|  | /* | 
|  | * ==================================================== | 
|  | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|  | * | 
|  | * Developed at SunPro, a Sun Microsystems, Inc. business. | 
|  | * Permission to use, copy, modify, and distribute this | 
|  | * software is freely granted, provided that this notice | 
|  | * is preserved. | 
|  | * ==================================================== | 
|  | */ | 
|  |  | 
|  | /* __kernel_tan( x, y, k ) | 
|  | * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 | 
|  | * Input x is assumed to be bounded by ~pi/4 in magnitude. | 
|  | * Input y is the tail of x. | 
|  | * Input k indicates whether tan (if k=1) or | 
|  | * -1/tan (if k= -1) is returned. | 
|  | * | 
|  | * Algorithm | 
|  | *	1. Since tan(-x) = -tan(x), we need only to consider positive x. | 
|  | *	2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. | 
|  | *	3. tan(x) is approximated by a odd polynomial of degree 27 on | 
|  | *	   [0,0.67434] | 
|  | *		  	         3             27 | 
|  | *	   	tan(x) ~ x + T1*x + ... + T13*x | 
|  | *	   where | 
|  | * | 
|  | * 	        |tan(x)         2     4            26   |     -59.2 | 
|  | * 	        |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2 | 
|  | * 	        |  x 					| | 
|  | * | 
|  | *	   Note: tan(x+y) = tan(x) + tan'(x)*y | 
|  | *		          ~ tan(x) + (1+x*x)*y | 
|  | *	   Therefore, for better accuracy in computing tan(x+y), let | 
|  | *		     3      2      2       2       2 | 
|  | *		r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) | 
|  | *	   then | 
|  | *		 		    3    2 | 
|  | *		tan(x+y) = x + (T1*x + (x *(r+y)+y)) | 
|  | * | 
|  | *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then | 
|  | *		tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) | 
|  | *		       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) | 
|  | */ | 
|  |  | 
|  | #include "math_libm.h" | 
|  | #include "math_private.h" | 
|  |  | 
|  | static const double | 
|  | one   =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ | 
|  | pio4  =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ | 
|  | pio4lo=  3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */ | 
|  | T[] =  { | 
|  | 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */ | 
|  | 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */ | 
|  | 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */ | 
|  | 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */ | 
|  | 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */ | 
|  | 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */ | 
|  | 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */ | 
|  | 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */ | 
|  | 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */ | 
|  | 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */ | 
|  | 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ | 
|  | -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */ | 
|  | 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */ | 
|  | }; | 
|  |  | 
|  | double attribute_hidden __kernel_tan(double x, double y, int iy) | 
|  | { | 
|  | double z,r,v,w,s; | 
|  | int32_t ix,hx; | 
|  | GET_HIGH_WORD(hx,x); | 
|  | ix = hx&0x7fffffff;	/* high word of |x| */ | 
|  | if(ix<0x3e300000)			/* x < 2**-28 */ | 
|  | {if((int)x==0) {			/* generate inexact */ | 
|  | u_int32_t low; | 
|  | GET_LOW_WORD(low,x); | 
|  | if(((ix|low)|(iy+1))==0) return one/fabs(x); | 
|  | else return (iy==1)? x: -one/x; | 
|  | } | 
|  | } | 
|  | if(ix>=0x3FE59428) { 			/* |x|>=0.6744 */ | 
|  | if(hx<0) {x = -x; y = -y;} | 
|  | z = pio4-x; | 
|  | w = pio4lo-y; | 
|  | x = z+w; y = 0.0; | 
|  | } | 
|  | z	=  x*x; | 
|  | w 	=  z*z; | 
|  | /* Break x^5*(T[1]+x^2*T[2]+...) into | 
|  | *	  x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + | 
|  | *	  x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) | 
|  | */ | 
|  | r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); | 
|  | v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); | 
|  | s = z*x; | 
|  | r = y + z*(s*(r+v)+y); | 
|  | r += T[0]*s; | 
|  | w = x+r; | 
|  | if(ix>=0x3FE59428) { | 
|  | v = (double)iy; | 
|  | return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r))); | 
|  | } | 
|  | if(iy==1) return w; | 
|  | else {		/* if allow error up to 2 ulp, | 
|  | simply return -1.0/(x+r) here */ | 
|  | /*  compute -1.0/(x+r) accurately */ | 
|  | double a,t; | 
|  | z  = w; | 
|  | SET_LOW_WORD(z,0); | 
|  | v  = r-(z - x); 	/* z+v = r+x */ | 
|  | t = a  = -1.0/w;	/* a = -1.0/w */ | 
|  | SET_LOW_WORD(t,0); | 
|  | s  = 1.0+t*z; | 
|  | return t+a*(s+t*v); | 
|  | } | 
|  | } |