| /* |
| * Copyright 2020 Google LLC. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| * |
| * Initial import from skia:src/gpu/ganesh/tessellate/GrStrokeTessellationShader.cpp |
| * |
| * Copyright 2022 Rive |
| */ |
| |
| #define MAX_PARAMETRIC_SEGMENTS_LOG2 10 // Max 1024 segments. |
| |
| #ifdef @VERTEX |
| ATTR_BLOCK_BEGIN(Attrs) |
| ATTR(0, float4, @a_p0p1_); // End in '_' because D3D interprets the '1' as a semantic index. |
| ATTR(1, float4, @a_p2p3_); |
| ATTR(2, float4, @a_joinTan_and_ys); // [joinTangent, y, reflectionY] |
| ATTR(3, uint4, @a_args); // [x0x1, reflectionX0X1, segmentCounts, contourIDWithFlags] |
| ATTR_BLOCK_END |
| #endif |
| |
| VARYING_BLOCK_BEGIN |
| NO_PERSPECTIVE VARYING(0, float4, v_p0p1); |
| NO_PERSPECTIVE VARYING(1, float4, v_p2p3); |
| NO_PERSPECTIVE VARYING(2, float4, v_args); // [vertexIdx, totalVertexCount, joinSegmentCount, |
| // parametricSegmentCount, radsPerPolarSegment] |
| NO_PERSPECTIVE VARYING(3, float3, v_joinArgs); // [joinTangent, radsPerJoinSegment] |
| FLAT VARYING(4, uint, v_contourIDWithFlags); |
| VARYING_BLOCK_END |
| |
| // Tangent of the curve at T=0 and T=1. |
| INLINE float2x2 find_tangents(float2 p0, float2 p1, float2 p2, float2 p3) |
| { |
| float2x2 t; |
| t[0] = (any(notEqual(p0, p1)) ? p1 : any(notEqual(p1, p2)) ? p2 : p3) - p0; |
| t[1] = p3 - (any(notEqual(p3, p2)) ? p2 : any(notEqual(p2, p1)) ? p1 : p0); |
| return t; |
| } |
| |
| #ifdef @VERTEX |
| VERTEX_TEXTURE_BLOCK_BEGIN |
| VERTEX_TEXTURE_BLOCK_END |
| |
| VERTEX_STORAGE_BUFFER_BLOCK_BEGIN |
| STORAGE_BUFFER_U32x4(PATH_BUFFER_IDX, PathBuffer, @pathBuffer); |
| STORAGE_BUFFER_U32x4(CONTOUR_BUFFER_IDX, ContourBuffer, @contourBuffer); |
| VERTEX_STORAGE_BUFFER_BLOCK_END |
| |
| float cosine_between_vectors(float2 a, float2 b) |
| { |
| // FIXME(crbug.com/800804,skbug.com/11268): This can overflow if we don't normalize exponents. |
| float ab_cosTheta = dot(a, b); |
| float ab_pow2 = dot(a, a) * dot(b, b); |
| return (ab_pow2 == .0) ? 1. : clamp(ab_cosTheta * inversesqrt(ab_pow2), -1., 1.); |
| } |
| |
| VERTEX_MAIN(@tessellateVertexMain, Attrs, attrs, _vertexID, _instanceID) |
| { |
| // Each instance repeats twice. Once for normal patch(es) and once for reflection(s). |
| ATTR_UNPACK(_instanceID, attrs, @a_p0p1_, float4); |
| ATTR_UNPACK(_instanceID, attrs, @a_p2p3_, float4); |
| ATTR_UNPACK(_instanceID, attrs, @a_joinTan_and_ys, float4); |
| ATTR_UNPACK(_instanceID, attrs, @a_args, uint4); |
| |
| VARYING_INIT(v_p0p1, float4); |
| VARYING_INIT(v_p2p3, float4); |
| VARYING_INIT(v_args, float4); |
| VARYING_INIT(v_joinArgs, float3); |
| VARYING_INIT(v_contourIDWithFlags, uint); |
| |
| float2 p0 = @a_p0p1_.xy; |
| float2 p1 = @a_p0p1_.zw; |
| float2 p2 = @a_p2p3_.xy; |
| float2 p3 = @a_p2p3_.zw; |
| // Each instance has two spans, potentially for both a forward copy and and reflection. |
| // (If the second span isn't needed, the client will have placed it offscreen.) |
| bool isFirstSpan = _vertexID < 4; |
| float y = isFirstSpan ? @a_joinTan_and_ys.z : @a_joinTan_and_ys.w; |
| int x0x1 = int(isFirstSpan ? @a_args.x : @a_args.y); |
| float x0 = float(x0x1 << 16 >> 16); |
| float x1 = float(x0x1 >> 16); |
| float2 coord = float2((_vertexID & 1) == 0 ? x0 : x1, (_vertexID & 2) == 0 ? y + 1. : y); |
| |
| uint parametricSegmentCount = @a_args.z & 0x3ffu; |
| uint polarSegmentCount = (@a_args.z >> 10) & 0x3ffu; |
| uint joinSegmentCount = @a_args.z >> 20; |
| uint contourIDWithFlags = @a_args.w; |
| if (x1 < x0) // Reflections are drawn right to left. |
| { |
| contourIDWithFlags |= MIRRORED_CONTOUR_CONTOUR_FLAG; |
| } |
| if ((x1 - x0) * uniforms.tessInverseViewportY < .0) |
| { |
| // Make sure we always emit clockwise triangles. Swap the top and bottom vertices. |
| coord.y = 2. * y + 1. - coord.y; |
| } |
| if ((contourIDWithFlags & CULL_EXCESS_TESSELLATION_SEGMENTS_CONTOUR_FLAG) != 0u) |
| { |
| // This span may have more tessellation vertices allocated to it than necessary (e.g., |
| // outerCurve patches all have a fixed patch size, regardless of how many segments the curve |
| // actually needs). Re-run Wang's formula to figure out how many segments we actually need, |
| // and make any excess segments degenerate by co-locating their vertices at T=0. |
| uint pathIDBits = |
| STORAGE_BUFFER_LOAD4(@contourBuffer, contour_data_idx(contourIDWithFlags)).z; |
| float2x2 mat = |
| make_float2x2(uintBitsToFloat(STORAGE_BUFFER_LOAD4(@pathBuffer, pathIDBits * 2u))); |
| float2 d0 = MUL(mat, -2. * p1 + p2 + p0); |
| |
| float2 d1 = MUL(mat, -2. * p2 + p3 + p1); |
| float m = max(dot(d0, d0), dot(d1, d1)); |
| float n = max(ceil(sqrt(.75 * 4. * sqrt(m))), 1.); |
| parametricSegmentCount = min(uint(n), parametricSegmentCount); |
| } |
| // Polar and parametric segments share the same beginning and ending vertices, so the merged |
| // *vertex* count is equal to the sum of polar and parametric *segment* counts. |
| uint totalVertexCount = parametricSegmentCount + polarSegmentCount + joinSegmentCount - 1u; |
| |
| float2x2 tangents = find_tangents(p0, p1, p2, p3); |
| float theta = acos(cosine_between_vectors(tangents[0], tangents[1])); |
| float radsPerPolarSegment = theta / float(polarSegmentCount); |
| // Adjust sign of radsPerPolarSegment to match the direction the curve turns. |
| // NOTE: Since the curve is not allowed to inflect, we can just check F'(.5) x F''(.5). |
| // NOTE: F'(.5) x F''(.5) has the same sign as (p2 - p0) x (p3 - p1). |
| float turn = determinant(float2x2(p2 - p0, p3 - p1)); |
| if (turn == .0) // This is the case for joins and cusps where points are co-located. |
| turn = determinant(tangents); |
| if (turn < .0) |
| radsPerPolarSegment = -radsPerPolarSegment; |
| |
| v_p0p1 = float4(p0, p1); |
| v_p2p3 = float4(p2, p3); |
| v_args = float4(float(totalVertexCount) - abs(x1 - coord.x), // vertexIdx |
| float(totalVertexCount), // totalVertexCount |
| (joinSegmentCount << 10) | parametricSegmentCount, |
| radsPerPolarSegment); |
| if (joinSegmentCount > 1u) |
| { |
| float2x2 joinTangents = float2x2(tangents[1], @a_joinTan_and_ys.xy); |
| float joinTheta = acos(cosine_between_vectors(joinTangents[0], joinTangents[1])); |
| float joinSpan = float(joinSegmentCount); |
| if ((contourIDWithFlags & (JOIN_TYPE_MASK | EMULATED_STROKE_CAP_CONTOUR_FLAG)) == |
| EMULATED_STROKE_CAP_CONTOUR_FLAG) |
| { |
| // Round caps emulated as joins need to emit vertices at T=0 and T=1, unlike normal |
| // round joins. The fragment shader will handle most of this, but here we need to adjust |
| // radsPerJoinSegment to account for the fact that this join will be rotating around two |
| // more segments. |
| joinSpan -= 2.; |
| } |
| float radsPerJoinSegment = joinTheta / joinSpan; |
| if (determinant(joinTangents) < .0) |
| radsPerJoinSegment = -radsPerJoinSegment; |
| v_joinArgs.xy = @a_joinTan_and_ys.xy; |
| v_joinArgs.z = radsPerJoinSegment; |
| } |
| v_contourIDWithFlags = contourIDWithFlags; |
| |
| float4 pos; |
| pos.x = coord.x * (2. / TESS_TEXTURE_WIDTH) - 1.; |
| pos.y = coord.y * uniforms.tessInverseViewportY - sign(uniforms.tessInverseViewportY); |
| pos.zw = float2(0, 1); |
| |
| VARYING_PACK(v_p0p1); |
| VARYING_PACK(v_p2p3); |
| VARYING_PACK(v_args); |
| VARYING_PACK(v_joinArgs); |
| VARYING_PACK(v_contourIDWithFlags); |
| EMIT_VERTEX(pos); |
| } |
| #endif |
| |
| #ifdef @FRAGMENT |
| FRAG_DATA_MAIN(uint4, @tessellateFragmentMain) |
| { |
| VARYING_UNPACK(v_p0p1, float4); |
| VARYING_UNPACK(v_p2p3, float4); |
| VARYING_UNPACK(v_args, float4); |
| VARYING_UNPACK(v_joinArgs, float3); |
| VARYING_UNPACK(v_contourIDWithFlags, uint); |
| |
| float2 p0 = v_p0p1.xy; |
| float2 p1 = v_p0p1.zw; |
| float2 p2 = v_p2p3.xy; |
| float2 p3 = v_p2p3.zw; |
| float2x2 tangents = find_tangents(p0, p1, p2, p3); |
| // Colocate any padding vertices at T=0. |
| float vertexIdx = max(floor(v_args.x), .0); |
| float totalVertexCount = v_args.y; |
| uint joinSegmentCount_and_parametricSegmentCount = uint(v_args.z); |
| float parametricSegmentCount = float(joinSegmentCount_and_parametricSegmentCount & 0x3ffu); |
| float joinSegmentCount = float(joinSegmentCount_and_parametricSegmentCount >> 10); |
| float radsPerPolarSegment = v_args.w; |
| uint contourIDWithFlags = v_contourIDWithFlags; |
| |
| // mergedVertexID/mergedSegmentCount are relative to the sub-section of the instance this vertex |
| // belongs to (either the curve section that consists of merged polar and parametric segments, |
| // or the join section composed of just polar segments). |
| // |
| // Begin with the assumption that we belong to the curve section. |
| float mergedSegmentCount = totalVertexCount - joinSegmentCount; |
| float mergedVertexID = vertexIdx; |
| if (mergedVertexID <= mergedSegmentCount) |
| { |
| // We do belong to the curve section. Clear out any stroke join flags. |
| contourIDWithFlags &= ~JOIN_TYPE_MASK; |
| } |
| else |
| { |
| // We actually belong to the join section following the curve. Construct a point-cubic with |
| // rotation. |
| p0 = p1 = p2 = p3; |
| tangents = float2x2(tangents[1], v_joinArgs.xy /*joinTangent*/); |
| parametricSegmentCount = 1.; |
| mergedVertexID -= mergedSegmentCount; |
| mergedSegmentCount = joinSegmentCount; |
| if ((contourIDWithFlags & JOIN_TYPE_MASK) != 0u) |
| { |
| // Miter or bevel join vertices snap to either tangents[0] or tangents[1], and get |
| // adjusted in the shader that follows. |
| if (mergedVertexID < 2.5) // With 5 join segments, this branch will see IDs: 1, 2, 3, 4. |
| contourIDWithFlags |= JOIN_TANGENT_0_CONTOUR_FLAG; |
| if (mergedVertexID > 1.5 && mergedVertexID < 3.5) |
| contourIDWithFlags |= JOIN_TANGENT_INNER_CONTOUR_FLAG; |
| } |
| else if ((contourIDWithFlags & EMULATED_STROKE_CAP_CONTOUR_FLAG) != 0u) |
| { |
| // Round caps emulated as joins need to emit vertices at T=0 and T=1, unlike normal |
| // round joins. Preserve the same number of vertices (the CPU should have given us two |
| // extra, knowing that we are an emulated cap, and the vertex shader should have already |
| // accounted for this in radsPerJoinSegment), but adjust our stepping parameters so we |
| // begin at T=0 and end at T=1. |
| mergedSegmentCount -= 2.; |
| mergedVertexID--; |
| } |
| radsPerPolarSegment = v_joinArgs.z; // radsPerJoinSegment. |
| contourIDWithFlags |= |
| radsPerPolarSegment < .0 ? LEFT_JOIN_CONTOUR_FLAG : RIGHT_JOIN_CONTOUR_FLAG; |
| } |
| |
| float2 tessCoord; |
| float theta = .0; |
| if (mergedVertexID == .0 || mergedVertexID == mergedSegmentCount || |
| (contourIDWithFlags & JOIN_TYPE_MASK) != 0u) |
| { |
| // Tessellated vertices at the beginning and end of the strip use exact endpoints and |
| // tangents. This ensures crack-free seaming between instances. |
| bool isTan0 = mergedVertexID < mergedSegmentCount * .5; |
| tessCoord = isTan0 ? p0 : p3; |
| theta = atan2(isTan0 ? tangents[0] : tangents[1]); |
| } |
| else if ((contourIDWithFlags & RETROFITTED_TRIANGLE_CONTOUR_FLAG) != 0u) |
| { |
| // This cubic should actually be drawn as the single, non-AA triangle: [p0, p1, p3]. |
| // This is used to squeeze in more rare triangles, like "grout" triangles from self |
| // intersections on interior triangulation, where it wouldn't be worth it to put them in |
| // their own dedicated draw call. |
| tessCoord = p1; |
| } |
| else |
| { |
| float T, polarT; |
| if (parametricSegmentCount == mergedSegmentCount) |
| { |
| // There are no polar vertices. This is (probably) a fill. Vertices are spaced evenly in |
| // parametric space. |
| T = mergedVertexID / parametricSegmentCount; |
| polarT = .0; // Set polarT != T to ensure we calculate the parametric tangent later. |
| } |
| else |
| { |
| // Compute the location and tangent direction of the tessellated stroke vertex with the |
| // integral id "mergedVertexID", where mergedVertexID is the sorted-order index of |
| // parametric and polar vertices. Start by finding the tangent function's power basis |
| // coefficients. These define a tangent direction (scaled by some uniform value) as: |
| // |
| // |T^2| |
| // Tangent_Direction(T) = dx,dy = |A 2B C| * |T | |
| // |. . .| |1 | |
| float2 A, B, C = p1 - p0; |
| float2 D = p3 - p0; |
| float2 E = p2 - p1; |
| B = E - C; |
| A = -3. * E + D; |
| // FIXME(crbug.com/800804,skbug.com/11268): Consider normalizing the exponents in A,B,C |
| // at this point in order to prevent fp32 overflow. |
| |
| // Now find the coefficients that give a tangent direction from a parametric vertex ID: |
| // |
| // |parametricVertexID^2| |
| // Tangent_Direction(parametricVertexID) = dx,dy = |A B_ C_| * |parametricVertexID | |
| // |. . .| |1 | |
| // |
| float2 B_ = B * (parametricSegmentCount * 2.); |
| float2 C_ = C * (parametricSegmentCount * parametricSegmentCount); |
| |
| // Run a binary search to determine the highest parametric vertex that is located on or |
| // before the mergedVertexID. A merged ID is determined by the sum of complete |
| // parametric and polar segments behind it. i.e., find the highest parametric vertex |
| // where: |
| // |
| // parametricVertexID + floor(numPolarSegmentsAtParametricT) <= mergedVertexID |
| // |
| float lastParametricVertexID = .0; |
| float maxParametricVertexID = min(parametricSegmentCount - 1., mergedVertexID); |
| // FIXME(crbug.com/800804,skbug.com/11268): This normalize() can overflow. |
| float2 tan0norm = normalize(tangents[0]); |
| float negAbsRadsPerSegment = -abs(radsPerPolarSegment); |
| float maxRotation0 = (1. + mergedVertexID) * abs(radsPerPolarSegment); |
| for (int p = MAX_PARAMETRIC_SEGMENTS_LOG2 - 1; p >= 0; --p) |
| { |
| // Test the parametric vertex at lastParametricVertexID + 2^p. |
| float testParametricID = lastParametricVertexID + exp2(float(p)); |
| if (testParametricID <= maxParametricVertexID) |
| { |
| float2 testTan = testParametricID * A + B_; |
| testTan = testParametricID * testTan + C_; |
| float cosRotation = dot(normalize(testTan), tan0norm); |
| float maxRotation = testParametricID * negAbsRadsPerSegment + maxRotation0; |
| maxRotation = min(maxRotation, PI); |
| // Is rotation <= maxRotation? (i.e., is the number of complete polar segments |
| // behind testT, + testParametricID <= mergedVertexID?) |
| if (cosRotation >= cos(maxRotation)) |
| lastParametricVertexID = testParametricID; |
| } |
| } |
| |
| // Find the T value of the parametric vertex at lastParametricVertexID. |
| float parametricT = lastParametricVertexID / parametricSegmentCount; |
| |
| // Now that we've identified the highest parametric vertex on or before the |
| // mergedVertexID, the highest polar vertex is easy: |
| float lastPolarVertexID = mergedVertexID - lastParametricVertexID; |
| |
| // Find the angle of tan0, or the angle between tan0norm and the positive x axis. |
| float theta0 = acos(clamp(tan0norm.x, -1., 1.)); |
| theta0 = tan0norm.y >= .0 ? theta0 : -theta0; |
| |
| // Find the tangent vector on the vertex at lastPolarVertexID. |
| theta = lastPolarVertexID * radsPerPolarSegment + theta0; |
| float2 norm = float2(sin(theta), -cos(theta)); |
| |
| // Find the T value where the tangent is orthogonal to norm. This is a quadratic: |
| // |
| // dot(norm, Tangent_Direction(T)) == 0 |
| // |
| // |T^2| |
| // norm * |A 2B C| * |T | == 0 |
| // |. . .| |1 | |
| // |
| float a = dot(norm, A), b_over_2 = dot(norm, B), c = dot(norm, C); |
| float discr_over_4 = max(b_over_2 * b_over_2 - a * c, .0); |
| float q = sqrt(discr_over_4); |
| if (b_over_2 > .0) |
| q = -q; |
| q -= b_over_2; |
| |
| // Roots are q/a and c/q. Since each curve section does not inflect or rotate more than |
| // 180 degrees, there can only be one tangent orthogonal to "norm" inside 0..1. Pick the |
| // root nearest .5. |
| float _5qa = -.5 * q * a; |
| float2 root = (abs(q * q + _5qa) < abs(a * c + _5qa)) ? float2(q, a) : float2(c, q); |
| polarT = (root.t != .0) ? root.s / root.t : .0; |
| polarT = clamp(polarT, .0, 1.); |
| |
| // The root finder above can become unstable when lastPolarVertexID == 0 (e.g., if there |
| // are roots at exatly 0 and 1 both). polarT should always == 0 in this case. |
| if (lastPolarVertexID == .0) |
| polarT = .0; |
| |
| // Now that we've identified the T values of the last parametric and polar vertices, our |
| // final T value for mergedVertexID is whichever is larger. |
| T = max(parametricT, polarT); |
| } |
| |
| // Evaluate the cubic at T. Use De Casteljau's for its accuracy and stability. |
| float2 ab = unchecked_mix(p0, p1, T); |
| float2 bc = unchecked_mix(p1, p2, T); |
| float2 cd = unchecked_mix(p2, p3, T); |
| float2 abc = unchecked_mix(ab, bc, T); |
| float2 bcd = unchecked_mix(bc, cd, T); |
| tessCoord = unchecked_mix(abc, bcd, T); |
| |
| // If we went with T=parametricT, then update theta. Otherwise leave it at the polar theta |
| // found previously. (In the event that parametricT == polarT, we keep the polar theta.) |
| if (T != polarT) |
| theta = atan2(bcd - abc); |
| } |
| |
| EMIT_FRAG_DATA(uint4(floatBitsToUint(float3(tessCoord, theta)), contourIDWithFlags)); |
| } |
| #endif |