| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| * |
| * Initial import from |
| * skia:c2a399a74da523ec445f1202367764d04b5df2ec@src/gpu/ganesh/geometry/GrTriangulator.h |
| * |
| * Copyright 2023 Rive |
| */ |
| |
| #include "gr_triangulator.hpp" |
| |
| #include <algorithm> |
| |
| #if !defined(SK_ENABLE_OPTIMIZE_SIZE) |
| |
| #if TRIANGULATOR_LOGGING |
| #define TESS_LOG printf |
| #define DUMP_MESH(M) (M).dump() |
| #else |
| #define TESS_LOG(...) |
| #define DUMP_MESH(M) |
| #endif |
| |
| namespace rive |
| { |
| using EdgeType = GrTriangulator::EdgeType; |
| using Vertex = GrTriangulator::Vertex; |
| using VertexList = GrTriangulator::VertexList; |
| using Line = GrTriangulator::Line; |
| using Edge = GrTriangulator::Edge; |
| using EdgeList = GrTriangulator::EdgeList; |
| using Poly = GrTriangulator::Poly; |
| using MonotonePoly = GrTriangulator::MonotonePoly; |
| using Comparator = GrTriangulator::Comparator; |
| |
| static bool is_finite(Vec2D pt) |
| { |
| float accum = 0; |
| accum *= pt.x; |
| accum *= pt.y; |
| |
| // accum is either NaN or it is finite (zero). |
| assert(0 == accum || std::isnan(accum)); |
| |
| // value==value will be true iff value is not NaN |
| // TODO: is it faster to say !accum or accum==accum? |
| return !std::isnan(accum); |
| } |
| |
| template <class T, T* T::*Prev, T* T::*Next> |
| static void list_insert(T* t, T* prev, T* next, T** head, T** tail) |
| { |
| t->*Prev = prev; |
| t->*Next = next; |
| if (prev) |
| { |
| prev->*Next = t; |
| } |
| else if (head) |
| { |
| *head = t; |
| } |
| if (next) |
| { |
| next->*Prev = t; |
| } |
| else if (tail) |
| { |
| *tail = t; |
| } |
| } |
| |
| template <class T, T* T::*Prev, T* T::*Next> static void list_remove(T* t, T** head, T** tail) |
| { |
| if (t->*Prev) |
| { |
| t->*Prev->*Next = t->*Next; |
| } |
| else if (head) |
| { |
| *head = t->*Next; |
| } |
| if (t->*Next) |
| { |
| t->*Next->*Prev = t->*Prev; |
| } |
| else if (tail) |
| { |
| *tail = t->*Prev; |
| } |
| t->*Prev = t->*Next = nullptr; |
| } |
| |
| typedef bool (*CompareFunc)(const Vec2D& a, const Vec2D& b); |
| |
| static bool sweep_lt_horiz(const Vec2D& a, const Vec2D& b) |
| { |
| return a.x < b.x || (a.x == b.x && a.y > b.y); |
| } |
| |
| static bool sweep_lt_vert(const Vec2D& a, const Vec2D& b) |
| { |
| return a.y < b.y || (a.y == b.y && a.x < b.x); |
| } |
| |
| bool GrTriangulator::Comparator::sweep_lt(const Vec2D& a, const Vec2D& b) const |
| { |
| return fDirection == Direction::kHorizontal ? sweep_lt_horiz(a, b) : sweep_lt_vert(a, b); |
| } |
| |
| static inline void emit_vertex(Vertex* v, |
| int winding, |
| uint16_t pathID, |
| pls::WriteOnlyMappedMemory<pls::TriangleVertex>* mappedMemory) |
| { |
| // GrTriangulator and pls unfortunately have opposite winding senses. |
| int16_t plsWeight = -winding; |
| mappedMemory->emplace_back(v->fPoint, plsWeight, pathID); |
| } |
| |
| static void emit_triangle(Vertex* v0, |
| Vertex* v1, |
| Vertex* v2, |
| int winding, |
| uint16_t pathID, |
| pls::WriteOnlyMappedMemory<pls::TriangleVertex>* mappedMemory) |
| { |
| TESS_LOG("emit_triangle %g (%g, %g) %d\n", v0->fID, v0->fPoint.x, v0->fPoint.y, v0->fAlpha); |
| TESS_LOG(" %g (%g, %g) %d\n", v1->fID, v1->fPoint.x, v1->fPoint.y, v1->fAlpha); |
| TESS_LOG(" %g (%g, %g) %d\n", v2->fID, v2->fPoint.x, v2->fPoint.y, v2->fAlpha); |
| #if TESSELLATOR_WIREFRAME |
| emit_vertex(v0, winding, pathID, mappedMemory); |
| emit_vertex(v1, winding, pathID, mappedMemory); |
| emit_vertex(v1, winding, pathID, mappedMemory); |
| emit_vertex(v2, winding, pathID, mappedMemory); |
| emit_vertex(v2, winding, pathID, mappedMemory); |
| emit_vertex(v0, winding, pathID, mappedMemory); |
| #else |
| emit_vertex(v0, winding, pathID, mappedMemory); |
| emit_vertex(v1, winding, pathID, mappedMemory); |
| emit_vertex(v2, winding, pathID, mappedMemory); |
| #endif |
| } |
| |
| void GrTriangulator::VertexList::insert(Vertex* v, Vertex* prev, Vertex* next) |
| { |
| list_insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, prev, next, &fHead, &fTail); |
| } |
| |
| void GrTriangulator::VertexList::remove(Vertex* v) |
| { |
| list_remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, &fHead, &fTail); |
| } |
| |
| // Round to nearest quarter-pixel. This is used for screenspace tessellation. |
| |
| #if 0 |
| static inline void round(Vec2D* p) |
| { |
| p->x = SkScalarRoundToScalar(p->x * 4.0f) * 0.25f; |
| p->y = SkScalarRoundToScalar(p->y * 4.0f) * 0.25f; |
| } |
| #endif |
| |
| static inline float double_to_clamped_scalar(double d) |
| { |
| // Clamps large values to what's finitely representable when cast back to a float. |
| static const double kMaxLimit = (double)std::numeric_limits<float>::max(); |
| // It's not perfect, but a using a value larger than float_min helps protect from denormalized |
| // values and ill-conditions in intermediate calculations on coordinates. |
| static const double kNearZeroLimit = 16 * (double)std::numeric_limits<float>::min(); |
| if (std::abs(d) < kNearZeroLimit) |
| { |
| d = 0.f; |
| } |
| return static_cast<float>(std::max(-kMaxLimit, std::min(d, kMaxLimit))); |
| } |
| |
| #if 0 |
| bool GrTriangulator::Line::intersect(const Line& other, Vec2D* point) const |
| { |
| double denom = fA * other.fB - fB * other.fA; |
| if (denom == 0.0) |
| { |
| return false; |
| } |
| double scale = 1.0 / denom; |
| point->x = double_to_clamped_scalar((fB * other.fC - other.fB * fC) * scale); |
| point->y = double_to_clamped_scalar((other.fA * fC - fA * other.fC) * scale); |
| round(point); |
| return point->isFinite(); |
| } |
| #endif |
| |
| // If the edge's vertices differ by many orders of magnitude, the computed line equation can have |
| // significant error in its distance and intersection tests. To avoid this, we recursively subdivide |
| // long edges and effectively perform a binary search to perform a more accurate intersection test. |
| static bool edge_line_needs_recursion(const Vec2D& p0, const Vec2D& p1) |
| { |
| // ilogbf(0) returns an implementation-defined constant, but we are choosing to saturate |
| // negative exponents to 0 for comparisons sake. We're only trying to recurse on lines with |
| // very large coordinates. |
| int expDiffX = std::abs((std::abs(p0.x) < 1.f ? 0 : std::ilogbf(p0.x)) - |
| (std::abs(p1.x) < 1.f ? 0 : std::ilogbf(p1.x))); |
| int expDiffY = std::abs((std::abs(p0.y) < 1.f ? 0 : std::ilogbf(p0.y)) - |
| (std::abs(p1.y) < 1.f ? 0 : std::ilogbf(p1.y))); |
| // Differ by more than 2^20, or roughly a factor of one million. |
| return expDiffX > 20 || expDiffY > 20; |
| } |
| |
| static bool recursive_edge_intersect(const Line& u, |
| Vec2D u0, |
| Vec2D u1, |
| const Line& v, |
| Vec2D v0, |
| Vec2D v1, |
| Vec2D* p, |
| double* s, |
| double* t) |
| { |
| // First check if the bounding boxes of [u0,u1] intersects [v0,v1]. If they do not, then the |
| // two line segments cannot intersect in their domain (even if the lines themselves might). |
| // - don't use AABB::intersect since the vertices aren't sorted and horiz/vertical lines |
| // appear as empty rects, which then never "intersect" according to AABB. |
| if (std::min(u0.x, u1.x) > std::max(v0.x, v1.x) || |
| std::max(u0.x, u1.x) < std::min(v0.x, v1.x) || |
| std::min(u0.y, u1.y) > std::max(v0.y, v1.y) || std::max(u0.y, u1.y) < std::min(v0.y, v1.y)) |
| { |
| return false; |
| } |
| |
| // Compute intersection based on current segment vertices; if an intersection is found but the |
| // vertices differ too much in magnitude, we recurse using the midpoint of the segment to |
| // reject false positives. We don't currently try to avoid false negatives (e.g. large magnitude |
| // line reports no intersection but there is one). |
| double denom = u.fA * v.fB - u.fB * v.fA; |
| if (denom == 0.0) |
| { |
| return false; |
| } |
| double dx = static_cast<double>(v0.x) - u0.x; |
| double dy = static_cast<double>(v0.y) - u0.y; |
| double sNumer = dy * v.fB + dx * v.fA; |
| double tNumer = dy * u.fB + dx * u.fA; |
| // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early. |
| // This saves us doing the divide below unless absolutely necessary. |
| if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom) |
| : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) |
| { |
| return false; |
| } |
| |
| *s = sNumer / denom; |
| *t = tNumer / denom; |
| assert(*s >= 0.0 && *s <= 1.0 && *t >= 0.0 && *t <= 1.0); |
| |
| const bool uNeedsSplit = edge_line_needs_recursion(u0, u1); |
| const bool vNeedsSplit = edge_line_needs_recursion(v0, v1); |
| if (!uNeedsSplit && !vNeedsSplit) |
| { |
| p->x = double_to_clamped_scalar(u0.x - (*s) * u.fB); |
| p->y = double_to_clamped_scalar(u0.y + (*s) * u.fA); |
| return true; |
| } |
| else |
| { |
| double sScale = 1.0, sShift = 0.0; |
| double tScale = 1.0, tShift = 0.0; |
| |
| if (uNeedsSplit) |
| { |
| Vec2D uM = {(float)(0.5 * u0.x + 0.5 * u1.x), (float)(0.5 * u0.y + 0.5 * u1.y)}; |
| sScale = 0.5; |
| if (*s >= 0.5) |
| { |
| u0 = uM; |
| sShift = 0.5; |
| } |
| else |
| { |
| u1 = uM; |
| } |
| } |
| if (vNeedsSplit) |
| { |
| Vec2D vM = {(float)(0.5 * v0.x + 0.5 * v1.x), (float)(0.5 * v0.y + 0.5 * v1.y)}; |
| tScale = 0.5; |
| if (*t >= 0.5) |
| { |
| v0 = vM; |
| tShift = 0.5; |
| } |
| else |
| { |
| v1 = vM; |
| } |
| } |
| |
| // Just recompute both lines, even if only one was split; we're already in a slow path. |
| if (recursive_edge_intersect(Line(u0, u1), u0, u1, Line(v0, v1), v0, v1, p, s, t)) |
| { |
| // Adjust s and t back to full range |
| *s = sScale * (*s) + sShift; |
| *t = tScale * (*t) + tShift; |
| return true; |
| } |
| else |
| { |
| // False positive |
| return false; |
| } |
| } |
| } |
| |
| bool GrTriangulator::Edge::intersect(const Edge& other, Vec2D* p, uint8_t* alpha) const |
| { |
| TESS_LOG("intersecting %g -> %g with %g -> %g\n", |
| fTop->fID, |
| fBottom->fID, |
| other.fTop->fID, |
| other.fBottom->fID); |
| if (fTop == other.fTop || fBottom == other.fBottom || fTop == other.fBottom || |
| fBottom == other.fTop) |
| { |
| // If the two edges share a vertex by construction, they have already been split and |
| // shouldn't be considered "intersecting" anymore. |
| return false; |
| } |
| |
| double s, t; // needed to interpolate vertex alpha |
| const bool intersects = recursive_edge_intersect(fLine, |
| fTop->fPoint, |
| fBottom->fPoint, |
| other.fLine, |
| other.fTop->fPoint, |
| other.fBottom->fPoint, |
| p, |
| &s, |
| &t); |
| if (!intersects) |
| { |
| return false; |
| } |
| |
| if (alpha) |
| { |
| if (fType == EdgeType::kInner || other.fType == EdgeType::kInner) |
| { |
| // If the intersection is on any interior edge, it needs to stay fully opaque or later |
| // triangulation could leech transparency into the inner fill region. |
| *alpha = 255; |
| } |
| else if (fType == EdgeType::kOuter && other.fType == EdgeType::kOuter) |
| { |
| // Trivially, the intersection will be fully transparent since since it is by |
| // construction on the outer edge. |
| *alpha = 0; |
| } |
| else |
| { |
| // Could be two connectors crossing, or a connector crossing an outer edge. |
| // Take the max interpolated alpha |
| assert(fType == EdgeType::kConnector || other.fType == EdgeType::kConnector); |
| *alpha = std::max((1.0 - s) * fTop->fAlpha + s * fBottom->fAlpha, |
| (1.0 - t) * other.fTop->fAlpha + t * other.fBottom->fAlpha); |
| } |
| } |
| return true; |
| } |
| |
| void GrTriangulator::EdgeList::insert(Edge* edge, Edge* prev, Edge* next) |
| { |
| list_insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &fHead, &fTail); |
| } |
| |
| bool GrTriangulator::EdgeList::remove(Edge* edge) |
| { |
| TESS_LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID); |
| // assert(this->contains(edge)); // Leave this here for future debugging. |
| if (!this->contains(edge)) |
| { |
| return false; |
| } |
| list_remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &fHead, &fTail); |
| return true; |
| } |
| |
| void GrTriangulator::MonotonePoly::addEdge(Edge* edge) |
| { |
| if (fSide == kRight_Side) |
| { |
| assert(!edge->fUsedInRightPoly); |
| list_insert<Edge, &Edge::fRightPolyPrev, &Edge::fRightPolyNext>(edge, |
| fLastEdge, |
| nullptr, |
| &fFirstEdge, |
| &fLastEdge); |
| edge->fUsedInRightPoly = true; |
| } |
| else |
| { |
| assert(!edge->fUsedInLeftPoly); |
| list_insert<Edge, &Edge::fLeftPolyPrev, &Edge::fLeftPolyNext>(edge, |
| fLastEdge, |
| nullptr, |
| &fFirstEdge, |
| &fLastEdge); |
| edge->fUsedInLeftPoly = true; |
| } |
| } |
| |
| void GrTriangulator::emitMonotonePoly( |
| const MonotonePoly* monotonePoly, |
| uint16_t pathID, |
| bool reverseTriangles, |
| pls::WriteOnlyMappedMemory<pls::TriangleVertex>* mappedMemory) const |
| { |
| assert(monotonePoly->fWinding != 0); |
| Edge* e = monotonePoly->fFirstEdge; |
| VertexList vertices; |
| vertices.append(e->fTop); |
| int count = 1; |
| while (e != nullptr) |
| { |
| if (kRight_Side == monotonePoly->fSide) |
| { |
| vertices.append(e->fBottom); |
| e = e->fRightPolyNext; |
| } |
| else |
| { |
| vertices.prepend(e->fBottom); |
| e = e->fLeftPolyNext; |
| } |
| count++; |
| } |
| Vertex* first = vertices.fHead; |
| Vertex* v = first->fNext; |
| while (v != vertices.fTail) |
| { |
| assert(v && v->fPrev && v->fNext); |
| Vertex* prev = v->fPrev; |
| Vertex* curr = v; |
| Vertex* next = v->fNext; |
| if (count == 3) |
| { |
| return emitTriangle(prev, |
| curr, |
| next, |
| monotonePoly->fWinding, |
| pathID, |
| reverseTriangles, |
| mappedMemory); |
| } |
| double ax = static_cast<double>(curr->fPoint.x) - prev->fPoint.x; |
| double ay = static_cast<double>(curr->fPoint.y) - prev->fPoint.y; |
| double bx = static_cast<double>(next->fPoint.x) - curr->fPoint.x; |
| double by = static_cast<double>(next->fPoint.y) - curr->fPoint.y; |
| if (ax * by - ay * bx >= 0.0) |
| { |
| emitTriangle(prev, |
| curr, |
| next, |
| monotonePoly->fWinding, |
| pathID, |
| reverseTriangles, |
| mappedMemory); |
| v->fPrev->fNext = v->fNext; |
| v->fNext->fPrev = v->fPrev; |
| count--; |
| if (v->fPrev == first) |
| { |
| v = v->fNext; |
| } |
| else |
| { |
| v = v->fPrev; |
| } |
| } |
| else |
| { |
| v = v->fNext; |
| } |
| } |
| } |
| |
| void GrTriangulator::emitTriangle( |
| Vertex* prev, |
| Vertex* curr, |
| Vertex* next, |
| int winding, |
| uint16_t pathID, |
| bool reverseTriangles, |
| pls::WriteOnlyMappedMemory<pls::TriangleVertex>* mappedMemory) const |
| { |
| if (reverseTriangles) |
| { |
| std::swap(prev, next); |
| } |
| return emit_triangle(prev, curr, next, winding, pathID, mappedMemory); |
| } |
| |
| GrTriangulator::Poly::Poly(Vertex* v, int winding) : |
| fFirstVertex(v), |
| fWinding(winding), |
| fHead(nullptr), |
| fTail(nullptr), |
| fNext(nullptr), |
| fPartner(nullptr), |
| fCount(0) |
| { |
| #if TRIANGULATOR_LOGGING |
| static int gID = 0; |
| fID = gID++; |
| TESS_LOG("*** created Poly %d\n", fID); |
| #endif |
| } |
| |
| Poly* GrTriangulator::Poly::addEdge(Edge* e, Side side, GrTriangulator* tri) |
| { |
| TESS_LOG("addEdge (%g -> %g) to poly %d, %s side\n", |
| e->fTop->fID, |
| e->fBottom->fID, |
| fID, |
| side == kLeft_Side ? "left" : "right"); |
| Poly* partner = fPartner; |
| Poly* poly = this; |
| if (side == kRight_Side) |
| { |
| if (e->fUsedInRightPoly) |
| { |
| return this; |
| } |
| } |
| else |
| { |
| if (e->fUsedInLeftPoly) |
| { |
| return this; |
| } |
| } |
| if (partner) |
| { |
| fPartner = partner->fPartner = nullptr; |
| } |
| if (!fTail) |
| { |
| fHead = fTail = tri->allocateMonotonePoly(e, side, fWinding); |
| fCount += 2; |
| } |
| else if (e->fBottom == fTail->fLastEdge->fBottom) |
| { |
| return poly; |
| } |
| else if (side == fTail->fSide) |
| { |
| fTail->addEdge(e); |
| fCount++; |
| } |
| else |
| { |
| e = tri->allocateEdge(fTail->fLastEdge->fBottom, e->fBottom, 1, EdgeType::kInner); |
| fTail->addEdge(e); |
| fCount++; |
| if (partner) |
| { |
| partner->addEdge(e, side, tri); |
| poly = partner; |
| } |
| else |
| { |
| MonotonePoly* m = tri->allocateMonotonePoly(e, side, fWinding); |
| m->fPrev = fTail; |
| fTail->fNext = m; |
| fTail = m; |
| } |
| } |
| return poly; |
| } |
| void GrTriangulator::emitPoly(const Poly* poly, |
| uint16_t pathID, |
| bool reverseTriangles, |
| pls::WriteOnlyMappedMemory<pls::TriangleVertex>* mappedMemory) const |
| { |
| if (poly->fCount < 3) |
| { |
| return; |
| } |
| TESS_LOG("emit() %d, size %d\n", poly->fID, poly->fCount); |
| for (MonotonePoly* m = poly->fHead; m != nullptr; m = m->fNext) |
| { |
| emitMonotonePoly(m, pathID, reverseTriangles, mappedMemory); |
| ; |
| } |
| } |
| |
| static bool coincident(const Vec2D& a, const Vec2D& b) { return a == b; } |
| |
| Poly* GrTriangulator::makePoly(Poly** head, Vertex* v, int winding) const |
| { |
| Poly* poly = fAlloc->make<Poly>(v, winding); |
| poly->fNext = *head; |
| *head = poly; |
| return poly; |
| } |
| |
| void GrTriangulator::appendPointToContour(const Vec2D& p, VertexList* contour) const |
| { |
| Vertex* v = fAlloc->make<Vertex>(p, 255); |
| #if TRIANGULATOR_LOGGING |
| static float gID = 0.0f; |
| v->fID = gID++; |
| #endif |
| contour->append(v); |
| } |
| |
| #if 0 |
| static float quad_error_at(const Vec2D pts[3], float t, float u) |
| { |
| SkQuadCoeff quad(pts); |
| Vec2D p0 = to_point(quad.eval(t - 0.5f * u)); |
| Vec2D mid = to_point(quad.eval(t)); |
| Vec2D p1 = to_point(quad.eval(t + 0.5f * u)); |
| if (!p0.isFinite() || !mid.isFinite() || !p1.isFinite()) |
| { |
| return 0; |
| } |
| return SkPointPriv::DistanceToLineSegmentBetweenSqd(mid, p0, p1); |
| } |
| |
| void GrTriangulator::appendQuadraticToContour(const Vec2D pts[3], |
| float toleranceSqd, |
| VertexList* contour) const |
| { |
| SkQuadCoeff quad(pts); |
| skvx::float2 aa = quad.fA * quad.fA; |
| float denom = 2.0f * (aa[0] + aa[1]); |
| skvx::float2 ab = quad.fA * quad.fB; |
| float t = denom ? (-ab[0] - ab[1]) / denom : 0.0f; |
| int nPoints = 1; |
| float u = 1.0f; |
| // Test possible subdivision values only at the point of maximum curvature. |
| // If it passes the flatness metric there, it'll pass everywhere. |
| while (nPoints < GrPathUtils::kMaxPointsPerCurve) |
| { |
| u = 1.0f / nPoints; |
| if (quad_error_at(pts, t, u) < toleranceSqd) |
| { |
| break; |
| } |
| nPoints++; |
| } |
| for (int j = 1; j <= nPoints; j++) |
| { |
| this->appendPointToContour(to_point(quad.eval(j * u)), contour); |
| } |
| } |
| |
| void GrTriangulator::generateCubicPoints(const Vec2D& p0, |
| const Vec2D& p1, |
| const Vec2D& p2, |
| const Vec2D& p3, |
| float tolSqd, |
| VertexList* contour, |
| int pointsLeft) const |
| { |
| float d1 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3); |
| float d2 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3); |
| if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) || !SkIsFinite(d1, d2)) |
| { |
| this->appendPointToContour(p3, contour); |
| return; |
| } |
| const Vec2D q[] = {{SkScalarAve(p0.x, p1.x), SkScalarAve(p0.y, p1.y)}, |
| {SkScalarAve(p1.x, p2.x), SkScalarAve(p1.y, p2.y)}, |
| {SkScalarAve(p2.x, p3.x), SkScalarAve(p2.y, p3.y)}}; |
| const Vec2D r[] = {{SkScalarAve(q[0].x, q[1].x), SkScalarAve(q[0].y, q[1].y)}, |
| {SkScalarAve(q[1].x, q[2].x), SkScalarAve(q[1].y, q[2].y)}}; |
| const Vec2D s = {SkScalarAve(r[0].x, r[1].x), SkScalarAve(r[0].y, r[1].y)}; |
| pointsLeft >>= 1; |
| this->generateCubicPoints(p0, q[0], r[0], s, tolSqd, contour, pointsLeft); |
| this->generateCubicPoints(s, r[1], q[2], p3, tolSqd, contour, pointsLeft); |
| } |
| #endif |
| |
| // Stage 1: convert the input path to a set of linear contours (linked list of Vertices). |
| |
| void GrTriangulator::pathToContours(const RawPath& path, |
| float tolerance, |
| const AABB& clipBounds, |
| VertexList* contours, |
| bool* isLinear) const |
| { |
| #if 0 |
| float toleranceSqd = tolerance * tolerance; |
| Vec2D pts[4]; |
| #endif |
| *isLinear = true; |
| VertexList* contour = contours; |
| #if 0 |
| RawPath::Iter iter(fPath, false); |
| if (path.isInverseFillType()) |
| { |
| Vec2D quad[4]; |
| clipBounds.toQuad(quad); |
| for (int i = 3; i >= 0; i--) |
| { |
| this->appendPointToContour(quad[i], contours); |
| } |
| contour++; |
| } |
| SkAutoConicToQuads converter; |
| #endif |
| for (const auto [verb, pts] : path) |
| { |
| switch (verb) |
| { |
| #if 0 |
| case SkPath::kConic_Verb: |
| { |
| *isLinear = false; |
| if (toleranceSqd == 0) |
| { |
| this->appendPointToContour(pts[2], contour); |
| break; |
| } |
| float weight = iter.conicWeight(); |
| const Vec2D* quadPts = converter.computeQuads(pts, weight, toleranceSqd); |
| for (int i = 0; i < converter.countQuads(); ++i) |
| { |
| this->appendQuadraticToContour(quadPts, toleranceSqd, contour); |
| quadPts += 2; |
| } |
| break; |
| } |
| #endif |
| case PathVerb::move: |
| if (contour->fHead) |
| { |
| contour++; |
| } |
| if (is_finite(pts[0])) |
| { |
| this->appendPointToContour(pts[0], contour); |
| } |
| break; |
| case PathVerb::line: |
| { |
| if (is_finite(pts[1])) |
| { |
| this->appendPointToContour(pts[1], contour); |
| } |
| break; |
| } |
| case PathVerb::quad: |
| { |
| #if 0 |
| *isLinear = false; |
| if (toleranceSqd == 0) |
| { |
| this->appendPointToContour(pts[2], contour); |
| break; |
| } |
| this->appendQuadraticToContour(pts, toleranceSqd, contour); |
| break; |
| #else |
| RIVE_UNREACHABLE(); |
| #endif |
| } |
| case PathVerb::cubic: |
| { |
| #if 0 |
| *isLinear = false; |
| if (toleranceSqd == 0) |
| { |
| this->appendPointToContour(pts[3], contour); |
| break; |
| } |
| int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance); |
| this->generateCubicPoints(pts[0], |
| pts[1], |
| pts[2], |
| pts[3], |
| toleranceSqd, |
| contour, |
| pointsLeft); |
| break; |
| #else |
| RIVE_UNREACHABLE(); |
| #endif |
| } |
| case PathVerb::close: |
| break; |
| } |
| } |
| } |
| |
| static inline bool apply_fill_type(FillRule fillRule, int winding) |
| { |
| switch (fillRule) |
| { |
| case FillRule::nonZero: |
| return winding != 0; |
| case FillRule::evenOdd: |
| return (winding & 1) != 0; |
| default: |
| RIVE_UNREACHABLE(); |
| } |
| } |
| |
| bool GrTriangulator::applyFillType(int winding) const |
| { |
| return apply_fill_type(fFillRule, winding); |
| } |
| |
| static inline bool apply_fill_type(FillRule fillType, const Poly* poly) |
| { |
| return poly && apply_fill_type(fillType, poly->fWinding); |
| } |
| |
| MonotonePoly* GrTriangulator::allocateMonotonePoly(Edge* edge, Side side, int winding) |
| { |
| ++fNumMonotonePolys; |
| return fAlloc->make<MonotonePoly>(edge, side, winding); |
| } |
| |
| Edge* GrTriangulator::allocateEdge(Vertex* top, Vertex* bottom, int winding, EdgeType type) |
| { |
| ++fNumEdges; |
| return fAlloc->make<Edge>(top, bottom, winding, type); |
| } |
| |
| Edge* GrTriangulator::makeEdge(Vertex* prev, Vertex* next, EdgeType type, const Comparator& c) |
| { |
| assert(prev->fPoint != next->fPoint); |
| int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1; |
| Vertex* top = winding < 0 ? next : prev; |
| Vertex* bottom = winding < 0 ? prev : next; |
| return this->allocateEdge(top, bottom, winding, type); |
| } |
| |
| bool EdgeList::insert(Edge* edge, Edge* prev) |
| { |
| TESS_LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID); |
| // assert(!this->contains(edge)); // Leave this here for debugging. |
| if (this->contains(edge)) |
| { |
| return false; |
| } |
| Edge* next = prev ? prev->fRight : fHead; |
| this->insert(edge, prev, next); |
| return true; |
| } |
| |
| void GrTriangulator::FindEnclosingEdges(const Vertex& v, |
| const EdgeList& edges, |
| Edge** left, |
| Edge** right) |
| { |
| if (v.fFirstEdgeAbove && v.fLastEdgeAbove) |
| { |
| *left = v.fFirstEdgeAbove->fLeft; |
| *right = v.fLastEdgeAbove->fRight; |
| return; |
| } |
| Edge* next = nullptr; |
| Edge* prev; |
| for (prev = edges.fTail; prev != nullptr; prev = prev->fLeft) |
| { |
| if (prev->isLeftOf(v)) |
| { |
| break; |
| } |
| next = prev; |
| } |
| *left = prev; |
| *right = next; |
| } |
| |
| void GrTriangulator::Edge::insertAbove(Vertex* v, const Comparator& c) |
| { |
| if (fTop->fPoint == fBottom->fPoint || c.sweep_lt(fBottom->fPoint, fTop->fPoint)) |
| { |
| return; |
| } |
| TESS_LOG("insert edge (%g -> %g) above vertex %g\n", fTop->fID, fBottom->fID, v->fID); |
| Edge* prev = nullptr; |
| Edge* next; |
| for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) |
| { |
| if (next->isRightOf(*fTop)) |
| { |
| break; |
| } |
| prev = next; |
| } |
| list_insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(this, |
| prev, |
| next, |
| &v->fFirstEdgeAbove, |
| &v->fLastEdgeAbove); |
| } |
| |
| void GrTriangulator::Edge::insertBelow(Vertex* v, const Comparator& c) |
| { |
| if (fTop->fPoint == fBottom->fPoint || c.sweep_lt(fBottom->fPoint, fTop->fPoint)) |
| { |
| return; |
| } |
| TESS_LOG("insert edge (%g -> %g) below vertex %g\n", fTop->fID, fBottom->fID, v->fID); |
| Edge* prev = nullptr; |
| Edge* next; |
| for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) |
| { |
| if (next->isRightOf(*fBottom)) |
| { |
| break; |
| } |
| prev = next; |
| } |
| list_insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(this, |
| prev, |
| next, |
| &v->fFirstEdgeBelow, |
| &v->fLastEdgeBelow); |
| } |
| |
| static void remove_edge_above(Edge* edge) |
| { |
| assert(edge->fTop && edge->fBottom); |
| TESS_LOG("removing edge (%g -> %g) above vertex %g\n", |
| edge->fTop->fID, |
| edge->fBottom->fID, |
| edge->fBottom->fID); |
| list_remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(edge, |
| &edge->fBottom->fFirstEdgeAbove, |
| &edge->fBottom->fLastEdgeAbove); |
| } |
| |
| static void remove_edge_below(Edge* edge) |
| { |
| assert(edge->fTop && edge->fBottom); |
| TESS_LOG("removing edge (%g -> %g) below vertex %g\n", |
| edge->fTop->fID, |
| edge->fBottom->fID, |
| edge->fTop->fID); |
| list_remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(edge, |
| &edge->fTop->fFirstEdgeBelow, |
| &edge->fTop->fLastEdgeBelow); |
| } |
| |
| void GrTriangulator::Edge::disconnect() |
| { |
| remove_edge_above(this); |
| remove_edge_below(this); |
| } |
| |
| static bool rewind(EdgeList* activeEdges, Vertex** current, Vertex* dst, const Comparator& c) |
| { |
| if (!current || *current == dst || c.sweep_lt((*current)->fPoint, dst->fPoint)) |
| { |
| return true; |
| } |
| Vertex* v = *current; |
| TESS_LOG("rewinding active edges from vertex %g to vertex %g\n", v->fID, dst->fID); |
| while (v != dst) |
| { |
| v = v->fPrev; |
| for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) |
| { |
| if (!activeEdges->remove(e)) |
| { |
| return false; |
| } |
| } |
| Edge* leftEdge = v->fLeftEnclosingEdge; |
| for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) |
| { |
| if (!activeEdges->insert(e, leftEdge)) |
| { |
| return false; |
| } |
| leftEdge = e; |
| Vertex* top = e->fTop; |
| if (c.sweep_lt(top->fPoint, dst->fPoint) && |
| ((top->fLeftEnclosingEdge && !top->fLeftEnclosingEdge->isLeftOf(*e->fTop)) || |
| (top->fRightEnclosingEdge && !top->fRightEnclosingEdge->isRightOf(*e->fTop)))) |
| { |
| dst = top; |
| } |
| } |
| } |
| *current = v; |
| return true; |
| } |
| |
| static bool rewind_if_necessary(Edge* edge, |
| EdgeList* activeEdges, |
| Vertex** current, |
| const Comparator& c) |
| { |
| if (!activeEdges || !current) |
| { |
| return true; |
| } |
| if (!edge) |
| { |
| return false; |
| } |
| Vertex* top = edge->fTop; |
| Vertex* bottom = edge->fBottom; |
| if (edge->fLeft) |
| { |
| Vertex* leftTop = edge->fLeft->fTop; |
| Vertex* leftBottom = edge->fLeft->fBottom; |
| if (leftTop && leftBottom) |
| { |
| if (c.sweep_lt(leftTop->fPoint, top->fPoint) && !edge->fLeft->isLeftOf(*top)) |
| { |
| if (!rewind(activeEdges, current, leftTop, c)) |
| { |
| return false; |
| } |
| } |
| else if (c.sweep_lt(top->fPoint, leftTop->fPoint) && !edge->isRightOf(*leftTop)) |
| { |
| if (!rewind(activeEdges, current, top, c)) |
| { |
| return false; |
| } |
| } |
| else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) && |
| !edge->fLeft->isLeftOf(*bottom)) |
| { |
| if (!rewind(activeEdges, current, leftTop, c)) |
| { |
| return false; |
| } |
| } |
| else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && |
| !edge->isRightOf(*leftBottom)) |
| { |
| if (!rewind(activeEdges, current, top, c)) |
| { |
| return false; |
| } |
| } |
| } |
| } |
| if (edge->fRight) |
| { |
| Vertex* rightTop = edge->fRight->fTop; |
| Vertex* rightBottom = edge->fRight->fBottom; |
| if (rightTop && rightBottom) |
| { |
| if (c.sweep_lt(rightTop->fPoint, top->fPoint) && !edge->fRight->isRightOf(*top)) |
| { |
| if (!rewind(activeEdges, current, rightTop, c)) |
| { |
| return false; |
| } |
| } |
| else if (c.sweep_lt(top->fPoint, rightTop->fPoint) && !edge->isLeftOf(*rightTop)) |
| { |
| if (!rewind(activeEdges, current, top, c)) |
| { |
| return false; |
| } |
| } |
| else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) && |
| !edge->fRight->isRightOf(*bottom)) |
| { |
| if (!rewind(activeEdges, current, rightTop, c)) |
| { |
| return false; |
| } |
| } |
| else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) && |
| !edge->isLeftOf(*rightBottom)) |
| { |
| if (!rewind(activeEdges, current, top, c)) |
| { |
| return false; |
| } |
| } |
| } |
| } |
| return true; |
| } |
| |
| bool GrTriangulator::setTop(Edge* edge, |
| Vertex* v, |
| EdgeList* activeEdges, |
| Vertex** current, |
| const Comparator& c) const |
| { |
| remove_edge_below(edge); |
| if (fCollectBreadcrumbTriangles) |
| { |
| fBreadcrumbList.append(fAlloc, |
| edge->fTop->fPoint, |
| edge->fBottom->fPoint, |
| v->fPoint, |
| edge->fWinding); |
| } |
| edge->fTop = v; |
| edge->recompute(); |
| edge->insertBelow(v, c); |
| if (!rewind_if_necessary(edge, activeEdges, current, c)) |
| { |
| return false; |
| } |
| return this->mergeCollinearEdges(edge, activeEdges, current, c); |
| } |
| |
| bool GrTriangulator::setBottom(Edge* edge, |
| Vertex* v, |
| EdgeList* activeEdges, |
| Vertex** current, |
| const Comparator& c) const |
| { |
| remove_edge_above(edge); |
| if (fCollectBreadcrumbTriangles) |
| { |
| fBreadcrumbList.append(fAlloc, |
| edge->fTop->fPoint, |
| edge->fBottom->fPoint, |
| v->fPoint, |
| edge->fWinding); |
| } |
| edge->fBottom = v; |
| edge->recompute(); |
| edge->insertAbove(v, c); |
| if (!rewind_if_necessary(edge, activeEdges, current, c)) |
| { |
| return false; |
| } |
| return this->mergeCollinearEdges(edge, activeEdges, current, c); |
| } |
| |
| bool GrTriangulator::mergeEdgesAbove(Edge* edge, |
| Edge* other, |
| EdgeList* activeEdges, |
| Vertex** current, |
| const Comparator& c) const |
| { |
| if (!edge || !other) |
| { |
| return false; |
| } |
| if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) |
| { |
| TESS_LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n", |
| edge->fTop->fPoint.x, |
| edge->fTop->fPoint.y, |
| edge->fBottom->fPoint.x, |
| edge->fBottom->fPoint.y); |
| if (!rewind(activeEdges, current, edge->fTop, c)) |
| { |
| return false; |
| } |
| other->fWinding += edge->fWinding; |
| edge->disconnect(); |
| edge->fTop = edge->fBottom = nullptr; |
| } |
| else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) |
| { |
| if (!rewind(activeEdges, current, edge->fTop, c)) |
| { |
| return false; |
| } |
| other->fWinding += edge->fWinding; |
| if (!this->setBottom(edge, other->fTop, activeEdges, current, c)) |
| { |
| return false; |
| } |
| } |
| else |
| { |
| if (!rewind(activeEdges, current, other->fTop, c)) |
| { |
| return false; |
| } |
| edge->fWinding += other->fWinding; |
| if (!this->setBottom(other, edge->fTop, activeEdges, current, c)) |
| { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool GrTriangulator::mergeEdgesBelow(Edge* edge, |
| Edge* other, |
| EdgeList* activeEdges, |
| Vertex** current, |
| const Comparator& c) const |
| { |
| if (!edge || !other) |
| { |
| return false; |
| } |
| if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) |
| { |
| TESS_LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n", |
| edge->fTop->fPoint.x, |
| edge->fTop->fPoint.y, |
| edge->fBottom->fPoint.x, |
| edge->fBottom->fPoint.y); |
| if (!rewind(activeEdges, current, edge->fTop, c)) |
| { |
| return false; |
| } |
| other->fWinding += edge->fWinding; |
| edge->disconnect(); |
| edge->fTop = edge->fBottom = nullptr; |
| } |
| else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) |
| { |
| if (!rewind(activeEdges, current, other->fTop, c)) |
| { |
| return false; |
| } |
| edge->fWinding += other->fWinding; |
| if (!this->setTop(other, edge->fBottom, activeEdges, current, c)) |
| { |
| return false; |
| } |
| } |
| else |
| { |
| if (!rewind(activeEdges, current, edge->fTop, c)) |
| { |
| return false; |
| } |
| other->fWinding += edge->fWinding; |
| if (!this->setTop(edge, other->fBottom, activeEdges, current, c)) |
| { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static bool top_collinear(Edge* left, Edge* right) |
| { |
| if (!left || !right) |
| { |
| return false; |
| } |
| return left->fTop->fPoint == right->fTop->fPoint || !left->isLeftOf(*right->fTop) || |
| !right->isRightOf(*left->fTop); |
| } |
| |
| static bool bottom_collinear(Edge* left, Edge* right) |
| { |
| if (!left || !right) |
| { |
| return false; |
| } |
| return left->fBottom->fPoint == right->fBottom->fPoint || !left->isLeftOf(*right->fBottom) || |
| !right->isRightOf(*left->fBottom); |
| } |
| |
| bool GrTriangulator::mergeCollinearEdges(Edge* edge, |
| EdgeList* activeEdges, |
| Vertex** current, |
| const Comparator& c) const |
| { |
| for (;;) |
| { |
| if (top_collinear(edge->fPrevEdgeAbove, edge)) |
| { |
| if (!this->mergeEdgesAbove(edge->fPrevEdgeAbove, edge, activeEdges, current, c)) |
| { |
| return false; |
| } |
| } |
| else if (top_collinear(edge, edge->fNextEdgeAbove)) |
| { |
| if (!this->mergeEdgesAbove(edge->fNextEdgeAbove, edge, activeEdges, current, c)) |
| { |
| return false; |
| } |
| } |
| else if (bottom_collinear(edge->fPrevEdgeBelow, edge)) |
| { |
| if (!this->mergeEdgesBelow(edge->fPrevEdgeBelow, edge, activeEdges, current, c)) |
| { |
| return false; |
| } |
| } |
| else if (bottom_collinear(edge, edge->fNextEdgeBelow)) |
| { |
| if (!this->mergeEdgesBelow(edge->fNextEdgeBelow, edge, activeEdges, current, c)) |
| { |
| return false; |
| } |
| } |
| else |
| { |
| break; |
| } |
| } |
| assert(!top_collinear(edge->fPrevEdgeAbove, edge)); |
| assert(!top_collinear(edge, edge->fNextEdgeAbove)); |
| assert(!bottom_collinear(edge->fPrevEdgeBelow, edge)); |
| assert(!bottom_collinear(edge, edge->fNextEdgeBelow)); |
| return true; |
| } |
| |
| GrTriangulator::BoolFail GrTriangulator::splitEdge(Edge* edge, |
| Vertex* v, |
| EdgeList* activeEdges, |
| Vertex** current, |
| const Comparator& c) |
| { |
| if (!edge->fTop || !edge->fBottom || v == edge->fTop || v == edge->fBottom) |
| { |
| return BoolFail::kFalse; |
| } |
| TESS_LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n", |
| edge->fTop->fID, |
| edge->fBottom->fID, |
| v->fID, |
| v->fPoint.x, |
| v->fPoint.y); |
| Vertex* top; |
| Vertex* bottom; |
| int winding = edge->fWinding; |
| // Theoretically, and ideally, the edge betwee p0 and p1 is being split by v, and v is "between" |
| // the segment end points according to c. This is equivalent to p0 < v < p1. Unfortunately, if |
| // v was clamped/rounded this relation doesn't always hold. |
| if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) |
| { |
| // Actually "v < p0 < p1": update 'edge' to be v->p1 and add v->p0. We flip the winding on |
| // the new edge so that it winds as if it were p0->v. |
| top = v; |
| bottom = edge->fTop; |
| winding *= -1; |
| if (!this->setTop(edge, v, activeEdges, current, c)) |
| { |
| return BoolFail::kFail; |
| } |
| } |
| else if (c.sweep_lt(edge->fBottom->fPoint, v->fPoint)) |
| { |
| // Actually "p0 < p1 < v": update 'edge' to be p0->v and add p1->v. We flip the winding on |
| // the new edge so that it winds as if it were v->p1. |
| top = edge->fBottom; |
| bottom = v; |
| winding *= -1; |
| if (!this->setBottom(edge, v, activeEdges, current, c)) |
| { |
| return BoolFail::kFail; |
| } |
| } |
| else |
| { |
| // The ideal case, "p0 < v < p1": update 'edge' to be p0->v and add v->p1. Original winding |
| // is valid for both edges. |
| top = v; |
| bottom = edge->fBottom; |
| if (!this->setBottom(edge, v, activeEdges, current, c)) |
| { |
| return BoolFail::kFail; |
| } |
| } |
| Edge* newEdge = this->allocateEdge(top, bottom, winding, edge->fType); |
| newEdge->insertBelow(top, c); |
| newEdge->insertAbove(bottom, c); |
| if (!this->mergeCollinearEdges(newEdge, activeEdges, current, c)) |
| { |
| return BoolFail::kFail; |
| } |
| return BoolFail::kTrue; |
| } |
| |
| GrTriangulator::BoolFail GrTriangulator::intersectEdgePair(Edge* left, |
| Edge* right, |
| EdgeList* activeEdges, |
| Vertex** current, |
| const Comparator& c) |
| { |
| if (!left->fTop || !left->fBottom || !right->fTop || !right->fBottom) |
| { |
| return BoolFail::kFalse; |
| } |
| if (left->fTop == right->fTop || left->fBottom == right->fBottom) |
| { |
| return BoolFail::kFalse; |
| } |
| |
| // Check if the lines intersect as determined by isLeftOf and isRightOf, since that is the |
| // source of ground truth. It may suggest an intersection even if Edge::intersect() did not have |
| // the precision to check it. In this case we are explicitly correcting the edge topology to |
| // match the sided-ness checks. |
| Edge* split = nullptr; |
| Vertex* splitAt = nullptr; |
| if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) |
| { |
| if (!left->isLeftOf(*right->fTop)) |
| { |
| split = left; |
| splitAt = right->fTop; |
| } |
| } |
| else |
| { |
| if (!right->isRightOf(*left->fTop)) |
| { |
| split = right; |
| splitAt = left->fTop; |
| } |
| } |
| if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) |
| { |
| if (!left->isLeftOf(*right->fBottom)) |
| { |
| split = left; |
| splitAt = right->fBottom; |
| } |
| } |
| else |
| { |
| if (!right->isRightOf(*left->fBottom)) |
| { |
| split = right; |
| splitAt = left->fBottom; |
| } |
| } |
| |
| if (!split) |
| { |
| return BoolFail::kFalse; |
| } |
| |
| // Rewind to the top of the edge that is "moving" since this topology correction can change the |
| // geometry of the split edge. |
| if (!rewind(activeEdges, current, split->fTop, c)) |
| { |
| return BoolFail::kFail; |
| } |
| return this->splitEdge(split, splitAt, activeEdges, current, c); |
| } |
| |
| Edge* GrTriangulator::makeConnectingEdge(Vertex* prev, |
| Vertex* next, |
| EdgeType type, |
| const Comparator& c, |
| int windingScale) |
| { |
| if (!prev || !next || prev->fPoint == next->fPoint) |
| { |
| return nullptr; |
| } |
| Edge* edge = this->makeEdge(prev, next, type, c); |
| edge->insertBelow(edge->fTop, c); |
| edge->insertAbove(edge->fBottom, c); |
| edge->fWinding *= windingScale; |
| this->mergeCollinearEdges(edge, nullptr, nullptr, c); |
| return edge; |
| } |
| |
| void GrTriangulator::mergeVertices(Vertex* src, |
| Vertex* dst, |
| VertexList* mesh, |
| const Comparator& c) const |
| { |
| TESS_LOG("found coincident verts at %g, %g; merging %g into %g\n", |
| src->fPoint.x, |
| src->fPoint.y, |
| src->fID, |
| dst->fID); |
| dst->fAlpha = std::max(src->fAlpha, dst->fAlpha); |
| if (src->fPartner) |
| { |
| src->fPartner->fPartner = dst; |
| } |
| while (Edge* edge = src->fFirstEdgeAbove) |
| { |
| std::ignore = this->setBottom(edge, dst, nullptr, nullptr, c); |
| } |
| while (Edge* edge = src->fFirstEdgeBelow) |
| { |
| std::ignore = this->setTop(edge, dst, nullptr, nullptr, c); |
| } |
| mesh->remove(src); |
| dst->fSynthetic = true; |
| } |
| |
| Vertex* GrTriangulator::makeSortedVertex(const Vec2D& p, |
| uint8_t alpha, |
| VertexList* mesh, |
| Vertex* reference, |
| const Comparator& c) const |
| { |
| Vertex* prevV = reference; |
| while (prevV && c.sweep_lt(p, prevV->fPoint)) |
| { |
| prevV = prevV->fPrev; |
| } |
| Vertex* nextV = prevV ? prevV->fNext : mesh->fHead; |
| while (nextV && c.sweep_lt(nextV->fPoint, p)) |
| { |
| prevV = nextV; |
| nextV = nextV->fNext; |
| } |
| Vertex* v; |
| if (prevV && coincident(prevV->fPoint, p)) |
| { |
| v = prevV; |
| } |
| else if (nextV && coincident(nextV->fPoint, p)) |
| { |
| v = nextV; |
| } |
| else |
| { |
| v = fAlloc->make<Vertex>(p, alpha); |
| #if TRIANGULATOR_LOGGING |
| if (!prevV) |
| { |
| v->fID = mesh->fHead->fID - 1.0f; |
| } |
| else if (!nextV) |
| { |
| v->fID = mesh->fTail->fID + 1.0f; |
| } |
| else |
| { |
| v->fID = (prevV->fID + nextV->fID) * 0.5f; |
| } |
| #endif |
| mesh->insert(v, prevV, nextV); |
| } |
| return v; |
| } |
| |
| // Clamps x and y coordinates independently, so the returned point will lie within the bounding |
| // box formed by the corners of 'min' and 'max' (although min/max here refer to the ordering |
| // imposed by 'c'). |
| static Vec2D clamp(Vec2D p, Vec2D min, Vec2D max, const Comparator& c) |
| { |
| if (c.fDirection == Comparator::Direction::kHorizontal) |
| { |
| // With horizontal sorting, we know min.x <= max.x, but there's no relation between |
| // Y components unless min.x == max.x. |
| return {std::clamp(p.x, min.x, max.x), |
| min.y < max.y ? std::clamp(p.y, min.y, max.y) : std::clamp(p.y, max.y, min.y)}; |
| } |
| else |
| { |
| // And with vertical sorting, we know Y's relation but not necessarily X's. |
| return {min.x < max.x ? std::clamp(p.x, min.x, max.x) : std::clamp(p.x, max.x, min.x), |
| std::clamp(p.y, min.y, max.y)}; |
| } |
| } |
| |
| #if 0 |
| void GrTriangulator::computeBisector(Edge* edge1, Edge* edge2, Vertex* v) const |
| { |
| assert(fEmitCoverage); // Edge-AA only! |
| Line line1 = edge1->fLine; |
| Line line2 = edge2->fLine; |
| line1.normalize(); |
| line2.normalize(); |
| double cosAngle = line1.fA * line2.fA + line1.fB * line2.fB; |
| if (cosAngle > 0.999) |
| { |
| return; |
| } |
| line1.fC += edge1->fWinding > 0 ? -1 : 1; |
| line2.fC += edge2->fWinding > 0 ? -1 : 1; |
| Vec2D p; |
| if (line1.intersect(line2, &p)) |
| { |
| uint8_t alpha = edge1->fType == EdgeType::kOuter ? 255 : 0; |
| v->fPartner = fAlloc->make<Vertex>(p, alpha); |
| TESS_LOG("computed bisector (%g,%g) alpha %d for vertex %g\n", p.x, p.y, alpha, v->fID); |
| } |
| } |
| #endif |
| |
| GrTriangulator::BoolFail GrTriangulator::checkForIntersection(Edge* left, |
| Edge* right, |
| EdgeList* activeEdges, |
| Vertex** current, |
| VertexList* mesh, |
| const Comparator& c) |
| { |
| if (!left || !right) |
| { |
| return BoolFail::kFalse; |
| } |
| Vec2D p; |
| uint8_t alpha; |
| // If we are going to call intersect, then there must be tops and bottoms. |
| if (!left->fTop || !left->fBottom || !right->fTop || !right->fBottom) |
| { |
| return BoolFail::kFail; |
| } |
| if (left->intersect(*right, &p, &alpha) && is_finite(p)) |
| { |
| Vertex* v; |
| TESS_LOG("found intersection, pt is %g, %g\n", p.x, p.y); |
| Vertex* top = *current; |
| // If the intersection point is above the current vertex, rewind to the vertex above the |
| // intersection. |
| while (top && c.sweep_lt(p, top->fPoint)) |
| { |
| top = top->fPrev; |
| } |
| |
| // Always clamp the intersection to lie between the vertices of each segment, since |
| // in theory that's where the intersection is, but in reality, floating point error may |
| // have computed an intersection beyond a vertex's component(s). |
| p = clamp(p, left->fTop->fPoint, left->fBottom->fPoint, c); |
| p = clamp(p, right->fTop->fPoint, right->fBottom->fPoint, c); |
| |
| if (coincident(p, left->fTop->fPoint)) |
| { |
| v = left->fTop; |
| } |
| else if (coincident(p, left->fBottom->fPoint)) |
| { |
| v = left->fBottom; |
| } |
| else if (coincident(p, right->fTop->fPoint)) |
| { |
| v = right->fTop; |
| } |
| else if (coincident(p, right->fBottom->fPoint)) |
| { |
| v = right->fBottom; |
| } |
| else |
| { |
| v = this->makeSortedVertex(p, alpha, mesh, top, c); |
| #if 0 |
| if (left->fTop->fPartner) |
| { |
| assert(fEmitCoverage); // Edge-AA only! |
| v->fSynthetic = true; |
| this->computeBisector(left, right, v); |
| } |
| #endif |
| } |
| if (!rewind(activeEdges, current, top ? top : v, c)) |
| { |
| return BoolFail::kFail; |
| } |
| if (this->splitEdge(left, v, activeEdges, current, c) == BoolFail::kFail) |
| { |
| return BoolFail::kFail; |
| } |
| if (this->splitEdge(right, v, activeEdges, current, c) == BoolFail::kFail) |
| { |
| return BoolFail::kFail; |
| } |
| v->fAlpha = std::max(v->fAlpha, alpha); |
| return BoolFail::kTrue; |
| } |
| return this->intersectEdgePair(left, right, activeEdges, current, c); |
| } |
| |
| void GrTriangulator::sanitizeContours(VertexList* contours, int contourCnt) const |
| { |
| for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) |
| { |
| if (contour->fHead == nullptr) |
| { |
| continue; // empty |
| } |
| |
| Vertex* prev = contour->fTail; |
| prev->fPoint.x = double_to_clamped_scalar((double)prev->fPoint.x); |
| prev->fPoint.y = double_to_clamped_scalar((double)prev->fPoint.y); |
| #if 0 |
| if (fRoundVerticesToQuarterPixel) |
| { |
| round(&prev->fPoint); |
| } |
| #endif |
| for (Vertex* v = contour->fHead; v;) |
| { |
| v->fPoint.x = double_to_clamped_scalar((double)v->fPoint.x); |
| v->fPoint.y = double_to_clamped_scalar((double)v->fPoint.y); |
| #if 0 |
| if (fRoundVerticesToQuarterPixel) |
| { |
| round(&v->fPoint); |
| } |
| #endif |
| Vertex* next = v->fNext; |
| Vertex* nextWrap = next ? next : contour->fHead; |
| if (coincident(prev->fPoint, v->fPoint)) |
| { |
| TESS_LOG("vertex %g,%g coincident; removing\n", v->fPoint.x, v->fPoint.y); |
| contour->remove(v); |
| } |
| else if (!is_finite(v->fPoint)) |
| { |
| TESS_LOG("vertex %g,%g non-finite; removing\n", v->fPoint.x, v->fPoint.y); |
| contour->remove(v); |
| } |
| else if (!fPreserveCollinearVertices && |
| Line(prev->fPoint, nextWrap->fPoint).dist(v->fPoint) == 0.0) |
| { |
| TESS_LOG("vertex %g,%g collinear; removing\n", v->fPoint.x, v->fPoint.y); |
| contour->remove(v); |
| } |
| else |
| { |
| prev = v; |
| } |
| v = next; |
| } |
| } |
| } |
| |
| bool GrTriangulator::mergeCoincidentVertices(VertexList* mesh, const Comparator& c) const |
| { |
| if (!mesh->fHead) |
| { |
| return false; |
| } |
| bool merged = false; |
| for (Vertex* v = mesh->fHead->fNext; v;) |
| { |
| Vertex* next = v->fNext; |
| if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) |
| { |
| v->fPoint = v->fPrev->fPoint; |
| } |
| if (coincident(v->fPrev->fPoint, v->fPoint)) |
| { |
| this->mergeVertices(v, v->fPrev, mesh, c); |
| merged = true; |
| } |
| v = next; |
| } |
| return merged; |
| } |
| |
| // Stage 2: convert the contours to a mesh of edges connecting the vertices. |
| |
| void GrTriangulator::buildEdges(VertexList* contours, |
| int contourCnt, |
| VertexList* mesh, |
| const Comparator& c) |
| { |
| for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) |
| { |
| Vertex* prev = contour->fTail; |
| for (Vertex* v = contour->fHead; v;) |
| { |
| Vertex* next = v->fNext; |
| this->makeConnectingEdge(prev, v, EdgeType::kInner, c); |
| mesh->append(v); |
| prev = v; |
| v = next; |
| } |
| } |
| } |
| |
| template <CompareFunc sweep_lt> |
| static void sorted_merge(VertexList* front, VertexList* back, VertexList* result) |
| { |
| Vertex* a = front->fHead; |
| Vertex* b = back->fHead; |
| while (a && b) |
| { |
| if (sweep_lt(a->fPoint, b->fPoint)) |
| { |
| front->remove(a); |
| result->append(a); |
| a = front->fHead; |
| } |
| else |
| { |
| back->remove(b); |
| result->append(b); |
| b = back->fHead; |
| } |
| } |
| result->append(*front); |
| result->append(*back); |
| } |
| |
| void GrTriangulator::SortedMerge(VertexList* front, |
| VertexList* back, |
| VertexList* result, |
| const Comparator& c) |
| { |
| if (c.fDirection == Comparator::Direction::kHorizontal) |
| { |
| sorted_merge<sweep_lt_horiz>(front, back, result); |
| } |
| else |
| { |
| sorted_merge<sweep_lt_vert>(front, back, result); |
| } |
| #if TRIANGULATOR_LOGGING |
| float id = 0.0f; |
| for (Vertex* v = result->fHead; v; v = v->fNext) |
| { |
| v->fID = id++; |
| } |
| #endif |
| } |
| |
| // Stage 3: sort the vertices by increasing sweep direction. |
| |
| template <CompareFunc sweep_lt> static void merge_sort(VertexList* vertices) |
| { |
| Vertex* slow = vertices->fHead; |
| if (!slow) |
| { |
| return; |
| } |
| Vertex* fast = slow->fNext; |
| if (!fast) |
| { |
| return; |
| } |
| do |
| { |
| fast = fast->fNext; |
| if (fast) |
| { |
| fast = fast->fNext; |
| slow = slow->fNext; |
| } |
| } while (fast); |
| VertexList front(vertices->fHead, slow); |
| VertexList back(slow->fNext, vertices->fTail); |
| front.fTail->fNext = back.fHead->fPrev = nullptr; |
| |
| merge_sort<sweep_lt>(&front); |
| merge_sort<sweep_lt>(&back); |
| |
| vertices->fHead = vertices->fTail = nullptr; |
| sorted_merge<sweep_lt>(&front, &back, vertices); |
| } |
| |
| #if TRIANGULATOR_LOGGING |
| void VertexList::dump() const |
| { |
| for (Vertex* v = fHead; v; v = v->fNext) |
| { |
| TESS_LOG("vertex %g (%g, %g) alpha %d", v->fID, v->fPoint.x, v->fPoint.y, v->fAlpha); |
| if (Vertex* p = v->fPartner) |
| { |
| TESS_LOG(", partner %g (%g, %g) alpha %d\n", |
| p->fID, |
| p->fPoint.x, |
| p->fPoint.y, |
| p->fAlpha); |
| } |
| else |
| { |
| TESS_LOG(", null partner\n"); |
| } |
| for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) |
| { |
| TESS_LOG(" edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding); |
| } |
| for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) |
| { |
| TESS_LOG(" edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding); |
| } |
| } |
| } |
| #endif |
| |
| #ifdef SK_DEBUG |
| static void validate_edge_pair(Edge* left, Edge* right, const Comparator& c) |
| { |
| if (!left || !right) |
| { |
| return; |
| } |
| if (left->fTop == right->fTop) |
| { |
| assert(left->isLeftOf(*right->fBottom)); |
| assert(right->isRightOf(*left->fBottom)); |
| } |
| else if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) |
| { |
| assert(left->isLeftOf(*right->fTop)); |
| } |
| else |
| { |
| assert(right->isRightOf(*left->fTop)); |
| } |
| if (left->fBottom == right->fBottom) |
| { |
| assert(left->isLeftOf(*right->fTop)); |
| assert(right->isRightOf(*left->fTop)); |
| } |
| else if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) |
| { |
| assert(left->isLeftOf(*right->fBottom)); |
| } |
| else |
| { |
| assert(right->isRightOf(*left->fBottom)); |
| } |
| } |
| |
| static void validate_edge_list(EdgeList* edges, const Comparator& c) |
| { |
| Edge* left = edges->fHead; |
| if (!left) |
| { |
| return; |
| } |
| for (Edge* right = left->fRight; right; right = right->fRight) |
| { |
| validate_edge_pair(left, right, c); |
| left = right; |
| } |
| } |
| #endif |
| |
| // Stage 4: Simplify the mesh by inserting new vertices at intersecting edges. |
| |
| GrTriangulator::SimplifyResult GrTriangulator::simplify(VertexList* mesh, const Comparator& c) |
| { |
| TESS_LOG("simplifying complex polygons\n"); |
| |
| int initialNumEdges = fNumEdges; |
| int numSelfIntersections = 0; |
| |
| EdgeList activeEdges; |
| auto result = SimplifyResult::kAlreadySimple; |
| for (Vertex* v = mesh->fHead; v != nullptr; v = v->fNext) |
| { |
| if (!v->isConnected()) |
| { |
| continue; |
| } |
| |
| // The max increase across all skps, svgs and gms with only the triangulating and SW path |
| // renderers enabled and with the triangulator's maxVerbCount set to the Chrome value is |
| // 17x. |
| if (fNumEdges > 170 * initialNumEdges) |
| { |
| return SimplifyResult::kFailed; |
| } |
| |
| // In pathological cases, a path can intersect itself millions of times. After 500,000 |
| // self-intersections are found, reject the path. |
| if (numSelfIntersections > 500000) |
| { |
| return SimplifyResult::kFailed; |
| } |
| |
| Edge* leftEnclosingEdge; |
| Edge* rightEnclosingEdge; |
| bool restartChecks; |
| do |
| { |
| TESS_LOG("\nvertex %g: (%g,%g), alpha %d\n", |
| v->fID, |
| v->fPoint.x, |
| v->fPoint.y, |
| v->fAlpha); |
| restartChecks = false; |
| FindEnclosingEdges(*v, activeEdges, &leftEnclosingEdge, &rightEnclosingEdge); |
| v->fLeftEnclosingEdge = leftEnclosingEdge; |
| v->fRightEnclosingEdge = rightEnclosingEdge; |
| if (v->fFirstEdgeBelow) |
| { |
| for (Edge* edge = v->fFirstEdgeBelow; edge; edge = edge->fNextEdgeBelow) |
| { |
| BoolFail l = this->checkForIntersection(leftEnclosingEdge, |
| edge, |
| &activeEdges, |
| &v, |
| mesh, |
| c); |
| if (l == BoolFail::kFail) |
| { |
| return SimplifyResult::kFailed; |
| } |
| if (l == BoolFail::kFalse) |
| { |
| BoolFail r = this->checkForIntersection(edge, |
| rightEnclosingEdge, |
| &activeEdges, |
| &v, |
| mesh, |
| c); |
| if (r == BoolFail::kFail) |
| { |
| return SimplifyResult::kFailed; |
| } |
| if (r == BoolFail::kFalse) |
| { |
| // Neither l and r are both false. |
| continue; |
| } |
| } |
| |
| // Either l or r are true. |
| result = SimplifyResult::kFoundSelfIntersection; |
| restartChecks = true; |
| ++numSelfIntersections; |
| break; |
| } // for |
| } |
| else |
| { |
| BoolFail bf = this->checkForIntersection(leftEnclosingEdge, |
| rightEnclosingEdge, |
| &activeEdges, |
| &v, |
| mesh, |
| c); |
| if (bf == BoolFail::kFail) |
| { |
| return SimplifyResult::kFailed; |
| } |
| if (bf == BoolFail::kTrue) |
| { |
| result = SimplifyResult::kFoundSelfIntersection; |
| restartChecks = true; |
| ++numSelfIntersections; |
| } |
| } |
| } while (restartChecks); |
| #ifdef SK_DEBUG |
| validate_edge_list(&activeEdges, c); |
| #endif |
| for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) |
| { |
| if (!activeEdges.remove(e)) |
| { |
| return SimplifyResult::kFailed; |
| } |
| } |
| Edge* leftEdge = leftEnclosingEdge; |
| for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) |
| { |
| activeEdges.insert(e, leftEdge); |
| leftEdge = e; |
| } |
| } |
| assert(!activeEdges.fHead && !activeEdges.fTail); |
| return result; |
| } |
| |
| // Stage 5: Tessellate the simplified mesh into monotone polygons. |
| |
| std::tuple<Poly*, bool> GrTriangulator::tessellate(const VertexList& vertices, const Comparator&) |
| { |
| TESS_LOG("\ntessellating simple polygons\n"); |
| EdgeList activeEdges; |
| Poly* polys = nullptr; |
| for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) |
| { |
| if (!v->isConnected()) |
| { |
| continue; |
| } |
| #if TRIANGULATOR_LOGGING |
| TESS_LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.x, v->fPoint.y, v->fAlpha); |
| #endif |
| Edge* leftEnclosingEdge; |
| Edge* rightEnclosingEdge; |
| FindEnclosingEdges(*v, activeEdges, &leftEnclosingEdge, &rightEnclosingEdge); |
| Poly* leftPoly; |
| Poly* rightPoly; |
| if (v->fFirstEdgeAbove) |
| { |
| leftPoly = v->fFirstEdgeAbove->fLeftPoly; |
| rightPoly = v->fLastEdgeAbove->fRightPoly; |
| } |
| else |
| { |
| leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr; |
| rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr; |
| } |
| #if TRIANGULATOR_LOGGING |
| TESS_LOG("edges above:\n"); |
| for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) |
| { |
| TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n", |
| e->fTop->fID, |
| e->fBottom->fID, |
| e->fLeftPoly ? e->fLeftPoly->fID : -1, |
| e->fRightPoly ? e->fRightPoly->fID : -1); |
| } |
| TESS_LOG("edges below:\n"); |
| for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) |
| { |
| TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n", |
| e->fTop->fID, |
| e->fBottom->fID, |
| e->fLeftPoly ? e->fLeftPoly->fID : -1, |
| e->fRightPoly ? e->fRightPoly->fID : -1); |
| } |
| #endif |
| if (v->fFirstEdgeAbove) |
| { |
| if (leftPoly) |
| { |
| leftPoly = leftPoly->addEdge(v->fFirstEdgeAbove, kRight_Side, this); |
| } |
| if (rightPoly) |
| { |
| rightPoly = rightPoly->addEdge(v->fLastEdgeAbove, kLeft_Side, this); |
| } |
| for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) |
| { |
| Edge* rightEdge = e->fNextEdgeAbove; |
| activeEdges.remove(e); |
| if (e->fRightPoly) |
| { |
| e->fRightPoly->addEdge(e, kLeft_Side, this); |
| } |
| if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != e->fRightPoly) |
| { |
| rightEdge->fLeftPoly->addEdge(e, kRight_Side, this); |
| } |
| } |
| activeEdges.remove(v->fLastEdgeAbove); |
| if (!v->fFirstEdgeBelow) |
| { |
| if (leftPoly && rightPoly && leftPoly != rightPoly) |
| { |
| assert(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr); |
| rightPoly->fPartner = leftPoly; |
| leftPoly->fPartner = rightPoly; |
| } |
| } |
| } |
| if (v->fFirstEdgeBelow) |
| { |
| if (!v->fFirstEdgeAbove) |
| { |
| if (leftPoly && rightPoly) |
| { |
| if (leftPoly == rightPoly) |
| { |
| if (leftPoly->fTail && leftPoly->fTail->fSide == kLeft_Side) |
| { |
| leftPoly = |
| this->makePoly(&polys, leftPoly->lastVertex(), leftPoly->fWinding); |
| leftEnclosingEdge->fRightPoly = leftPoly; |
| } |
| else |
| { |
| rightPoly = this->makePoly(&polys, |
| rightPoly->lastVertex(), |
| rightPoly->fWinding); |
| rightEnclosingEdge->fLeftPoly = rightPoly; |
| } |
| } |
| Edge* join = this->allocateEdge(leftPoly->lastVertex(), v, 1, EdgeType::kInner); |
| leftPoly = leftPoly->addEdge(join, kRight_Side, this); |
| rightPoly = rightPoly->addEdge(join, kLeft_Side, this); |
| } |
| } |
| Edge* leftEdge = v->fFirstEdgeBelow; |
| leftEdge->fLeftPoly = leftPoly; |
| activeEdges.insert(leftEdge, leftEnclosingEdge); |
| for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge; |
| rightEdge = rightEdge->fNextEdgeBelow) |
| { |
| activeEdges.insert(rightEdge, leftEdge); |
| int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0; |
| winding += leftEdge->fWinding; |
| if (winding != 0) |
| { |
| Poly* poly = this->makePoly(&polys, v, winding); |
| leftEdge->fRightPoly = rightEdge->fLeftPoly = poly; |
| } |
| leftEdge = rightEdge; |
| } |
| v->fLastEdgeBelow->fRightPoly = rightPoly; |
| } |
| #if TRIANGULATOR_LOGGING |
| TESS_LOG("\nactive edges:\n"); |
| for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) |
| { |
| TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n", |
| e->fTop->fID, |
| e->fBottom->fID, |
| e->fLeftPoly ? e->fLeftPoly->fID : -1, |
| e->fRightPoly ? e->fRightPoly->fID : -1); |
| } |
| #endif |
| } |
| return {polys, true}; |
| } |
| |
| // This is a driver function that calls stages 2-5 in turn. |
| |
| void GrTriangulator::contoursToMesh(VertexList* contours, |
| int contourCnt, |
| VertexList* mesh, |
| const Comparator& c) |
| { |
| #if TRIANGULATOR_LOGGING |
| for (int i = 0; i < contourCnt; ++i) |
| { |
| Vertex* v = contours[i].fHead; |
| assert(v); |
| TESS_LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.x, v->fPoint.y); |
| for (v = v->fNext; v; v = v->fNext) |
| { |
| TESS_LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.x, v->fPoint.y); |
| } |
| } |
| #endif |
| this->sanitizeContours(contours, contourCnt); |
| this->buildEdges(contours, contourCnt, mesh, c); |
| } |
| |
| void GrTriangulator::SortMesh(VertexList* vertices, const Comparator& c) |
| { |
| if (!vertices || !vertices->fHead) |
| { |
| return; |
| } |
| |
| // Sort vertices in Y (secondarily in X). |
| if (c.fDirection == Comparator::Direction::kHorizontal) |
| { |
| merge_sort<sweep_lt_horiz>(vertices); |
| } |
| else |
| { |
| merge_sort<sweep_lt_vert>(vertices); |
| } |
| #if TRIANGULATOR_LOGGING |
| for (Vertex* v = vertices->fHead; v != nullptr; v = v->fNext) |
| { |
| static float gID = 0.0f; |
| v->fID = gID++; |
| } |
| #endif |
| } |
| |
| std::tuple<Poly*, bool> GrTriangulator::contoursToPolys(VertexList* contours, int contourCnt) |
| { |
| Comparator c(fDirection); |
| VertexList mesh; |
| this->contoursToMesh(contours, contourCnt, &mesh, c); |
| TESS_LOG("\ninitial mesh:\n"); |
| DUMP_MESH(mesh); |
| SortMesh(&mesh, c); |
| TESS_LOG("\nsorted mesh:\n"); |
| DUMP_MESH(mesh); |
| this->mergeCoincidentVertices(&mesh, c); |
| TESS_LOG("\nsorted+merged mesh:\n"); |
| DUMP_MESH(mesh); |
| auto result = this->simplify(&mesh, c); |
| if (result == SimplifyResult::kFailed) |
| { |
| return {nullptr, false}; |
| } |
| TESS_LOG("\nsimplified mesh:\n"); |
| DUMP_MESH(mesh); |
| return this->tessellate(mesh, c); |
| } |
| |
| // Stage 6: Triangulate the monotone polygons into a vertex buffer. |
| void GrTriangulator::polysToTriangles( |
| Poly* polys, |
| FillRule overrideFillType, |
| uint16_t pathID, |
| bool reverseTriangles, |
| pls::WriteOnlyMappedMemory<pls::TriangleVertex>* mappedMemory) const |
| { |
| for (Poly* poly = polys; poly; poly = poly->fNext) |
| { |
| if (apply_fill_type(overrideFillType, poly)) |
| { |
| emitPoly(poly, pathID, reverseTriangles, mappedMemory); |
| } |
| } |
| } |
| |
| static int get_contour_count(const RawPath& path, float tolerance) |
| { |
| // We could theoretically be more aggressive about not counting empty contours, but we need to |
| // actually match the exact number of contour linked lists the tessellator will create later on. |
| int contourCnt = 1; |
| bool hasPoints = false; |
| |
| bool first = true; |
| for (auto [verb, pts] : path) |
| { |
| switch (verb) |
| { |
| case PathVerb::move: |
| if (!first) |
| { |
| ++contourCnt; |
| } |
| [[fallthrough]]; |
| case PathVerb::line: |
| case PathVerb::quad: |
| case PathVerb::cubic: |
| hasPoints = true; |
| break; |
| default: |
| break; |
| } |
| first = false; |
| } |
| if (!hasPoints) |
| { |
| return 0; |
| } |
| return contourCnt; |
| } |
| |
| std::tuple<Poly*, bool> GrTriangulator::pathToPolys(const RawPath& path, |
| float tolerance, |
| const AABB& clipBounds, |
| bool* isLinear) |
| { |
| int contourCnt = get_contour_count(path, tolerance); |
| if (contourCnt <= 0) |
| { |
| *isLinear = true; |
| return {nullptr, true}; |
| } |
| |
| #if 0 |
| if (SkPathFillType_IsInverse(fPath.getFillType())) |
| { |
| contourCnt++; |
| } |
| #endif |
| std::unique_ptr<VertexList[]> contours(new VertexList[contourCnt]); |
| |
| this->pathToContours(path, tolerance, clipBounds, contours.get(), isLinear); |
| return this->contoursToPolys(contours.get(), contourCnt); |
| } |
| |
| int64_t GrTriangulator::CountPoints(Poly* polys, FillRule overrideFillType) |
| { |
| int64_t count = 0; |
| for (Poly* poly = polys; poly; poly = poly->fNext) |
| { |
| if (apply_fill_type(overrideFillType, poly) && poly->fCount >= 3) |
| { |
| count += (poly->fCount - 2) * (TRIANGULATOR_WIREFRAME ? 6 : 3); |
| } |
| } |
| return count; |
| } |
| |
| // Stage 6: Triangulate the monotone polygons into a vertex buffer. |
| |
| size_t GrTriangulator::countMaxTriangleVertices(Poly* polys) const |
| { |
| return math::lossless_numeric_cast<size_t>(CountPoints(polys, fFillRule)); |
| } |
| |
| size_t GrTriangulator::polysToTriangles( |
| Poly* polys, |
| uint64_t maxVertexCount, |
| uint16_t pathID, |
| bool reverseTriangles, |
| pls::WriteOnlyMappedMemory<pls::TriangleVertex>* mappedMemory) const |
| { |
| if (0 == maxVertexCount || maxVertexCount > std::numeric_limits<int32_t>::max()) |
| { |
| return 0; |
| } |
| |
| size_t vertexStride = sizeof(pls::TriangleVertex); |
| #if 0 |
| if (fEmitCoverage) |
| { |
| vertexStride += sizeof(float); |
| } |
| #endif |
| |
| size_t start = mappedMemory->bytesWritten(); |
| polysToTriangles(polys, fFillRule, pathID, reverseTriangles, mappedMemory); |
| size_t actualCount = (mappedMemory->bytesWritten() - start) / vertexStride; |
| assert(actualCount <= maxVertexCount * vertexStride); |
| return actualCount; |
| } |
| } // namespace rive |
| |
| #endif // SK_ENABLE_OPTIMIZE_SIZE |