blob: 5fccc33f44c64437354de5012155632e7f93f507 [file] [log] [blame]
/*
* Copyright 2020 Google LLC.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Initial import from skia:src/gpu/ganesh/tessellate/GrStrokeTessellationShader.cpp
*
* Copyright 2022 Rive
*/
#define MAX_PARAMETRIC_SEGMENTS_LOG2 10 // Max 1024 segments.
#ifdef @VERTEX
ATTR_BLOCK_BEGIN(Attrs)
ATTR(0, float4, @a_p0p1_); // End in '_' because D3D interprets the '1' as a semantic index.
ATTR(1, float4, @a_p2p3_);
ATTR(2, float4, @a_joinTan_and_ys); // [joinTangent, y, reflectionY]
ATTR(3, uint4, @a_args); // [x0x1, reflectionX0X1, segmentCounts, contourIDWithFlags]
ATTR_BLOCK_END
#endif
VARYING_BLOCK_BEGIN
NO_PERSPECTIVE VARYING(0, float4, v_p0p1);
NO_PERSPECTIVE VARYING(1, float4, v_p2p3);
NO_PERSPECTIVE VARYING(2, float4, v_args); // [vertexIdx, totalVertexCount, joinSegmentCount,
// parametricSegmentCount, radsPerPolarSegment]
NO_PERSPECTIVE VARYING(3, float3, v_joinArgs); // [joinTangent, radsPerJoinSegment]
FLAT VARYING(4, uint, v_contourIDWithFlags);
VARYING_BLOCK_END
// Tangent of the curve at T=0 and T=1.
INLINE float2x2 find_tangents(float2 p0, float2 p1, float2 p2, float2 p3)
{
float2x2 t;
t[0] = (any(notEqual(p0, p1)) ? p1 : any(notEqual(p1, p2)) ? p2 : p3) - p0;
t[1] = p3 - (any(notEqual(p3, p2)) ? p2 : any(notEqual(p2, p1)) ? p1 : p0);
return t;
}
#ifdef @VERTEX
VERTEX_TEXTURE_BLOCK_BEGIN
VERTEX_TEXTURE_BLOCK_END
VERTEX_STORAGE_BUFFER_BLOCK_BEGIN
STORAGE_BUFFER_U32x4(PATH_BUFFER_IDX, PathBuffer, @pathBuffer);
STORAGE_BUFFER_U32x4(CONTOUR_BUFFER_IDX, ContourBuffer, @contourBuffer);
VERTEX_STORAGE_BUFFER_BLOCK_END
float cosine_between_vectors(float2 a, float2 b)
{
// FIXME(crbug.com/800804,skbug.com/11268): This can overflow if we don't normalize exponents.
float ab_cosTheta = dot(a, b);
float ab_pow2 = dot(a, a) * dot(b, b);
return (ab_pow2 == .0) ? 1. : clamp(ab_cosTheta * inversesqrt(ab_pow2), -1., 1.);
}
VERTEX_MAIN(@tessellateVertexMain, Attrs, attrs, _vertexID, _instanceID)
{
// Each instance repeats twice. Once for normal patch(es) and once for reflection(s).
ATTR_UNPACK(_instanceID, attrs, @a_p0p1_, float4);
ATTR_UNPACK(_instanceID, attrs, @a_p2p3_, float4);
ATTR_UNPACK(_instanceID, attrs, @a_joinTan_and_ys, float4);
ATTR_UNPACK(_instanceID, attrs, @a_args, uint4);
VARYING_INIT(v_p0p1, float4);
VARYING_INIT(v_p2p3, float4);
VARYING_INIT(v_args, float4);
VARYING_INIT(v_joinArgs, float3);
VARYING_INIT(v_contourIDWithFlags, uint);
float2 p0 = @a_p0p1_.xy;
float2 p1 = @a_p0p1_.zw;
float2 p2 = @a_p2p3_.xy;
float2 p3 = @a_p2p3_.zw;
// Each instance has two spans, potentially for both a forward copy and and reflection.
// (If the second span isn't needed, the client will have placed it offscreen.)
bool isFirstSpan = _vertexID < 4;
float y = isFirstSpan ? @a_joinTan_and_ys.z : @a_joinTan_and_ys.w;
int x0x1 = int(isFirstSpan ? @a_args.x : @a_args.y);
float x0 = float(x0x1 << 16 >> 16);
float x1 = float(x0x1 >> 16);
float2 coord = float2((_vertexID & 1) == 0 ? x0 : x1, (_vertexID & 2) == 0 ? y + 1. : y);
uint parametricSegmentCount = @a_args.z & 0x3ffu;
uint polarSegmentCount = (@a_args.z >> 10) & 0x3ffu;
uint joinSegmentCount = @a_args.z >> 20;
uint contourIDWithFlags = @a_args.w;
if (x1 < x0) // Reflections are drawn right to left.
{
contourIDWithFlags |= MIRRORED_CONTOUR_CONTOUR_FLAG;
}
if ((x1 - x0) * uniforms.tessInverseViewportY < .0)
{
// Make sure we always emit clockwise triangles. Swap the top and bottom vertices.
coord.y = 2. * y + 1. - coord.y;
}
if ((contourIDWithFlags & CULL_EXCESS_TESSELLATION_SEGMENTS_CONTOUR_FLAG) != 0u)
{
// This span may have more tessellation vertices allocated to it than necessary (e.g.,
// outerCurve patches all have a fixed patch size, regardless of how many segments the curve
// actually needs). Re-run Wang's formula to figure out how many segments we actually need,
// and make any excess segments degenerate by co-locating their vertices at T=0.
uint pathIDBits =
STORAGE_BUFFER_LOAD4(@contourBuffer, contour_data_idx(contourIDWithFlags)).z;
float2x2 mat =
make_float2x2(uintBitsToFloat(STORAGE_BUFFER_LOAD4(@pathBuffer, pathIDBits * 2u)));
float2 d0 = MUL(mat, -2. * p1 + p2 + p0);
float2 d1 = MUL(mat, -2. * p2 + p3 + p1);
float m = max(dot(d0, d0), dot(d1, d1));
float n = max(ceil(sqrt(.75 * 4. * sqrt(m))), 1.);
parametricSegmentCount = min(uint(n), parametricSegmentCount);
}
// Polar and parametric segments share the same beginning and ending vertices, so the merged
// *vertex* count is equal to the sum of polar and parametric *segment* counts.
uint totalVertexCount = parametricSegmentCount + polarSegmentCount + joinSegmentCount - 1u;
float2x2 tangents = find_tangents(p0, p1, p2, p3);
float theta = acos(cosine_between_vectors(tangents[0], tangents[1]));
float radsPerPolarSegment = theta / float(polarSegmentCount);
// Adjust sign of radsPerPolarSegment to match the direction the curve turns.
// NOTE: Since the curve is not allowed to inflect, we can just check F'(.5) x F''(.5).
// NOTE: F'(.5) x F''(.5) has the same sign as (p2 - p0) x (p3 - p1).
float turn = determinant(float2x2(p2 - p0, p3 - p1));
if (turn == .0) // This is the case for joins and cusps where points are co-located.
turn = determinant(tangents);
if (turn < .0)
radsPerPolarSegment = -radsPerPolarSegment;
v_p0p1 = float4(p0, p1);
v_p2p3 = float4(p2, p3);
v_args = float4(float(totalVertexCount) - abs(x1 - coord.x), // vertexIdx
float(totalVertexCount), // totalVertexCount
(joinSegmentCount << 10) | parametricSegmentCount,
radsPerPolarSegment);
if (joinSegmentCount > 1u)
{
float2x2 joinTangents = float2x2(tangents[1], @a_joinTan_and_ys.xy);
float joinTheta = acos(cosine_between_vectors(joinTangents[0], joinTangents[1]));
float joinSpan = float(joinSegmentCount);
if ((contourIDWithFlags & (JOIN_TYPE_MASK | EMULATED_STROKE_CAP_CONTOUR_FLAG)) ==
EMULATED_STROKE_CAP_CONTOUR_FLAG)
{
// Round caps emulated as joins need to emit vertices at T=0 and T=1, unlike normal
// round joins. The fragment shader will handle most of this, but here we need to adjust
// radsPerJoinSegment to account for the fact that this join will be rotating around two
// more segments.
joinSpan -= 2.;
}
float radsPerJoinSegment = joinTheta / joinSpan;
if (determinant(joinTangents) < .0)
radsPerJoinSegment = -radsPerJoinSegment;
v_joinArgs.xy = @a_joinTan_and_ys.xy;
v_joinArgs.z = radsPerJoinSegment;
}
v_contourIDWithFlags = contourIDWithFlags;
float4 pos;
pos.x = coord.x * (2. / TESS_TEXTURE_WIDTH) - 1.;
pos.y = coord.y * uniforms.tessInverseViewportY - sign(uniforms.tessInverseViewportY);
pos.zw = float2(0, 1);
VARYING_PACK(v_p0p1);
VARYING_PACK(v_p2p3);
VARYING_PACK(v_args);
VARYING_PACK(v_joinArgs);
VARYING_PACK(v_contourIDWithFlags);
EMIT_VERTEX(pos);
}
#endif
#ifdef @FRAGMENT
FRAG_DATA_MAIN(uint4, @tessellateFragmentMain)
{
VARYING_UNPACK(v_p0p1, float4);
VARYING_UNPACK(v_p2p3, float4);
VARYING_UNPACK(v_args, float4);
VARYING_UNPACK(v_joinArgs, float3);
VARYING_UNPACK(v_contourIDWithFlags, uint);
float2 p0 = v_p0p1.xy;
float2 p1 = v_p0p1.zw;
float2 p2 = v_p2p3.xy;
float2 p3 = v_p2p3.zw;
float2x2 tangents = find_tangents(p0, p1, p2, p3);
// Colocate any padding vertices at T=0.
float vertexIdx = max(floor(v_args.x), .0);
float totalVertexCount = v_args.y;
uint joinSegmentCount_and_parametricSegmentCount = uint(v_args.z);
float parametricSegmentCount = float(joinSegmentCount_and_parametricSegmentCount & 0x3ffu);
float joinSegmentCount = float(joinSegmentCount_and_parametricSegmentCount >> 10);
float radsPerPolarSegment = v_args.w;
uint contourIDWithFlags = v_contourIDWithFlags;
// mergedVertexID/mergedSegmentCount are relative to the sub-section of the instance this vertex
// belongs to (either the curve section that consists of merged polar and parametric segments,
// or the join section composed of just polar segments).
//
// Begin with the assumption that we belong to the curve section.
float mergedSegmentCount = totalVertexCount - joinSegmentCount;
float mergedVertexID = vertexIdx;
if (mergedVertexID <= mergedSegmentCount)
{
// We do belong to the curve section. Clear out any stroke join flags.
contourIDWithFlags &= ~JOIN_TYPE_MASK;
}
else
{
// We actually belong to the join section following the curve. Construct a point-cubic with
// rotation.
p0 = p1 = p2 = p3;
tangents = float2x2(tangents[1], v_joinArgs.xy /*joinTangent*/);
parametricSegmentCount = 1.;
mergedVertexID -= mergedSegmentCount;
mergedSegmentCount = joinSegmentCount;
if ((contourIDWithFlags & JOIN_TYPE_MASK) != 0u)
{
// Miter or bevel join vertices snap to either tangents[0] or tangents[1], and get
// adjusted in the shader that follows.
if (mergedVertexID < 2.5) // With 5 join segments, this branch will see IDs: 1, 2, 3, 4.
contourIDWithFlags |= JOIN_TANGENT_0_CONTOUR_FLAG;
if (mergedVertexID > 1.5 && mergedVertexID < 3.5)
contourIDWithFlags |= JOIN_TANGENT_INNER_CONTOUR_FLAG;
}
else if ((contourIDWithFlags & EMULATED_STROKE_CAP_CONTOUR_FLAG) != 0u)
{
// Round caps emulated as joins need to emit vertices at T=0 and T=1, unlike normal
// round joins. Preserve the same number of vertices (the CPU should have given us two
// extra, knowing that we are an emulated cap, and the vertex shader should have already
// accounted for this in radsPerJoinSegment), but adjust our stepping parameters so we
// begin at T=0 and end at T=1.
mergedSegmentCount -= 2.;
mergedVertexID--;
}
radsPerPolarSegment = v_joinArgs.z; // radsPerJoinSegment.
contourIDWithFlags |=
radsPerPolarSegment < .0 ? LEFT_JOIN_CONTOUR_FLAG : RIGHT_JOIN_CONTOUR_FLAG;
}
float2 tessCoord;
float theta = .0;
if (mergedVertexID == .0 || mergedVertexID == mergedSegmentCount ||
(contourIDWithFlags & JOIN_TYPE_MASK) != 0u)
{
// Tessellated vertices at the beginning and end of the strip use exact endpoints and
// tangents. This ensures crack-free seaming between instances.
bool isTan0 = mergedVertexID < mergedSegmentCount * .5;
tessCoord = isTan0 ? p0 : p3;
theta = atan2(isTan0 ? tangents[0] : tangents[1]);
}
else if ((contourIDWithFlags & RETROFITTED_TRIANGLE_CONTOUR_FLAG) != 0u)
{
// This cubic should actually be drawn as the single, non-AA triangle: [p0, p1, p3].
// This is used to squeeze in more rare triangles, like "grout" triangles from self
// intersections on interior triangulation, where it wouldn't be worth it to put them in
// their own dedicated draw call.
tessCoord = p1;
}
else
{
float T, polarT;
if (parametricSegmentCount == mergedSegmentCount)
{
// There are no polar vertices. This is (probably) a fill. Vertices are spaced evenly in
// parametric space.
T = mergedVertexID / parametricSegmentCount;
polarT = .0; // Set polarT != T to ensure we calculate the parametric tangent later.
}
else
{
// Compute the location and tangent direction of the tessellated stroke vertex with the
// integral id "mergedVertexID", where mergedVertexID is the sorted-order index of
// parametric and polar vertices. Start by finding the tangent function's power basis
// coefficients. These define a tangent direction (scaled by some uniform value) as:
//
// |T^2|
// Tangent_Direction(T) = dx,dy = |A 2B C| * |T |
// |. . .| |1 |
float2 A, B, C = p1 - p0;
float2 D = p3 - p0;
float2 E = p2 - p1;
B = E - C;
A = -3. * E + D;
// FIXME(crbug.com/800804,skbug.com/11268): Consider normalizing the exponents in A,B,C
// at this point in order to prevent fp32 overflow.
// Now find the coefficients that give a tangent direction from a parametric vertex ID:
//
// |parametricVertexID^2|
// Tangent_Direction(parametricVertexID) = dx,dy = |A B_ C_| * |parametricVertexID |
// |. . .| |1 |
//
float2 B_ = B * (parametricSegmentCount * 2.);
float2 C_ = C * (parametricSegmentCount * parametricSegmentCount);
// Run a binary search to determine the highest parametric vertex that is located on or
// before the mergedVertexID. A merged ID is determined by the sum of complete
// parametric and polar segments behind it. i.e., find the highest parametric vertex
// where:
//
// parametricVertexID + floor(numPolarSegmentsAtParametricT) <= mergedVertexID
//
float lastParametricVertexID = .0;
float maxParametricVertexID = min(parametricSegmentCount - 1., mergedVertexID);
// FIXME(crbug.com/800804,skbug.com/11268): This normalize() can overflow.
float2 tan0norm = normalize(tangents[0]);
float negAbsRadsPerSegment = -abs(radsPerPolarSegment);
float maxRotation0 = (1. + mergedVertexID) * abs(radsPerPolarSegment);
for (int p = MAX_PARAMETRIC_SEGMENTS_LOG2 - 1; p >= 0; --p)
{
// Test the parametric vertex at lastParametricVertexID + 2^p.
float testParametricID = lastParametricVertexID + exp2(float(p));
if (testParametricID <= maxParametricVertexID)
{
float2 testTan = testParametricID * A + B_;
testTan = testParametricID * testTan + C_;
float cosRotation = dot(normalize(testTan), tan0norm);
float maxRotation = testParametricID * negAbsRadsPerSegment + maxRotation0;
maxRotation = min(maxRotation, PI);
// Is rotation <= maxRotation? (i.e., is the number of complete polar segments
// behind testT, + testParametricID <= mergedVertexID?)
if (cosRotation >= cos(maxRotation))
lastParametricVertexID = testParametricID;
}
}
// Find the T value of the parametric vertex at lastParametricVertexID.
float parametricT = lastParametricVertexID / parametricSegmentCount;
// Now that we've identified the highest parametric vertex on or before the
// mergedVertexID, the highest polar vertex is easy:
float lastPolarVertexID = mergedVertexID - lastParametricVertexID;
// Find the angle of tan0, or the angle between tan0norm and the positive x axis.
float theta0 = acos(clamp(tan0norm.x, -1., 1.));
theta0 = tan0norm.y >= .0 ? theta0 : -theta0;
// Find the tangent vector on the vertex at lastPolarVertexID.
theta = lastPolarVertexID * radsPerPolarSegment + theta0;
float2 norm = float2(sin(theta), -cos(theta));
// Find the T value where the tangent is orthogonal to norm. This is a quadratic:
//
// dot(norm, Tangent_Direction(T)) == 0
//
// |T^2|
// norm * |A 2B C| * |T | == 0
// |. . .| |1 |
//
float a = dot(norm, A), b_over_2 = dot(norm, B), c = dot(norm, C);
float discr_over_4 = max(b_over_2 * b_over_2 - a * c, .0);
float q = sqrt(discr_over_4);
if (b_over_2 > .0)
q = -q;
q -= b_over_2;
// Roots are q/a and c/q. Since each curve section does not inflect or rotate more than
// 180 degrees, there can only be one tangent orthogonal to "norm" inside 0..1. Pick the
// root nearest .5.
float _5qa = -.5 * q * a;
float2 root = (abs(q * q + _5qa) < abs(a * c + _5qa)) ? float2(q, a) : float2(c, q);
polarT = (root.t != .0) ? root.s / root.t : .0;
polarT = clamp(polarT, .0, 1.);
// The root finder above can become unstable when lastPolarVertexID == 0 (e.g., if there
// are roots at exatly 0 and 1 both). polarT should always == 0 in this case.
if (lastPolarVertexID == .0)
polarT = .0;
// Now that we've identified the T values of the last parametric and polar vertices, our
// final T value for mergedVertexID is whichever is larger.
T = max(parametricT, polarT);
}
// Evaluate the cubic at T. Use De Casteljau's for its accuracy and stability.
float2 ab = unchecked_mix(p0, p1, T);
float2 bc = unchecked_mix(p1, p2, T);
float2 cd = unchecked_mix(p2, p3, T);
float2 abc = unchecked_mix(ab, bc, T);
float2 bcd = unchecked_mix(bc, cd, T);
tessCoord = unchecked_mix(abc, bcd, T);
// If we went with T=parametricT, then update theta. Otherwise leave it at the polar theta
// found previously. (In the event that parametricT == polarT, we keep the polar theta.)
if (T != polarT)
theta = atan2(bcd - abc);
}
EMIT_FRAG_DATA(uint4(floatBitsToUint(float3(tessCoord, theta)), contourIDWithFlags));
}
#endif