| /* | 
 |  * Copyright 2020 Google Inc. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  * | 
 |  * Initial import from skia:tests/WangsFormulaTest.cpp | 
 |  * | 
 |  * Copyright 2023 Rive | 
 |  */ | 
 |  | 
 | #include "rive/math/wangs_formula.hpp" | 
 | #include <catch.hpp> | 
 | #include <functional> | 
 |  | 
 | namespace rive | 
 | { | 
 | constexpr static float kPrecision = 4; | 
 | constexpr static float kEpsilon = 1.f / (1 << 12); | 
 |  | 
 | static bool fuzzy_equal(float a, float b, float tolerance = kEpsilon) | 
 | { | 
 |     assert(tolerance >= 0); | 
 |     return fabsf(a - b) <= tolerance; | 
 | } | 
 |  | 
 | const Vec2D kSerp[4] = {{285.625f, 499.687f}, | 
 |                         {411.625f, 808.188f}, | 
 |                         {1064.62f, 135.688f}, | 
 |                         {1042.63f, 585.187f}}; | 
 |  | 
 | const Vec2D kLoop[4] = {{635.625f, 614.687f}, | 
 |                         {171.625f, 236.188f}, | 
 |                         {1064.62f, 135.688f}, | 
 |                         {516.625f, 570.187f}}; | 
 |  | 
 | const Vec2D kQuad[4] = {{460.625f, 557.187f}, {707.121f, 209.688f}, {779.628f, 577.687f}}; | 
 |  | 
 | static void map_pts(const Mat2D& m, Vec2D out[], const Vec2D in[], int n) | 
 | { | 
 |     for (int i = 0; i < n; ++i) | 
 |     { | 
 |         out[i] = m * in[i]; | 
 |     } | 
 | } | 
 |  | 
 | static float wangs_formula_quadratic_reference_impl(float precision, const Vec2D p[3]) | 
 | { | 
 |     float k = (2 * 1) / 8.f * precision; | 
 |     return sqrtf(k * (p[0] - p[1] * 2 + p[2]).length()); | 
 | } | 
 |  | 
 | static float wangs_formula_cubic_reference_impl(float precision, const Vec2D p[4]) | 
 | { | 
 |     float k = (3 * 2) / 8.f * precision; | 
 |     return sqrtf(k * | 
 |                  std::max((p[0] - p[1] * 2 + p[2]).length(), (p[1] - p[2] * 2 + p[3]).length())); | 
 | } | 
 |  | 
 | static void chop_quad_at(const Vec2D src[3], Vec2D dst[5], float t) | 
 | { | 
 |     assert(t > 0 && t < 1); | 
 |  | 
 |     float2 p0 = simd::load2f(&src[0].x); | 
 |     float2 p1 = simd::load2f(&src[1].x); | 
 |     float2 p2 = simd::load2f(&src[2].x); | 
 |     float2 tt(t); | 
 |  | 
 |     float2 p01 = simd::mix(p0, p1, tt); | 
 |     float2 p12 = simd::mix(p1, p2, tt); | 
 |  | 
 |     simd::store(&dst[0].x, p0); | 
 |     simd::store(&dst[1].x, p01); | 
 |     simd::store(&dst[2].x, simd::mix(p01, p12, tt)); | 
 |     simd::store(&dst[3].x, p12); | 
 |     simd::store(&dst[4].x, p2); | 
 | } | 
 |  | 
 | static Vec2D eval_quad_at(const Vec2D src[3], float t) | 
 | { | 
 |     assert(t > 0 && t < 1); | 
 |  | 
 |     float2 p0 = simd::load2f(&src[0].x); | 
 |     float2 p1 = simd::load2f(&src[1].x); | 
 |     float2 p2 = simd::load2f(&src[2].x); | 
 |     float2 tt(t); | 
 |  | 
 |     float2 p01 = simd::mix(p0, p1, tt); | 
 |     float2 p12 = simd::mix(p1, p2, tt); | 
 |     float2 p012 = simd::mix(p01, p12, tt); | 
 |  | 
 |     Vec2D vec; | 
 |     simd::store(&vec.x, p012); | 
 |     return vec; | 
 | } | 
 |  | 
 | // Returns number of segments for linearized quadratic rational. This is an analogue | 
 | // to Wang's formula, taken from: | 
 | // | 
 | //   J. Zheng, T. Sederberg. "Estimating Tessellation Parameter Intervals for | 
 | //   Rational Curves and Surfaces." ACM Transactions on Graphics 19(1). 2000. | 
 | // See Thm 3, Corollary 1. | 
 | // | 
 | // Input points should be in projected space. | 
 | static float wangs_formula_conic_reference_impl(float precision, const Vec2D P[3], const float w) | 
 | { | 
 |     // Compute center of bounding box in projected space | 
 |     float min_x = P[0].x, max_x = min_x, min_y = P[0].y, max_y = min_y; | 
 |     for (int i = 1; i < 3; i++) | 
 |     { | 
 |         min_x = std::min(min_x, P[i].x); | 
 |         max_x = std::max(max_x, P[i].x); | 
 |         min_y = std::min(min_y, P[i].y); | 
 |         max_y = std::max(max_y, P[i].y); | 
 |     } | 
 |     const Vec2D C = Vec2D(0.5f * (min_x + max_x), 0.5f * (min_y + max_y)); | 
 |  | 
 |     // Translate control points and compute max length | 
 |     Vec2D tP[3] = {P[0] - C, P[1] - C, P[2] - C}; | 
 |     float max_len = 0; | 
 |     for (int i = 0; i < 3; i++) | 
 |     { | 
 |         max_len = std::max(max_len, tP[i].length()); | 
 |     } | 
 |     assert(max_len > 0); | 
 |  | 
 |     // Compute delta = parametric step size of linearization | 
 |     const float eps = 1 / precision; | 
 |     const float r_minus_eps = std::max(0.f, max_len - eps); | 
 |     const float min_w = std::min(w, 1.f); | 
 |     const float numer = 4 * min_w * eps; | 
 |     const float denom = | 
 |         (tP[2] - tP[1] * 2 * w + tP[0]).length() + r_minus_eps * std::abs(1 - 2 * w + 1); | 
 |     const float delta = sqrtf(numer / denom); | 
 |  | 
 |     // Return corresponding num segments in the interval [tmin,tmax] | 
 |     constexpr float tmin = 0, tmax = 1; | 
 |     assert(delta > 0); | 
 |     return (tmax - tmin) / delta; | 
 | } | 
 |  | 
 | static float frand() { return rand() / static_cast<float>(RAND_MAX); } | 
 |  | 
 | static float frand_range(float min, float max) { return min + frand() * (max - min); } | 
 |  | 
 | static void for_random_matrices(std::function<void(const Mat2D&)> f) | 
 | { | 
 |     srand(0); | 
 |  | 
 |     Mat2D m{}; | 
 |     f(m); | 
 |  | 
 |     for (int i = -10; i <= 30; ++i) | 
 |     { | 
 |         for (int j = -10; j <= 30; ++j) | 
 |         { | 
 |             m[0] = std::ldexp(1 + frand(), i); | 
 |             m[1] = 0; | 
 |             m[2] = 0; | 
 |             m[3] = std::ldexp(1 + frand(), j); | 
 |             f(m); | 
 |  | 
 |             m[0] = std::ldexp(1 + frand(), i); | 
 |             m[1] = std::ldexp(1 + frand(), (j + i) / 2); | 
 |             m[2] = std::ldexp(1 + frand(), (j + i) / 2); | 
 |             m[3] = std::ldexp(1 + frand(), j); | 
 |             f(m); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void for_random_beziers(int numPoints, | 
 |                                std::function<void(const Vec2D[])> f, | 
 |                                int maxExponent = 30) | 
 | { | 
 |     srand(0); | 
 |  | 
 |     assert(numPoints <= 4); | 
 |     Vec2D pts[4]; | 
 |     for (int i = -10; i <= maxExponent; ++i) | 
 |     { | 
 |         for (int j = 0; j < numPoints; ++j) | 
 |         { | 
 |             pts[j] = {std::ldexp(1 + frand(), i), std::ldexp(1 + frand(), i)}; | 
 |         } | 
 |         f(pts); | 
 |     } | 
 | } | 
 |  | 
 | // Ensure the optimized "*_log2" versions return the same value as ceil(std::log2(f)). | 
 | TEST_CASE("wangs_formula_log2", "[wangs_formula]") | 
 | { | 
 |     // Constructs a cubic such that the 'length' term in wang's formula == term. | 
 |     // | 
 |     //     f = sqrt(k * length(max(abs(p0 - p1*2 + p2), | 
 |     //                             abs(p1 - p2*2 + p3)))); | 
 |     auto setupCubicLengthTerm = [](int seed, Vec2D pts[], float term) { | 
 |         memset(pts, 0, sizeof(Vec2D) * 4); | 
 |  | 
 |         Vec2D term2d = (seed & 1) ? Vec2D(term, 0) : Vec2D(.5f, std::sqrt(3) / 2) * term; | 
 |         seed >>= 1; | 
 |  | 
 |         if (seed & 1) | 
 |         { | 
 |             term2d.x = -term2d.x; | 
 |         } | 
 |         seed >>= 1; | 
 |  | 
 |         if (seed & 1) | 
 |         { | 
 |             std::swap(term2d.x, term2d.y); | 
 |         } | 
 |         seed >>= 1; | 
 |  | 
 |         switch (seed % 4) | 
 |         { | 
 |             case 0: | 
 |                 pts[0] = term2d; | 
 |                 pts[3] = term2d * .75f; | 
 |                 return; | 
 |             case 1: | 
 |                 pts[1] = term2d * -.5f; | 
 |                 return; | 
 |             case 2: | 
 |                 pts[1] = term2d * -.5f; | 
 |                 return; | 
 |             case 3: | 
 |                 pts[3] = term2d; | 
 |                 pts[0] = term2d * .75f; | 
 |                 return; | 
 |         } | 
 |     }; | 
 |  | 
 |     // Constructs a quadratic such that the 'length' term in wang's formula == term. | 
 |     // | 
 |     //     f = sqrt(k * length(p0 - p1*2 + p2)); | 
 |     auto setupQuadraticLengthTerm = [](int seed, Vec2D pts[], float term) { | 
 |         memset(pts, 0, sizeof(Vec2D) * 3); | 
 |  | 
 |         Vec2D term2d = (seed & 1) ? Vec2D(term, 0) : Vec2D(.5f, std::sqrt(3) / 2) * term; | 
 |         seed >>= 1; | 
 |  | 
 |         if (seed & 1) | 
 |         { | 
 |             term2d.x = -term2d.x; | 
 |         } | 
 |         seed >>= 1; | 
 |  | 
 |         if (seed & 1) | 
 |         { | 
 |             std::swap(term2d.x, term2d.y); | 
 |         } | 
 |         seed >>= 1; | 
 |  | 
 |         switch (seed % 3) | 
 |         { | 
 |             case 0: | 
 |                 pts[0] = term2d; | 
 |                 return; | 
 |             case 1: | 
 |                 pts[1] = term2d * -.5f; | 
 |                 return; | 
 |             case 2: | 
 |                 pts[2] = term2d; | 
 |                 return; | 
 |         } | 
 |     }; | 
 |  | 
 |     // wangs_formula_cubic and wangs_formula_quadratic both use rsqrt instead of sqrt for speed. | 
 |     // Linearization is all approximate anyway, so as long as we are within ~1/2 tessellation | 
 |     // segment of the reference value we are good enough. | 
 |     constexpr static float kTessellationTolerance = 1 / 128.f; | 
 |  | 
 |     for (int level = 0; level < 30; ++level) | 
 |     { | 
 |         float epsilon = std::ldexp(kEpsilon, level * 2); | 
 |         Vec2D pts[4]; | 
 |  | 
 |         { | 
 |             // Test cubic boundaries. | 
 |             //     f = sqrt(k * length(max(abs(p0 - p1*2 + p2), | 
 |             //                             abs(p1 - p2*2 + p3)))); | 
 |             constexpr static float k = (3 * 2) / (8 * (1.f / kPrecision)); | 
 |             float x = std::ldexp(1, level * 2) / k; | 
 |             setupCubicLengthTerm(level << 1, pts, x - epsilon); | 
 |             float referenceValue = wangs_formula_cubic_reference_impl(kPrecision, pts); | 
 |             REQUIRE(std::ceil(std::log2(referenceValue)) == level); | 
 |             float c = wangs_formula::cubic(pts, kPrecision); | 
 |             REQUIRE(fuzzy_equal(c / referenceValue, 1, kTessellationTolerance)); | 
 |             REQUIRE(wangs_formula::cubic_log2(pts, kPrecision) == level); | 
 |             setupCubicLengthTerm(level << 1, pts, x + epsilon); | 
 |             referenceValue = wangs_formula_cubic_reference_impl(kPrecision, pts); | 
 |             REQUIRE(std::ceil(std::log2(referenceValue)) == level + 1); | 
 |             c = wangs_formula::cubic(pts, kPrecision); | 
 |             REQUIRE(fuzzy_equal(c / referenceValue, 1, kTessellationTolerance)); | 
 |             REQUIRE(wangs_formula::cubic_log2(pts, kPrecision) == level + 1); | 
 |         } | 
 |  | 
 |         { | 
 |             // Test quadratic boundaries. | 
 |             //     f = std::sqrt(k * Length(p0 - p1*2 + p2)); | 
 |             constexpr static float k = 2 / (8 * (1.f / kPrecision)); | 
 |             float x = std::ldexp(1, level * 2) / k; | 
 |             setupQuadraticLengthTerm(level << 1, pts, x - epsilon); | 
 |             float referenceValue = wangs_formula_quadratic_reference_impl(kPrecision, pts); | 
 |             REQUIRE(std::ceil(std::log2(referenceValue)) == level); | 
 |             float q = wangs_formula::quadratic(pts, kPrecision); | 
 |             REQUIRE(fuzzy_equal(q / referenceValue, 1, kTessellationTolerance)); | 
 |             REQUIRE(wangs_formula::quadratic_log2(pts, kPrecision) == level); | 
 |             setupQuadraticLengthTerm(level << 1, pts, x + epsilon); | 
 |             referenceValue = wangs_formula_quadratic_reference_impl(kPrecision, pts); | 
 |             REQUIRE(std::ceil(std::log2(referenceValue)) == level + 1); | 
 |             q = wangs_formula::quadratic(pts, kPrecision); | 
 |             REQUIRE(fuzzy_equal(q / referenceValue, 1, kTessellationTolerance)); | 
 |             REQUIRE(wangs_formula::quadratic_log2(pts, kPrecision) == level + 1); | 
 |         } | 
 |     } | 
 |  | 
 |     auto check_cubic_log2 = [&](const Vec2D* pts) { | 
 |         float f = std::max(1.f, wangs_formula_cubic_reference_impl(kPrecision, pts)); | 
 |         int f_log2 = wangs_formula::cubic_log2(pts, kPrecision); | 
 |         REQUIRE(ceilf(std::log2(f)) == f_log2); | 
 |         float c = std::max(1.f, wangs_formula::cubic(pts, kPrecision)); | 
 |         REQUIRE(fuzzy_equal(c / f, 1, kTessellationTolerance)); | 
 |     }; | 
 |  | 
 |     auto check_quadratic_log2 = [&](const Vec2D* pts) { | 
 |         float f = std::max(1.f, wangs_formula_quadratic_reference_impl(kPrecision, pts)); | 
 |         int f_log2 = wangs_formula::quadratic_log2(pts, kPrecision); | 
 |         REQUIRE(ceilf(std::log2(f)) == f_log2); | 
 |         float q = std::max(1.f, wangs_formula::quadratic(pts, kPrecision)); | 
 |         REQUIRE(fuzzy_equal(q / f, 1, kTessellationTolerance)); | 
 |     }; | 
 |  | 
 |     for_random_matrices([&](const Mat2D& m) { | 
 |         Vec2D pts[4 + 999]; | 
 |         map_pts(m, pts, kSerp, 4); | 
 |         check_cubic_log2(pts); | 
 |  | 
 |         map_pts(m, pts, kLoop, 4); | 
 |         check_cubic_log2(pts); | 
 |  | 
 |         map_pts(m, pts, kQuad, 3); | 
 |         check_quadratic_log2(pts); | 
 |     }); | 
 |  | 
 |     for_random_beziers(4, [&](const Vec2D pts[]) { check_cubic_log2(pts); }); | 
 |  | 
 |     for_random_beziers(3, [&](const Vec2D pts[]) { check_quadratic_log2(pts); }); | 
 | } | 
 |  | 
 | static void check_cubic_log2_with_transform(const Vec2D* pts, const Mat2D& m) | 
 | { | 
 |     Vec2D ptsXformed[4]; | 
 |     map_pts(m, ptsXformed, pts, 4); | 
 |     int expected = wangs_formula::cubic_log2(ptsXformed, kPrecision); | 
 |     int actual = wangs_formula::cubic_log2(pts, kPrecision, wangs_formula::VectorXform(m)); | 
 |     REQUIRE(actual == expected); | 
 | }; | 
 |  | 
 | static void check_quadratic_log2_with_transform(const Vec2D* pts, const Mat2D& m) | 
 | { | 
 |     Vec2D ptsXformed[3]; | 
 |     map_pts(m, ptsXformed, pts, 3); | 
 |     int expected = wangs_formula::quadratic_log2(ptsXformed, kPrecision); | 
 |     int actual = wangs_formula::quadratic_log2(pts, kPrecision, wangs_formula::VectorXform(m)); | 
 |     REQUIRE(actual == expected); | 
 | }; | 
 |  | 
 | // Ensure using transformations gives the same result as pre-transforming all points. | 
 | TEST_CASE("wangs_formula_vectorXforms", "[wangs_formula]") | 
 | { | 
 |     for_random_matrices([&](const Mat2D& m) { | 
 |         check_cubic_log2_with_transform(kSerp, m); | 
 |         check_cubic_log2_with_transform(kLoop, m); | 
 |         check_quadratic_log2_with_transform(kQuad, m); | 
 |  | 
 |         for_random_beziers(4, [&](const Vec2D pts[]) { check_cubic_log2_with_transform(pts, m); }); | 
 |  | 
 |         for_random_beziers(3, | 
 |                            [&](const Vec2D pts[]) { check_quadratic_log2_with_transform(pts, m); }); | 
 |     }); | 
 | } | 
 |  | 
 | TEST_CASE("wangs_formula_worst_case_cubic", "[wangs_formula]") | 
 | { | 
 |     { | 
 |         Vec2D worstP[] = {{0, 0}, {100, 100}, {0, 0}, {0, 0}}; | 
 |         REQUIRE(wangs_formula::worst_case_cubic(100, 100, kPrecision) == | 
 |                 wangs_formula_cubic_reference_impl(kPrecision, worstP)); | 
 |         REQUIRE(wangs_formula::worst_case_cubic_log2(100, 100, kPrecision) == | 
 |                 wangs_formula::cubic_log2(worstP, kPrecision)); | 
 |     } | 
 |     { | 
 |         Vec2D worstP[] = {{100, 100}, {100, 100}, {200, 200}, {100, 100}}; | 
 |         REQUIRE(wangs_formula::worst_case_cubic(100, 100, kPrecision) == | 
 |                 wangs_formula_cubic_reference_impl(kPrecision, worstP)); | 
 |         REQUIRE(wangs_formula::worst_case_cubic_log2(100, 100, kPrecision) == | 
 |                 wangs_formula::cubic_log2(worstP, kPrecision)); | 
 |     } | 
 |     auto check_worst_case_cubic = [&](const Vec2D* pts) { | 
 |         float2 min = simd::load2f(&pts[0].x), max = simd::load2f(&pts[0].x); | 
 |         for (int i = 1; i < 4; ++i) | 
 |         { | 
 |             min = simd::min(min, simd::load2f(&pts[i].x)); | 
 |             max = simd::max(max, simd::load2f(&pts[i].x)); | 
 |         } | 
 |         float2 size = max - min; | 
 |         float worst = wangs_formula::worst_case_cubic(size.x, size.y, kPrecision); | 
 |         int worst_log2 = wangs_formula::worst_case_cubic_log2(size.x, size.y, kPrecision); | 
 |         float actual = wangs_formula_cubic_reference_impl(kPrecision, pts); | 
 |         REQUIRE(worst >= actual); | 
 |         REQUIRE(std::ceil(std::log2(std::max(1.f, worst))) == worst_log2); | 
 |     }; | 
 |     for (int i = 0; i < 100; ++i) | 
 |     { | 
 |         for_random_beziers(4, [&](const Vec2D pts[]) { check_worst_case_cubic(pts); }); | 
 |     } | 
 |     // Make sure overflow saturates at infinity (not NaN). | 
 |     constexpr static float inf = std::numeric_limits<float>::infinity(); | 
 |     REQUIRE(wangs_formula::worst_case_cubic_pow4(inf, inf, kPrecision) == inf); | 
 |     REQUIRE(wangs_formula::worst_case_cubic(inf, inf, kPrecision) == inf); | 
 | } | 
 |  | 
 | // Ensure Wang's formula for quads produces max error within tolerance. | 
 | TEST_CASE("wangs_formula_quad_within_tol", "[wangs_formula]") | 
 | { | 
 |     // Wang's formula and the quad math starts to lose precision with very large | 
 |     // coordinate values, so limit the magnitude a bit to prevent test failures | 
 |     // due to loss of precision. | 
 |     constexpr int maxExponent = 15; | 
 |     for_random_beziers( | 
 |         3, | 
 |         [](const Vec2D pts[]) { | 
 |             const int nsegs = static_cast<int>( | 
 |                 std::ceil(wangs_formula_quadratic_reference_impl(kPrecision, pts))); | 
 |  | 
 |             const float tdelta = 1.f / nsegs; | 
 |             for (int j = 0; j < nsegs; ++j) | 
 |             { | 
 |                 const float tmin = j * tdelta, tmax = (j + 1) * tdelta; | 
 |  | 
 |                 // Get section of quad in [tmin,tmax] | 
 |                 const Vec2D* sectionPts; | 
 |                 Vec2D tmp0[5]; | 
 |                 Vec2D tmp1[5]; | 
 |                 if (tmin == 0) | 
 |                 { | 
 |                     if (tmax == 1) | 
 |                     { | 
 |                         sectionPts = pts; | 
 |                     } | 
 |                     else | 
 |                     { | 
 |                         chop_quad_at(pts, tmp0, tmax); | 
 |                         sectionPts = tmp0; | 
 |                     } | 
 |                 } | 
 |                 else | 
 |                 { | 
 |                     chop_quad_at(pts, tmp0, tmin); | 
 |                     if (tmax == 1) | 
 |                     { | 
 |                         sectionPts = tmp0 + 2; | 
 |                     } | 
 |                     else | 
 |                     { | 
 |                         chop_quad_at(tmp0 + 2, tmp1, (tmax - tmin) / (1 - tmin)); | 
 |                         sectionPts = tmp1; | 
 |                     } | 
 |                 } | 
 |  | 
 |                 // For quads, max distance from baseline is always at t=0.5. | 
 |                 Vec2D p; | 
 |                 p = eval_quad_at(sectionPts, 0.5f); | 
 |  | 
 |                 // Get distance of p to baseline | 
 |                 const Vec2D n = {sectionPts[2].y - sectionPts[0].y, | 
 |                                  sectionPts[0].x - sectionPts[2].x}; | 
 |                 const float d = std::abs(Vec2D::dot(p - sectionPts[0], n)) / n.length(); | 
 |  | 
 |                 // Check distance is within specified tolerance | 
 |                 REQUIRE(d <= (1.f / kPrecision) + 1e-2f); | 
 |             } | 
 |         }, | 
 |         maxExponent); | 
 | } | 
 |  | 
 | // Ensure the specialized version for rational quads reduces to regular Wang's | 
 | // formula when all weights are equal to one | 
 | TEST_CASE("wangs_formula_rational_quad_reduces", "[wangs_formula]") | 
 | { | 
 |     constexpr static float kTessellationTolerance = 1 / 128.f; | 
 |  | 
 |     for (int i = 0; i < 100; ++i) | 
 |     { | 
 |         for_random_beziers(3, [](const Vec2D pts[]) { | 
 |             const float rational_nsegs = wangs_formula::conic(kPrecision, pts, 1.f); | 
 |             const float integral_nsegs = wangs_formula_quadratic_reference_impl(kPrecision, pts); | 
 |             REQUIRE(fuzzy_equal(rational_nsegs, integral_nsegs, kTessellationTolerance)); | 
 |         }); | 
 |     } | 
 | } | 
 |  | 
 | // Ensure the rational quad version (used for conics) produces max error within tolerance. | 
 | TEST_CASE("wangs_formula_conic_within_tol", "[wangs_formula]") | 
 | { | 
 |     constexpr int maxExponent = 24; | 
 |  | 
 |     srand(0); | 
 |  | 
 |     // Single-precision functions in SkConic/SkGeometry lose too much accuracy with | 
 |     // large-magnitude curves and large weights for this test to pass. | 
 |     using Sk2d = simd::gvec<double, 2>; | 
 |     const auto eval_conic = [](const Vec2D pts[3], double w, double t) -> Sk2d { | 
 |         const auto eval = [](Sk2d A, Sk2d B, Sk2d C, double t) -> Sk2d { | 
 |             return (A * t + B) * t + C; | 
 |         }; | 
 |  | 
 |         const Sk2d p0 = {pts[0].x, pts[0].y}; | 
 |         const Sk2d p1 = {pts[1].x, pts[1].y}; | 
 |         const Sk2d p1w = p1 * w; | 
 |         const Sk2d p2 = {pts[2].x, pts[2].y}; | 
 |         Sk2d numer = eval(p2 - p1w * 2.0 + p0, (p1w - p0) * 2.0, p0, t); | 
 |  | 
 |         Sk2d denomC = {1, 1}; | 
 |         Sk2d denomB = {2 * (w - 1), 2 * (w - 1)}; | 
 |         Sk2d denomA = {-2 * (w - 1), -2 * (w - 1)}; | 
 |         Sk2d denom = eval(denomA, denomB, denomC, t); | 
 |         return numer / denom; | 
 |     }; | 
 |  | 
 |     const auto dot = [](const Sk2d& a, const Sk2d& b) -> double { | 
 |         return a[0] * b[0] + a[1] * b[1]; | 
 |     }; | 
 |  | 
 |     const auto length = [](const Sk2d& p) -> double { return sqrt(p[0] * p[0] + p[1] * p[1]); }; | 
 |  | 
 |     for (int i = -10; i <= 10; ++i) | 
 |     { | 
 |         const float w = std::ldexp(1 + frand(), i); | 
 |         for_random_beziers( | 
 |             3, | 
 |             [&](const Vec2D pts[]) { | 
 |                 const int nsegs = static_cast<int>(ceilf(wangs_formula::conic(kPrecision, pts, w))); | 
 |  | 
 |                 const float tdelta = 1.f / nsegs; | 
 |                 for (int j = 0; j < nsegs; ++j) | 
 |                 { | 
 |                     const float tmin = j * tdelta, tmax = (j + 1) * tdelta, | 
 |                                 tmid = 0.5f * (tmin + tmax); | 
 |  | 
 |                     Sk2d p0, p1, p2; | 
 |                     p0 = eval_conic(pts, w, tmin); | 
 |                     p1 = eval_conic(pts, w, tmid); | 
 |                     p2 = eval_conic(pts, w, tmax); | 
 |  | 
 |                     // Get distance of p1 to baseline (p0, p2). | 
 |                     const Sk2d n = {p2[1] - p0[1], p0[0] - p2[0]}; | 
 |                     assert(length(n) != 0); | 
 |                     const double d = std::abs(dot(p1 - p0, n)) / length(n); | 
 |  | 
 |                     // Check distance is within tolerance | 
 |                     REQUIRE(d <= (1.0 / kPrecision) + kEpsilon); | 
 |                     REQUIRE(d <= (1.0 / kPrecision) + kEpsilon); | 
 |                 } | 
 |             }, | 
 |             maxExponent); | 
 |     } | 
 | } | 
 |  | 
 | // Ensure the vectorized conic version equals the reference implementation | 
 | TEST_CASE("wangs_formula_conic_matches_reference", "[wangs_formula]") | 
 | { | 
 |     srand(0); | 
 |  | 
 |     for (int i = -10; i <= 10; ++i) | 
 |     { | 
 |         const float w = std::ldexp(1 + frand(), i); | 
 |         for_random_beziers(3, [w](const Vec2D pts[]) { | 
 |             const float ref_nsegs = wangs_formula_conic_reference_impl(kPrecision, pts, w); | 
 |             const float nsegs = wangs_formula::conic(kPrecision, pts, w); | 
 |  | 
 |             // Because the Gr version may implement the math differently for performance, | 
 |             // allow different slack in the comparison based on the rough scale of the answer. | 
 |             const float cmpThresh = ref_nsegs * (1.f / (1 << 20)); | 
 |             REQUIRE(fuzzy_equal(ref_nsegs, nsegs, cmpThresh)); | 
 |         }); | 
 |     } | 
 | } | 
 |  | 
 | // Ensure using transformations gives the same result as pre-transforming all points. | 
 | TEST_CASE("wangs_formula_conic_vectorXforms", "[wangs_formula]") | 
 | { | 
 |     srand(0); | 
 |  | 
 |     auto check_conic_with_transform = [&](const Vec2D* pts, float w, const Mat2D& m) { | 
 |         Vec2D ptsXformed[3]; | 
 |         map_pts(m, ptsXformed, pts, 3); | 
 |         float expected = wangs_formula::conic(kPrecision, ptsXformed, w); | 
 |         float actual = wangs_formula::conic(kPrecision, pts, w, wangs_formula::VectorXform(m)); | 
 |         REQUIRE(actual == Approx(expected).margin(1e-4)); | 
 |     }; | 
 |  | 
 |     for (int i = -10; i <= 10; ++i) | 
 |     { | 
 |         const float w = std::ldexp(1 + frand(), i); | 
 |         for_random_beziers(3, [&](const Vec2D pts[]) { | 
 |             check_conic_with_transform(pts, w, Mat2D()); | 
 |             check_conic_with_transform( | 
 |                 pts, | 
 |                 w, | 
 |                 Mat2D::fromScale(frand_range(-10, 10), frand_range(-10, 10))); | 
 |  | 
 |             // Random 2x2 matrix | 
 |             Mat2D m; | 
 |             m[0] = frand_range(-10, 10); | 
 |             m[1] = frand_range(-10, 10); | 
 |             m[2] = frand_range(-10, 10); | 
 |             m[3] = frand_range(-10, 10); | 
 |             check_conic_with_transform(pts, w, m); | 
 |         }); | 
 |     } | 
 | } | 
 | } // namespace rive |