversing |
| // direction. Since 180 degrees of rotation is lost to the cusp, we only |
| // need to find 2 roots max. |
| T.xy = 1; |
| tan90 = simd::any(coeffs.C != 0.f) |
| ? coeffs.C |
| : math::bit_cast<float2>(pts[2] - pts[0]); |
| *areCusps = true; |
| } |
| |
| // Find a second set of chops where the curve is perpendicular to tan90. |
| // |
| // Tangent_Direction(T) dot tan90 == 0 |
| // (A dot tan90) * T^2 + (2B dot tan90) * T + (C dot tan90) == 0 |
| // |
| a = simd::dot(coeffs.A, tan90); |
| b_over_2 = simd::dot(coeffs.B, tan90); |
| c = simd::dot(coeffs.C, tan90); |
| discr_over_4 = b_over_2 * b_over_2 - a * c; |
| float q = sqrtf(discr_over_4); |
| q = -b_over_2 - copysignf(q, b_over_2); |
| T.zw = float2{q, c} / float2{a, q}; |
| |
| // Throw out T <= epsilon and T >= epsilon by converting them to 1. |
| // (Use logic such that NaN also converts to 1.) |
| T = simd::if_then_else((T > 0) & (T < 1), T, float4(1)); |
| assert(simd::all(T > 0)); |
| assert(simd::all(T <= 1)); |
| |
| // Sort the roots. |
| T = simd::if_then_else((float2{T.x, T.z} < float2{T.y, T.w}).xxyy, |
| T, |
| T.yxwz); |
| T = simd::if_then_else((float2{T.x, T.y} < float2{T.z, T.w}).xyxy, |
| T, |
| T.zwxy); |
| T = T.y < T.z ? T : T.xzyw; |
| |
| // Count the number of roots that != 1 and store T. |
| int4 n4 = (T != 1) & 1; |
| n4.xy += n4.zw; |
| int n = n4.x + n4.y; |
| RIVE_INLINE_MEMCPY(outT, &T, 4 * sizeof(float)); |
| |
| if (*areCusps) |
| { |
| // Generate padding around cusp points. Odd numbered chops are always |
| // padding sections that pass through a cusp. |
| assert(n <= 2); |
| for (int i = n - 1; i >= 0; --i) |
| { |
| float maxT = i == n - 1 ? 1 : outT[i * 2 + 1]; |
| float minT = i == 0 ? 0 : (outT[i - 1] + outT[i]) * .5f; |
| outT[i * 2 + 1] = std::min(outT[i] + cuspPadding, maxT); |
| outT[i * 2 + 0] = std::max(outT[i] - cuspPadding, minT); |
| } |
| n *= 2; |
| } |
| |
| return n; |
| } |
| |
| float find_cubic_max_height(const Vec2D p[4], float* outT) |
| { |
| // Calculate the cubic height function: 3(dht^3 - (h1 + dh)t^2 + h1t) |
| Vec2D n = (p[3] - p[0]).normalized(); |
| n = {-n.y, n.x}; |
| float h2 = Vec2D::dot(n, p[2] - p[0]); |
| float h1 = Vec2D::dot(n, p[1] - p[0]); |
| float dh = h1 - h2; |
| |
| // A cubic's height function has two maxima. Find both. |
| float a = 3 * dh; |
| float b_over_minus_2 = dh + h1; |
| float c = h1; |
| float q = sqrtf(std::max(dh * dh + h2 * h1, 0.f)); |
| q = b_over_minus_2 + copysignf(q, b_over_minus_2); |
| float2 tt = float2{q, c} / float2{a, q}; |
| tt = simd::clamp(tt, float2{0, 0}, float2{1, 1}); |
| float2 hh = 3.f * (tt * (tt * (tt * dh - (h1 + dh)) + h1)); |
| |
| // Go with whichever maximum is larger. |
| hh = simd::abs(hh); |
| if (outT != nullptr) |
| *outT = hh.x > hh.y ? tt.x : tt.y; |
| return fmaxf(hh.x, hh.y); |
| } |
| |
| float measure_cubic_local_curvature(const Vec2D p[4], |
| const math::CubicCoeffs& coeffs, |
| float T, |
| float desiredSpread) |
| { |
| float2 tan = 3.f * (((coeffs.A * T) + 2.f * coeffs.B) * T + coeffs.C); |
| float lengthTan = sqrtf(simd::dot(tan, tan)); |
| if (lengthTan == 0) |
| { |
| return 0; |
| } |
| |
| // Define the function |
| // |
| // Spread(dt) = A__*dt^3 + C__*dt |
| // |
| // Which calculates the spread of the curve in local coordinates, parallel |
| // to tan, over the range "T - dt .. T + dt". |
| tan *= 1 / lengthTan; |
| float A__ = 2 * simd::dot(coeffs.A, tan); |
| float C__ = 3 * (A__ * T + 4 * simd::dot(coeffs.B, tan)) * T + |
| 6 * simd::dot(coeffs.C, tan); |
| |
| // Decide the "targetSpread" across which we will measure curvature. Ideally |
| // this is "desiredSpread", but use less than that if that would reach |
| // outside T=0..1. |
| float maxDT = fminf(T, 1 - T); |
| float maxSpread = (A__ * maxDT * maxDT + C__) * maxDT; |
| // Pad the maxSpread to guarantee we won't step outside T=0..1. |
| float targetSpread = fminf(desiredSpread, maxSpread * .9999f); |
| |
| // Solve for dt, where Spread(dt) == targetSpread. |
| float dt; |
| if (A__ == 0) |
| { |
| // Degenerate case: Spread(dt) == C__*dt. |
| dt = targetSpread / C__; |
| } |
| else |
| { |
| // Solve the normalized cubic x^3 + ax^2 + bx + c == 0. |
| // (Numerical Recipes in C, 5.6 Quadratic and Cubic Equations, |
| // https://hd.fizyka.umk.pl/~jacek/docs/nrc/c5-6.pdf) |
| float r = 1 / A__; |
| float /*a = 0,*/ b = C__ * r, c = -targetSpread * r; |
| float Q = (-1.f / 3) * b, R = .5f * c; |
| float discr = R * R - Q * Q * Q; |
| if (discr < 0) |
| { |
| float sqrtQ = sqrtf(Q); |
| float theta = acosf(R / (sqrtQ * sqrtQ * sqrtQ)); |
| // The 3 roots are: (because a == 0) |
| // -2 * sqrt(Q) * cos(theta/3 + float3{0, 1, -1} * 2*pi/3) |
| // We want the root closest to zero, which will be the 3rd root |
| // because its argument for cos() is always closest to +-pi/2. |
| dt = -2 * sqrtQ * cosf(theta * (1.f / 3) + (-math::PI * 2 / 3)); |
| } |
| else |
| { |
| float A = -copysignf(cbrtf(fabsf(R) + sqrtf(discr)), R); |
| dt = A != 0 ? A + Q / A : 0; |
| } |
| } |
| dt = fabsf(dt); |
| |
| // Measure curvature over the spread T - dt .. T + dt. |
| float4 t0011 = T + float4{-dt, -dt, dt, dt}; |
| float4 tanDirs = |
| (coeffs.A.xyxy * t0011 + 2.f * coeffs.B.xyxy) * t0011 + coeffs.C.xyxy; |
| Vec2D tan0 = math::bit_cast<Vec2D>(tanDirs.xy); |
| Vec2D tan1 = math::bit_cast<Vec2D>(tanDirs.zw); |
| if (t0011.x < 1e-3f) // Calculate a more stable tangent at T <= 0 in case |
| { // we've encountered a cusp. |
| tan0 = (p[0] != p[1] ? p[1] : p[1] != p[2] ? p[2] : p[3]) - p[0]; |
| } |
| if (t0011.z > 1 - 1e-3f) // Calculate a more stable tangent at T >= 1 in |
| { // case we've encountered a cusp. |
| tan1 = p[3] - (p[3] != p[2] ? p[2] : p[2] != p[1] ? p[1] : p[0]); |
| } |
| // NOTE: this will not capture the total absolute curvature if there is an |
| // inflection point, but it's arguably what we want anyway since this will |
| // return the composite curvature over the spread (i.e., clockwise curvature |
| // minus counterclockwise). |
| return math::measure_angle_between_vectors(tan0, tan1); |
| } |
| } // namespace math |
| } // namespace rive |