blob: 26aa33ae9b4122bcbf35815b9f3ce6fcba329995 [file] [log] [blame]
#pragma clang diagnostic ignored "-Wmissing-prototypes"
#pragma clang diagnostic ignored "-Wmissing-braces"
#pragma clang diagnostic ignored "-Wunused-variable"
#include <metal_stdlib>
#include <simd/simd.h>
#include <metal_atomic>
using namespace metal;
template<typename T, size_t Num>
struct spvUnsafeArray
{
T elements[Num ? Num : 1];
thread T& operator [] (size_t pos) thread
{
return elements[pos];
}
constexpr const thread T& operator [] (size_t pos) const thread
{
return elements[pos];
}
device T& operator [] (size_t pos) device
{
return elements[pos];
}
constexpr const device T& operator [] (size_t pos) const device
{
return elements[pos];
}
constexpr const constant T& operator [] (size_t pos) const constant
{
return elements[pos];
}
threadgroup T& operator [] (size_t pos) threadgroup
{
return elements[pos];
}
constexpr const threadgroup T& operator [] (size_t pos) const threadgroup
{
return elements[pos];
}
};
struct Alloc
{
uint offset;
};
struct MallocResult
{
Alloc alloc;
bool failed;
};
struct PathCubicRef
{
uint offset;
};
struct PathCubic
{
float2 p0;
float2 p1;
float2 p2;
float2 p3;
uint path_ix;
uint trans_ix;
float2 stroke;
};
struct PathSegRef
{
uint offset;
};
struct PathSegTag
{
uint tag;
uint flags;
};
struct TileRef
{
uint offset;
};
struct PathRef
{
uint offset;
};
struct Path
{
uint4 bbox;
TileRef tiles;
};
struct TileSegRef
{
uint offset;
};
struct TileSeg
{
float2 origin;
float2 vector;
float y_edge;
TileSegRef next;
};
struct SubdivResult
{
float val;
float a0;
float a2;
};
struct Memory
{
uint mem_offset;
uint mem_error;
uint memory[1];
};
struct Alloc_1
{
uint offset;
};
struct Config
{
uint n_elements;
uint n_pathseg;
uint width_in_tiles;
uint height_in_tiles;
Alloc_1 tile_alloc;
Alloc_1 bin_alloc;
Alloc_1 ptcl_alloc;
Alloc_1 pathseg_alloc;
Alloc_1 anno_alloc;
Alloc_1 trans_alloc;
Alloc_1 path_bbox_alloc;
Alloc_1 drawmonoid_alloc;
Alloc_1 clip_alloc;
Alloc_1 clip_bic_alloc;
Alloc_1 clip_stack_alloc;
Alloc_1 clip_bbox_alloc;
Alloc_1 draw_bbox_alloc;
Alloc_1 drawinfo_alloc;
uint n_trans;
uint n_path;
uint n_clip;
uint trans_offset;
uint linewidth_offset;
uint pathtag_offset;
uint pathseg_offset;
uint drawtag_offset;
uint drawdata_offset;
};
struct ConfigBuf
{
Config conf;
};
constant uint3 gl_WorkGroupSize [[maybe_unused]] = uint3(32u, 1u, 1u);
static inline __attribute__((always_inline))
bool touch_mem(thread const Alloc& alloc, thread const uint& offset)
{
return true;
}
static inline __attribute__((always_inline))
uint read_mem(thread const Alloc& alloc, thread const uint& offset, device Memory& v_136, constant uint& v_136BufferSize)
{
Alloc param = alloc;
uint param_1 = offset;
if (!touch_mem(param, param_1))
{
return 0u;
}
uint v = v_136.memory[offset];
return v;
}
static inline __attribute__((always_inline))
PathSegTag PathSeg_tag(thread const Alloc& a, thread const PathSegRef& ref, device Memory& v_136, constant uint& v_136BufferSize)
{
Alloc param = a;
uint param_1 = ref.offset >> uint(2);
uint tag_and_flags = read_mem(param, param_1, v_136, v_136BufferSize);
return PathSegTag{ tag_and_flags & 65535u, tag_and_flags >> uint(16) };
}
static inline __attribute__((always_inline))
PathCubic PathCubic_read(thread const Alloc& a, thread const PathCubicRef& ref, device Memory& v_136, constant uint& v_136BufferSize)
{
uint ix = ref.offset >> uint(2);
Alloc param = a;
uint param_1 = ix + 0u;
uint raw0 = read_mem(param, param_1, v_136, v_136BufferSize);
Alloc param_2 = a;
uint param_3 = ix + 1u;
uint raw1 = read_mem(param_2, param_3, v_136, v_136BufferSize);
Alloc param_4 = a;
uint param_5 = ix + 2u;
uint raw2 = read_mem(param_4, param_5, v_136, v_136BufferSize);
Alloc param_6 = a;
uint param_7 = ix + 3u;
uint raw3 = read_mem(param_6, param_7, v_136, v_136BufferSize);
Alloc param_8 = a;
uint param_9 = ix + 4u;
uint raw4 = read_mem(param_8, param_9, v_136, v_136BufferSize);
Alloc param_10 = a;
uint param_11 = ix + 5u;
uint raw5 = read_mem(param_10, param_11, v_136, v_136BufferSize);
Alloc param_12 = a;
uint param_13 = ix + 6u;
uint raw6 = read_mem(param_12, param_13, v_136, v_136BufferSize);
Alloc param_14 = a;
uint param_15 = ix + 7u;
uint raw7 = read_mem(param_14, param_15, v_136, v_136BufferSize);
Alloc param_16 = a;
uint param_17 = ix + 8u;
uint raw8 = read_mem(param_16, param_17, v_136, v_136BufferSize);
Alloc param_18 = a;
uint param_19 = ix + 9u;
uint raw9 = read_mem(param_18, param_19, v_136, v_136BufferSize);
Alloc param_20 = a;
uint param_21 = ix + 10u;
uint raw10 = read_mem(param_20, param_21, v_136, v_136BufferSize);
Alloc param_22 = a;
uint param_23 = ix + 11u;
uint raw11 = read_mem(param_22, param_23, v_136, v_136BufferSize);
PathCubic s;
s.p0 = float2(as_type<float>(raw0), as_type<float>(raw1));
s.p1 = float2(as_type<float>(raw2), as_type<float>(raw3));
s.p2 = float2(as_type<float>(raw4), as_type<float>(raw5));
s.p3 = float2(as_type<float>(raw6), as_type<float>(raw7));
s.path_ix = raw8;
s.trans_ix = raw9;
s.stroke = float2(as_type<float>(raw10), as_type<float>(raw11));
return s;
}
static inline __attribute__((always_inline))
PathCubic PathSeg_Cubic_read(thread const Alloc& a, thread const PathSegRef& ref, device Memory& v_136, constant uint& v_136BufferSize)
{
Alloc param = a;
PathCubicRef param_1 = PathCubicRef{ ref.offset + 4u };
return PathCubic_read(param, param_1, v_136, v_136BufferSize);
}
static inline __attribute__((always_inline))
float2 eval_cubic(thread const float2& p0, thread const float2& p1, thread const float2& p2, thread const float2& p3, thread const float& t)
{
float mt = 1.0 - t;
return (p0 * ((mt * mt) * mt)) + (((p1 * ((mt * mt) * 3.0)) + (((p2 * (mt * 3.0)) + (p3 * t)) * t)) * t);
}
static inline __attribute__((always_inline))
float approx_parabola_integral(thread const float& x)
{
return x * rsqrt(sqrt(0.3300000131130218505859375 + (0.201511204242706298828125 + ((0.25 * x) * x))));
}
static inline __attribute__((always_inline))
SubdivResult estimate_subdiv(thread const float2& p0, thread const float2& p1, thread const float2& p2, thread const float& sqrt_tol)
{
float2 d01 = p1 - p0;
float2 d12 = p2 - p1;
float2 dd = d01 - d12;
float _cross = ((p2.x - p0.x) * dd.y) - ((p2.y - p0.y) * dd.x);
float x0 = ((d01.x * dd.x) + (d01.y * dd.y)) / _cross;
float x2 = ((d12.x * dd.x) + (d12.y * dd.y)) / _cross;
float scale = abs(_cross / (length(dd) * (x2 - x0)));
float param = x0;
float a0 = approx_parabola_integral(param);
float param_1 = x2;
float a2 = approx_parabola_integral(param_1);
float val = 0.0;
if (scale < 1000000000.0)
{
float da = abs(a2 - a0);
float sqrt_scale = sqrt(scale);
if (sign(x0) == sign(x2))
{
val = da * sqrt_scale;
}
else
{
float xmin = sqrt_tol / sqrt_scale;
float param_2 = xmin;
val = (sqrt_tol * da) / approx_parabola_integral(param_2);
}
}
return SubdivResult{ val, a0, a2 };
}
static inline __attribute__((always_inline))
uint fill_mode_from_flags(thread const uint& flags)
{
return flags & 1u;
}
static inline __attribute__((always_inline))
Path Path_read(thread const Alloc& a, thread const PathRef& ref, device Memory& v_136, constant uint& v_136BufferSize)
{
uint ix = ref.offset >> uint(2);
Alloc param = a;
uint param_1 = ix + 0u;
uint raw0 = read_mem(param, param_1, v_136, v_136BufferSize);
Alloc param_2 = a;
uint param_3 = ix + 1u;
uint raw1 = read_mem(param_2, param_3, v_136, v_136BufferSize);
Alloc param_4 = a;
uint param_5 = ix + 2u;
uint raw2 = read_mem(param_4, param_5, v_136, v_136BufferSize);
Path s;
s.bbox = uint4(raw0 & 65535u, raw0 >> uint(16), raw1 & 65535u, raw1 >> uint(16));
s.tiles = TileRef{ raw2 };
return s;
}
static inline __attribute__((always_inline))
Alloc new_alloc(thread const uint& offset, thread const uint& size, thread const bool& mem_ok)
{
Alloc a;
a.offset = offset;
return a;
}
static inline __attribute__((always_inline))
float approx_parabola_inv_integral(thread const float& x)
{
return x * sqrt(0.61000001430511474609375 + (0.1520999968051910400390625 + ((0.25 * x) * x)));
}
static inline __attribute__((always_inline))
float2 eval_quad(thread const float2& p0, thread const float2& p1, thread const float2& p2, thread const float& t)
{
float mt = 1.0 - t;
return (p0 * (mt * mt)) + (((p1 * (mt * 2.0)) + (p2 * t)) * t);
}
static inline __attribute__((always_inline))
MallocResult malloc(thread const uint& size, device Memory& v_136, constant uint& v_136BufferSize)
{
uint _142 = atomic_fetch_add_explicit((device atomic_uint*)&v_136.mem_offset, size, memory_order_relaxed);
uint offset = _142;
MallocResult r;
r.failed = (offset + size) > uint(int((v_136BufferSize - 8) / 4) * 4);
uint param = offset;
uint param_1 = size;
bool param_2 = !r.failed;
r.alloc = new_alloc(param, param_1, param_2);
if (r.failed)
{
uint _171 = atomic_fetch_max_explicit((device atomic_uint*)&v_136.mem_error, 1u, memory_order_relaxed);
return r;
}
return r;
}
static inline __attribute__((always_inline))
TileRef Tile_index(thread const TileRef& ref, thread const uint& index)
{
return TileRef{ ref.offset + (index * 8u) };
}
static inline __attribute__((always_inline))
void write_mem(thread const Alloc& alloc, thread const uint& offset, thread const uint& val, device Memory& v_136, constant uint& v_136BufferSize)
{
Alloc param = alloc;
uint param_1 = offset;
if (!touch_mem(param, param_1))
{
return;
}
v_136.memory[offset] = val;
}
static inline __attribute__((always_inline))
void TileSeg_write(thread const Alloc& a, thread const TileSegRef& ref, thread const TileSeg& s, device Memory& v_136, constant uint& v_136BufferSize)
{
uint ix = ref.offset >> uint(2);
Alloc param = a;
uint param_1 = ix + 0u;
uint param_2 = as_type<uint>(s.origin.x);
write_mem(param, param_1, param_2, v_136, v_136BufferSize);
Alloc param_3 = a;
uint param_4 = ix + 1u;
uint param_5 = as_type<uint>(s.origin.y);
write_mem(param_3, param_4, param_5, v_136, v_136BufferSize);
Alloc param_6 = a;
uint param_7 = ix + 2u;
uint param_8 = as_type<uint>(s.vector.x);
write_mem(param_6, param_7, param_8, v_136, v_136BufferSize);
Alloc param_9 = a;
uint param_10 = ix + 3u;
uint param_11 = as_type<uint>(s.vector.y);
write_mem(param_9, param_10, param_11, v_136, v_136BufferSize);
Alloc param_12 = a;
uint param_13 = ix + 4u;
uint param_14 = as_type<uint>(s.y_edge);
write_mem(param_12, param_13, param_14, v_136, v_136BufferSize);
Alloc param_15 = a;
uint param_16 = ix + 5u;
uint param_17 = s.next.offset;
write_mem(param_15, param_16, param_17, v_136, v_136BufferSize);
}
kernel void main0(constant uint* spvBufferSizeConstants [[buffer(25)]], device Memory& v_136 [[buffer(0)]], const device ConfigBuf& _710 [[buffer(1)]], uint3 gl_GlobalInvocationID [[thread_position_in_grid]])
{
constant uint& v_136BufferSize = spvBufferSizeConstants[0];
uint element_ix = gl_GlobalInvocationID.x;
PathSegRef ref = PathSegRef{ _710.conf.pathseg_alloc.offset + (element_ix * 52u) };
PathSegTag tag = PathSegTag{ 0u, 0u };
if (element_ix < _710.conf.n_pathseg)
{
Alloc param;
param.offset = _710.conf.pathseg_alloc.offset;
PathSegRef param_1 = ref;
tag = PathSeg_tag(param, param_1, v_136, v_136BufferSize);
}
bool mem_ok = v_136.mem_error == 0u;
switch (tag.tag)
{
case 1u:
{
Alloc param_2;
param_2.offset = _710.conf.pathseg_alloc.offset;
PathSegRef param_3 = ref;
PathCubic cubic = PathSeg_Cubic_read(param_2, param_3, v_136, v_136BufferSize);
float2 err_v = (((cubic.p2 - cubic.p1) * 3.0) + cubic.p0) - cubic.p3;
float err = (err_v.x * err_v.x) + (err_v.y * err_v.y);
uint n_quads = max(uint(ceil(pow(err * 3.7037036418914794921875, 0.16666667163372039794921875))), 1u);
n_quads = min(n_quads, 16u);
float val = 0.0;
float2 qp0 = cubic.p0;
float _step = 1.0 / float(n_quads);
spvUnsafeArray<SubdivResult, 16> keep_params;
for (uint i = 0u; i < n_quads; i++)
{
float t = float(i + 1u) * _step;
float2 param_4 = cubic.p0;
float2 param_5 = cubic.p1;
float2 param_6 = cubic.p2;
float2 param_7 = cubic.p3;
float param_8 = t;
float2 qp2 = eval_cubic(param_4, param_5, param_6, param_7, param_8);
float2 param_9 = cubic.p0;
float2 param_10 = cubic.p1;
float2 param_11 = cubic.p2;
float2 param_12 = cubic.p3;
float param_13 = t - (0.5 * _step);
float2 qp1 = eval_cubic(param_9, param_10, param_11, param_12, param_13);
qp1 = (qp1 * 2.0) - ((qp0 + qp2) * 0.5);
float2 param_14 = qp0;
float2 param_15 = qp1;
float2 param_16 = qp2;
float param_17 = 0.4743416607379913330078125;
SubdivResult params = estimate_subdiv(param_14, param_15, param_16, param_17);
keep_params[i] = params;
val += params.val;
qp0 = qp2;
}
uint n = max(uint(ceil((val * 0.5) / 0.4743416607379913330078125)), 1u);
uint param_18 = tag.flags;
bool is_stroke = fill_mode_from_flags(param_18) == 1u;
uint path_ix = cubic.path_ix;
Alloc param_19;
param_19.offset = _710.conf.tile_alloc.offset;
PathRef param_20 = PathRef{ _710.conf.tile_alloc.offset + (path_ix * 12u) };
Path path = Path_read(param_19, param_20, v_136, v_136BufferSize);
uint param_21 = path.tiles.offset;
uint param_22 = ((path.bbox.z - path.bbox.x) * (path.bbox.w - path.bbox.y)) * 8u;
bool param_23 = mem_ok;
Alloc path_alloc = new_alloc(param_21, param_22, param_23);
int4 bbox = int4(path.bbox);
float2 p0 = cubic.p0;
qp0 = cubic.p0;
float v_step = val / float(n);
int n_out = 1;
float val_sum = 0.0;
float2 p1;
float _1147;
TileSeg tile_seg;
for (uint i_1 = 0u; i_1 < n_quads; i_1++)
{
float t_1 = float(i_1 + 1u) * _step;
float2 param_24 = cubic.p0;
float2 param_25 = cubic.p1;
float2 param_26 = cubic.p2;
float2 param_27 = cubic.p3;
float param_28 = t_1;
float2 qp2_1 = eval_cubic(param_24, param_25, param_26, param_27, param_28);
float2 param_29 = cubic.p0;
float2 param_30 = cubic.p1;
float2 param_31 = cubic.p2;
float2 param_32 = cubic.p3;
float param_33 = t_1 - (0.5 * _step);
float2 qp1_1 = eval_cubic(param_29, param_30, param_31, param_32, param_33);
qp1_1 = (qp1_1 * 2.0) - ((qp0 + qp2_1) * 0.5);
SubdivResult params_1 = keep_params[i_1];
float param_34 = params_1.a0;
float u0 = approx_parabola_inv_integral(param_34);
float param_35 = params_1.a2;
float u2 = approx_parabola_inv_integral(param_35);
float uscale = 1.0 / (u2 - u0);
float target = float(n_out) * v_step;
for (;;)
{
bool _1040 = uint(n_out) == n;
bool _1050;
if (!_1040)
{
_1050 = target < (val_sum + params_1.val);
}
else
{
_1050 = _1040;
}
if (_1050)
{
if (uint(n_out) == n)
{
p1 = cubic.p3;
}
else
{
float u = (target - val_sum) / params_1.val;
float a = mix(params_1.a0, params_1.a2, u);
float param_36 = a;
float au = approx_parabola_inv_integral(param_36);
float t_2 = (au - u0) * uscale;
float2 param_37 = qp0;
float2 param_38 = qp1_1;
float2 param_39 = qp2_1;
float param_40 = t_2;
p1 = eval_quad(param_37, param_38, param_39, param_40);
}
float xmin = fast::min(p0.x, p1.x) - cubic.stroke.x;
float xmax = fast::max(p0.x, p1.x) + cubic.stroke.x;
float ymin = fast::min(p0.y, p1.y) - cubic.stroke.y;
float ymax = fast::max(p0.y, p1.y) + cubic.stroke.y;
float dx = p1.x - p0.x;
float dy = p1.y - p0.y;
if (abs(dy) < 9.999999717180685365747194737196e-10)
{
_1147 = 1000000000.0;
}
else
{
_1147 = dx / dy;
}
float invslope = _1147;
float c = (cubic.stroke.x + (abs(invslope) * (8.0 + cubic.stroke.y))) * 0.0625;
float b = invslope;
float a_1 = (p0.x - ((p0.y - 8.0) * b)) * 0.0625;
int x0 = int(floor(xmin * 0.0625));
int x1 = int(floor(xmax * 0.0625) + 1.0);
int y0 = int(floor(ymin * 0.0625));
int y1 = int(floor(ymax * 0.0625) + 1.0);
x0 = clamp(x0, bbox.x, bbox.z);
y0 = clamp(y0, bbox.y, bbox.w);
x1 = clamp(x1, bbox.x, bbox.z);
y1 = clamp(y1, bbox.y, bbox.w);
float xc = a_1 + (b * float(y0));
int stride = bbox.z - bbox.x;
int base = ((y0 - bbox.y) * stride) - bbox.x;
uint n_tile_alloc = uint((x1 - x0) * (y1 - y0));
uint param_41 = n_tile_alloc * 24u;
MallocResult _1263 = malloc(param_41, v_136, v_136BufferSize);
MallocResult tile_alloc = _1263;
if (tile_alloc.failed || (!mem_ok))
{
return;
}
uint tile_offset = tile_alloc.alloc.offset;
int xray = int(floor(p0.x * 0.0625));
int last_xray = int(floor(p1.x * 0.0625));
if (p0.y > p1.y)
{
int tmp = xray;
xray = last_xray;
last_xray = tmp;
}
for (int y = y0; y < y1; y++)
{
float tile_y0 = float(y * 16);
int xbackdrop = max((xray + 1), bbox.x);
bool _1319 = !is_stroke;
bool _1329;
if (_1319)
{
_1329 = fast::min(p0.y, p1.y) < tile_y0;
}
else
{
_1329 = _1319;
}
bool _1336;
if (_1329)
{
_1336 = xbackdrop < bbox.z;
}
else
{
_1336 = _1329;
}
if (_1336)
{
int backdrop = (p1.y < p0.y) ? 1 : (-1);
TileRef param_42 = path.tiles;
uint param_43 = uint(base + xbackdrop);
TileRef tile_ref = Tile_index(param_42, param_43);
uint tile_el = tile_ref.offset >> uint(2);
Alloc param_44 = path_alloc;
uint param_45 = tile_el + 1u;
if (touch_mem(param_44, param_45))
{
uint _1374 = atomic_fetch_add_explicit((device atomic_uint*)&v_136.memory[tile_el + 1u], uint(backdrop), memory_order_relaxed);
}
}
int next_xray = last_xray;
if (y < (y1 - 1))
{
float tile_y1 = float((y + 1) * 16);
float x_edge = mix(p0.x, p1.x, (tile_y1 - p0.y) / dy);
next_xray = int(floor(x_edge * 0.0625));
}
int min_xray = min(xray, next_xray);
int max_xray = max(xray, next_xray);
int xx0 = min(int(floor(xc - c)), min_xray);
int xx1 = max(int(ceil(xc + c)), (max_xray + 1));
xx0 = clamp(xx0, x0, x1);
xx1 = clamp(xx1, x0, x1);
for (int x = xx0; x < xx1; x++)
{
float tile_x0 = float(x * 16);
TileRef param_46 = TileRef{ path.tiles.offset };
uint param_47 = uint(base + x);
TileRef tile_ref_1 = Tile_index(param_46, param_47);
uint tile_el_1 = tile_ref_1.offset >> uint(2);
uint old = 0u;
Alloc param_48 = path_alloc;
uint param_49 = tile_el_1;
if (touch_mem(param_48, param_49))
{
uint _1477 = atomic_exchange_explicit((device atomic_uint*)&v_136.memory[tile_el_1], tile_offset, memory_order_relaxed);
old = _1477;
}
tile_seg.origin = p0;
tile_seg.vector = p1 - p0;
float y_edge = 0.0;
if (!is_stroke)
{
y_edge = mix(p0.y, p1.y, (tile_x0 - p0.x) / dx);
if (fast::min(p0.x, p1.x) < tile_x0)
{
float2 p = float2(tile_x0, y_edge);
if (p0.x > p1.x)
{
tile_seg.vector = p - p0;
}
else
{
tile_seg.origin = p;
tile_seg.vector = p1 - p;
}
if (tile_seg.vector.x == 0.0)
{
tile_seg.vector.x = sign(p1.x - p0.x) * 9.999999717180685365747194737196e-10;
}
}
if ((x <= min_xray) || (max_xray < x))
{
y_edge = 1000000000.0;
}
}
tile_seg.y_edge = y_edge;
tile_seg.next.offset = old;
Alloc param_50 = tile_alloc.alloc;
TileSegRef param_51 = TileSegRef{ tile_offset };
TileSeg param_52 = tile_seg;
TileSeg_write(param_50, param_51, param_52, v_136, v_136BufferSize);
tile_offset += 24u;
}
xc += b;
base += stride;
xray = next_xray;
}
n_out++;
target += v_step;
p0 = p1;
continue;
}
else
{
break;
}
}
val_sum += params_1.val;
qp0 = qp2_1;
}
break;
}
}
}