blob: d472ee5eb1354aad54af6904730c9a61da31b87c [file] [log] [blame]
;
; jfdctfst.asm - fast integer FDCT (64-bit AVX2)
;
; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
; Copyright (C) 2009, 2016, 2018, D. R. Commander.
;
; Based on the x86 SIMD extension for IJG JPEG library
; Copyright (C) 1999-2006, MIYASAKA Masaru.
; For conditions of distribution and use, see copyright notice in jsimdext.inc
;
; This file should be assembled with NASM (Netwide Assembler),
; can *not* be assembled with Microsoft's MASM or any compatible
; assembler (including Borland's Turbo Assembler).
; NASM is available from http://nasm.sourceforge.net/ or
; http://sourceforge.net/project/showfiles.php?group_id=6208
;
; This file contains a fast, not so accurate integer implementation of
; the forward DCT (Discrete Cosine Transform). The following code is
; based directly on the IJG's original jfdctfst.c; see the jfdctfst.c
; for more details.
;
; [TAB8]
%include "jsimdext.inc"
%include "jdct.inc"
; --------------------------------------------------------------------------
%define CONST_BITS 8 ; 14 is also OK.
%if CONST_BITS == 8
F_0_382 equ 98 ; FIX(0.382683433)
F_0_541 equ 139 ; FIX(0.541196100)
F_0_707 equ 181 ; FIX(0.707106781)
F_1_306 equ 334 ; FIX(1.306562965)
%else
; NASM cannot do compile-time arithmetic on floating-point constants.
%define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n))
F_0_382 equ DESCALE( 410903207, 30-CONST_BITS) ; FIX(0.382683433)
F_0_541 equ DESCALE( 581104887, 30-CONST_BITS) ; FIX(0.541196100)
F_0_707 equ DESCALE( 759250124, 30-CONST_BITS) ; FIX(0.707106781)
F_1_306 equ DESCALE(1402911301, 30-CONST_BITS) ; FIX(1.306562965)
%endif
; --------------------------------------------------------------------------
; In-place 8x8x16-bit matrix transpose using AVX2 instructions
; %1-%4: Input/output registers
; %5-%8: Temp registers
%macro ymmtranspose 8
; %1=(00 01 02 03 04 05 06 07 40 41 42 43 44 45 46 47)
; %2=(10 11 12 13 14 15 16 17 50 51 52 53 54 55 56 57)
; %3=(20 21 22 23 24 25 26 27 60 61 62 63 64 65 66 67)
; %4=(30 31 32 33 34 35 36 37 70 71 72 73 74 75 76 77)
vpunpcklwd %5, %1, %2
vpunpckhwd %6, %1, %2
vpunpcklwd %7, %3, %4
vpunpckhwd %8, %3, %4
; transpose coefficients(phase 1)
; %5=(00 10 01 11 02 12 03 13 40 50 41 51 42 52 43 53)
; %6=(04 14 05 15 06 16 07 17 44 54 45 55 46 56 47 57)
; %7=(20 30 21 31 22 32 23 33 60 70 61 71 62 72 63 73)
; %8=(24 34 25 35 26 36 27 37 64 74 65 75 66 76 67 77)
vpunpckldq %1, %5, %7
vpunpckhdq %2, %5, %7
vpunpckldq %3, %6, %8
vpunpckhdq %4, %6, %8
; transpose coefficients(phase 2)
; %1=(00 10 20 30 01 11 21 31 40 50 60 70 41 51 61 71)
; %2=(02 12 22 32 03 13 23 33 42 52 62 72 43 53 63 73)
; %3=(04 14 24 34 05 15 25 35 44 54 64 74 45 55 65 75)
; %4=(06 16 26 36 07 17 27 37 46 56 66 76 47 57 67 77)
vpermq %1, %1, 0xD8
vpermq %2, %2, 0x8D
vpermq %3, %3, 0xD8
vpermq %4, %4, 0x8D
; transpose coefficients(phase 3)
; %1=(00 10 20 30 40 50 60 70 01 11 21 31 41 51 61 71)
; %2=(03 13 23 33 43 53 63 73 02 12 22 32 42 52 62 72)
; %3=(04 14 24 34 44 54 64 74 05 15 25 35 45 55 65 75)
; %4=(07 17 27 37 47 57 67 77 06 16 26 36 46 56 66 76)
%endmacro
; --------------------------------------------------------------------------
; In-place 8x8x16-bit fast integer forward DCT using AVX2 instructions
; %1-%4: Input/output registers
; %5-%8: Temp registers
%macro dodct 8
vpsubw %5, %1, %4 ; %5=data0_1-data7_6=tmp7_6
vpaddw %6, %1, %4 ; %6=data0_1+data7_6=tmp0_1
vpaddw %7, %2, %3 ; %7=data3_2+data4_5=tmp3_2
vpsubw %8, %2, %3 ; %8=data3_2-data4_5=tmp4_5
; -- Even part
vpaddw %1, %6, %7 ; %1=tmp0_1+tmp3_2=tmp10_11
vpsubw %6, %6, %7 ; %6=tmp0_1-tmp3_2=tmp13_12
vperm2i128 %7, %1, %1, 0x01 ; %7=tmp11_10
vpsignw %1, %1, [rel PW_1_NEG1] ; %1=tmp10_neg11
vpaddw %1, %7, %1 ; %1=data0_4
vperm2i128 %7, %6, %6, 0x01 ; %7=tmp12_13
vpaddw %7, %7, %6 ; %7=(tmp12+13)_(tmp12+13)
vpsllw %7, %7, PRE_MULTIPLY_SCALE_BITS
vpmulhw %7, %7, [rel PW_F0707] ; %7=z1_z1
vpsignw %7, %7, [rel PW_1_NEG1] ; %7=z1_negz1
vperm2i128 %6, %6, %6, 0x00 ; %6=tmp13_13
vpaddw %3, %6, %7 ; %3=data2_6
; -- Odd part
vperm2i128 %6, %8, %5, 0x30 ; %6=tmp4_6
vperm2i128 %7, %8, %5, 0x21 ; %7=tmp5_7
vpaddw %6, %6, %7 ; %6=tmp10_12
vpsllw %6, %6, PRE_MULTIPLY_SCALE_BITS
vperm2i128 %7, %6, %6, 0x00 ; %7=tmp10_10
vperm2i128 %2, %6, %6, 0x11 ; %2=tmp12_12
vpsubw %7, %7, %2
vpmulhw %7, %7, [rel PW_F0382] ; %7=z5_z5
vpmulhw %6, %6, [rel PW_F0541_F1306] ; %6=MULTIPLY(tmp10,FIX_0_541196)_MULTIPLY(tmp12,FIX_1_306562)
vpaddw %6, %6, %7 ; %6=z2_z4
vperm2i128 %7, %8, %5, 0x31 ; %7=tmp5_6
vperm2i128 %2, %5, %8, 0x31 ; %2=tmp6_5
vpaddw %7, %7, %2 ; %7=(tmp5+6)_(tmp5+6)
vpsllw %7, %7, PRE_MULTIPLY_SCALE_BITS
vpmulhw %7, %7, [rel PW_F0707] ; %7=z3_z3
vpsignw %7, %7, [rel PW_NEG1_1] ; %7=negz3_z3
vperm2i128 %2, %5, %5, 0x00 ; %2=tmp7_7
vpaddw %2, %2, %7 ; %2=z13_11
vpsubw %4, %2, %6 ; %4=z13_11-z2_4=data3_7
vpaddw %2, %2, %6 ; %2=z13_11+z2_4=data5_1
%endmacro
; --------------------------------------------------------------------------
SECTION SEG_CONST
; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow)
; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw)
%define PRE_MULTIPLY_SCALE_BITS 2
%define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS)
alignz 32
global EXTN(jconst_fdct_ifast_avx2)
EXTN(jconst_fdct_ifast_avx2):
PW_F0707 times 16 dw F_0_707 << CONST_SHIFT
PW_F0382 times 16 dw F_0_382 << CONST_SHIFT
PW_F0541_F1306 times 8 dw F_0_541 << CONST_SHIFT
times 8 dw F_1_306 << CONST_SHIFT
PW_1_NEG1 times 8 dw 1
times 8 dw -1
PW_NEG1_1 times 8 dw -1
times 8 dw 1
alignz 32
; --------------------------------------------------------------------------
SECTION SEG_TEXT
BITS 64
;
; Perform the forward DCT on one block of samples.
;
; GLOBAL(void)
; jsimd_fdct_ifast_avx2 (DCTELEM *data)
;
; r10 = DCTELEM *data
align 32
global EXTN(jsimd_fdct_ifast_avx2)
EXTN(jsimd_fdct_ifast_avx2):
push rbp
mov rax, rsp
mov rbp, rsp
collect_args 1
; ---- Pass 1: process rows.
vmovdqu ymm4, YMMWORD [YMMBLOCK(0,0,r10,SIZEOF_DCTELEM)]
vmovdqu ymm5, YMMWORD [YMMBLOCK(2,0,r10,SIZEOF_DCTELEM)]
vmovdqu ymm6, YMMWORD [YMMBLOCK(4,0,r10,SIZEOF_DCTELEM)]
vmovdqu ymm7, YMMWORD [YMMBLOCK(6,0,r10,SIZEOF_DCTELEM)]
; ymm4=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17)
; ymm5=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37)
; ymm6=(40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57)
; ymm7=(60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77)
vperm2i128 ymm0, ymm4, ymm6, 0x20
vperm2i128 ymm1, ymm4, ymm6, 0x31
vperm2i128 ymm2, ymm5, ymm7, 0x20
vperm2i128 ymm3, ymm5, ymm7, 0x31
; ymm0=(00 01 02 03 04 05 06 07 40 41 42 43 44 45 46 47)
; ymm1=(10 11 12 13 14 15 16 17 50 51 52 53 54 55 56 57)
; ymm2=(20 21 22 23 24 25 26 27 60 61 62 63 64 65 66 67)
; ymm3=(30 31 32 33 34 35 36 37 70 71 72 73 74 75 76 77)
ymmtranspose ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7
dodct ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7
; ymm0=data0_4, ymm1=data5_1, ymm2=data2_6, ymm3=data3_7
; ---- Pass 2: process columns.
vperm2i128 ymm1, ymm1, ymm1, 0x01 ; ymm1=data1_5
ymmtranspose ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7
dodct ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7
; ymm0=data0_4, ymm1=data5_1, ymm2=data2_6, ymm3=data3_7
vperm2i128 ymm4, ymm0, ymm1, 0x30 ; ymm4=data0_1
vperm2i128 ymm5, ymm2, ymm3, 0x20 ; ymm5=data2_3
vperm2i128 ymm6, ymm0, ymm1, 0x21 ; ymm6=data4_5
vperm2i128 ymm7, ymm2, ymm3, 0x31 ; ymm7=data6_7
vmovdqu YMMWORD [YMMBLOCK(0,0,r10,SIZEOF_DCTELEM)], ymm4
vmovdqu YMMWORD [YMMBLOCK(2,0,r10,SIZEOF_DCTELEM)], ymm5
vmovdqu YMMWORD [YMMBLOCK(4,0,r10,SIZEOF_DCTELEM)], ymm6
vmovdqu YMMWORD [YMMBLOCK(6,0,r10,SIZEOF_DCTELEM)], ymm7
vzeroupper
uncollect_args 1
pop rbp
ret
; For some reason, the OS X linker does not honor the request to align the
; segment unless we do this.
align 32