blob: 9b04400ff45edad61ef05fe53bafbcf91fc88ed5 [file] [log] [blame]
// SPDX-License-Identifier: Apache-2.0 OR MIT OR Unlicense
// The binning stage of the pipeline.
//
// Each workgroup processes N_TILE paths.
// Each thread processes one path and calculates a N_TILE_X x N_TILE_Y coverage mask
// based on the path bounding box to bin the paths.
#version 450
#extension GL_GOOGLE_include_directive : enable
#include "mem.h"
#include "setup.h"
layout(local_size_x = N_TILE, local_size_y = 1) in;
layout(set = 0, binding = 1) readonly buffer ConfigBuf {
Config conf;
};
#include "bins.h"
#include "drawtag.h"
// scale factors useful for converting coordinates to bins
#define SX (1.0 / float(N_TILE_X * TILE_WIDTH_PX))
#define SY (1.0 / float(N_TILE_Y * TILE_HEIGHT_PX))
// Constant not available in GLSL. Also consider uintBitsToFloat(0x7f800000)
#define INFINITY (1.0 / 0.0)
// Note: cudaraster has N_TILE + 1 to cut down on bank conflicts.
// Bitmaps are sliced (256bit into 8 (N_SLICE) 32bit submaps)
shared uint bitmaps[N_SLICE][N_TILE];
shared uint count[N_SLICE][N_TILE];
shared Alloc sh_chunk_alloc[N_TILE];
shared bool sh_alloc_failed;
DrawMonoid load_draw_monoid(uint element_ix) {
uint base = (conf.drawmonoid_alloc.offset >> 2) + 4 * element_ix;
uint path_ix = memory[base];
uint clip_ix = memory[base + 1];
uint scene_offset = memory[base + 2];
uint info_offset = memory[base + 3];
return DrawMonoid(path_ix, clip_ix, scene_offset, info_offset);
}
// Load bounding box computed by clip processing
vec4 load_clip_bbox(uint clip_ix) {
uint base = (conf.clip_bbox_alloc.offset >> 2) + 4 * clip_ix;
float x0 = uintBitsToFloat(memory[base]);
float y0 = uintBitsToFloat(memory[base + 1]);
float x1 = uintBitsToFloat(memory[base + 2]);
float y1 = uintBitsToFloat(memory[base + 3]);
vec4 bbox = vec4(x0, y0, x1, y1);
return bbox;
}
vec4 bbox_intersect(vec4 a, vec4 b) {
return vec4(max(a.xy, b.xy), min(a.zw, b.zw));
}
// Load path's bbox from bbox (as written by pathseg).
vec4 load_path_bbox(uint path_ix) {
uint base = (conf.path_bbox_alloc.offset >> 2) + 6 * path_ix;
float bbox_l = float(memory[base]) - 32768.0;
float bbox_t = float(memory[base + 1]) - 32768.0;
float bbox_r = float(memory[base + 2]) - 32768.0;
float bbox_b = float(memory[base + 3]) - 32768.0;
vec4 bbox = vec4(bbox_l, bbox_t, bbox_r, bbox_b);
return bbox;
}
void store_draw_bbox(uint draw_ix, vec4 bbox) {
uint base = (conf.draw_bbox_alloc.offset >> 2) + 4 * draw_ix;
memory[base] = floatBitsToUint(bbox.x);
memory[base + 1] = floatBitsToUint(bbox.y);
memory[base + 2] = floatBitsToUint(bbox.z);
memory[base + 3] = floatBitsToUint(bbox.w);
}
void main() {
uint my_partition = gl_WorkGroupID.x;
for (uint i = 0; i < N_SLICE; i++) {
bitmaps[i][gl_LocalInvocationID.x] = 0;
}
if (gl_LocalInvocationID.x == 0) {
sh_alloc_failed = false;
}
barrier();
// Read inputs and determine coverage of bins
uint element_ix = my_partition * N_TILE + gl_LocalInvocationID.x;
int x0 = 0, y0 = 0, x1 = 0, y1 = 0;
if (element_ix < conf.n_elements) {
DrawMonoid draw_monoid = load_draw_monoid(element_ix);
uint path_ix = draw_monoid.path_ix;
vec4 clip_bbox = vec4(-1e9, -1e9, 1e9, 1e9);
uint clip_ix = draw_monoid.clip_ix;
if (clip_ix > 0) {
clip_bbox = load_clip_bbox(clip_ix - 1);
}
// For clip elements, clip_bbox is the bbox of the clip path, intersected
// with enclosing clips.
// For other elements, it is the bbox of the enclosing clips.
vec4 path_bbox = load_path_bbox(path_ix);
vec4 bbox = bbox_intersect(path_bbox, clip_bbox);
// Avoid negative-size bbox (is this necessary)?
bbox.zw = max(bbox.xy, bbox.zw);
// Store clip-intersected bbox for tile_alloc.
store_draw_bbox(element_ix, bbox);
x0 = int(floor(bbox.x * SX));
y0 = int(floor(bbox.y * SY));
x1 = int(ceil(bbox.z * SX));
y1 = int(ceil(bbox.w * SY));
}
// At this point, we run an iterator over the coverage area,
// trying to keep divergence low.
// Right now, it's just a bbox, but we'll get finer with
// segments.
uint width_in_bins = (conf.width_in_tiles + N_TILE_X - 1) / N_TILE_X;
uint height_in_bins = (conf.height_in_tiles + N_TILE_Y - 1) / N_TILE_Y;
x0 = clamp(x0, 0, int(width_in_bins));
x1 = clamp(x1, x0, int(width_in_bins));
y0 = clamp(y0, 0, int(height_in_bins));
y1 = clamp(y1, y0, int(height_in_bins));
if (x0 == x1)
y1 = y0;
int x = x0, y = y0;
uint my_slice = gl_LocalInvocationID.x / 32;
uint my_mask = 1u << (gl_LocalInvocationID.x & 31);
while (y < y1) {
atomicOr(bitmaps[my_slice][y * width_in_bins + x], my_mask);
x++;
if (x == x1) {
x = x0;
y++;
}
}
barrier();
// Allocate output segments.
uint element_count = 0;
for (uint i = 0; i < N_SLICE; i++) {
element_count += bitCount(bitmaps[i][gl_LocalInvocationID.x]);
count[i][gl_LocalInvocationID.x] = element_count;
}
// element_count is number of elements covering bin for this invocation.
Alloc chunk_alloc = new_alloc(0, 0, true);
if (element_count != 0) {
// TODO: aggregate atomic adds (subgroup is probably fastest)
MallocResult chunk = malloc(element_count * BinInstance_size);
chunk_alloc = chunk.alloc;
sh_chunk_alloc[gl_LocalInvocationID.x] = chunk_alloc;
if (chunk.failed) {
sh_alloc_failed = true;
}
}
// Note: it might be more efficient for reading to do this in the
// other order (each bin is a contiguous sequence of partitions)
uint out_ix = (conf.bin_alloc.offset >> 2) + (my_partition * N_TILE + gl_LocalInvocationID.x) * 2;
write_mem(conf.bin_alloc, out_ix, element_count);
write_mem(conf.bin_alloc, out_ix + 1, chunk_alloc.offset);
barrier();
if (sh_alloc_failed || mem_error != NO_ERROR) {
return;
}
// Use similar strategy as Laine & Karras paper; loop over bbox of bins
// touched by this element
x = x0;
y = y0;
while (y < y1) {
uint bin_ix = y * width_in_bins + x;
uint out_mask = bitmaps[my_slice][bin_ix];
if ((out_mask & my_mask) != 0) {
uint idx = bitCount(out_mask & (my_mask - 1));
if (my_slice > 0) {
idx += count[my_slice - 1][bin_ix];
}
Alloc out_alloc = sh_chunk_alloc[bin_ix];
uint out_offset = out_alloc.offset + idx * BinInstance_size;
BinInstance_write(out_alloc, BinInstanceRef(out_offset), BinInstance(element_ix));
}
x++;
if (x == x1) {
x = x0;
y++;
}
}
}