| /* |
| * jchuff-neon.c - Huffman entropy encoding (64-bit Arm Neon) |
| * |
| * Copyright (C) 2020, Arm Limited. All Rights Reserved. |
| * Copyright (C) 2020, D. R. Commander. All Rights Reserved. |
| * |
| * This software is provided 'as-is', without any express or implied |
| * warranty. In no event will the authors be held liable for any damages |
| * arising from the use of this software. |
| * |
| * Permission is granted to anyone to use this software for any purpose, |
| * including commercial applications, and to alter it and redistribute it |
| * freely, subject to the following restrictions: |
| * |
| * 1. The origin of this software must not be misrepresented; you must not |
| * claim that you wrote the original software. If you use this software |
| * in a product, an acknowledgment in the product documentation would be |
| * appreciated but is not required. |
| * 2. Altered source versions must be plainly marked as such, and must not be |
| * misrepresented as being the original software. |
| * 3. This notice may not be removed or altered from any source distribution. |
| * |
| * NOTE: All referenced figures are from |
| * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994. |
| */ |
| |
| #define JPEG_INTERNALS |
| #include "../../../jinclude.h" |
| #include "../../../jpeglib.h" |
| #include "../../../jsimd.h" |
| #include "../../../jdct.h" |
| #include "../../../jsimddct.h" |
| #include "../../jsimd.h" |
| #include "../align.h" |
| #include "../jchuff.h" |
| #include "neon-compat.h" |
| |
| #include <limits.h> |
| |
| #include <arm_neon.h> |
| |
| |
| ALIGN(16) static const uint8_t jsimd_huff_encode_one_block_consts[] = { |
| 0, 1, 2, 3, 16, 17, 32, 33, |
| 18, 19, 4, 5, 6, 7, 20, 21, |
| 34, 35, 48, 49, 255, 255, 50, 51, |
| 36, 37, 22, 23, 8, 9, 10, 11, |
| 255, 255, 6, 7, 20, 21, 34, 35, |
| 48, 49, 255, 255, 50, 51, 36, 37, |
| 54, 55, 40, 41, 26, 27, 12, 13, |
| 14, 15, 28, 29, 42, 43, 56, 57, |
| 6, 7, 20, 21, 34, 35, 48, 49, |
| 50, 51, 36, 37, 22, 23, 8, 9, |
| 26, 27, 12, 13, 255, 255, 14, 15, |
| 28, 29, 42, 43, 56, 57, 255, 255, |
| 52, 53, 54, 55, 40, 41, 26, 27, |
| 12, 13, 255, 255, 14, 15, 28, 29, |
| 26, 27, 40, 41, 42, 43, 28, 29, |
| 14, 15, 30, 31, 44, 45, 46, 47 |
| }; |
| |
| JOCTET *jsimd_huff_encode_one_block_neon(void *state, JOCTET *buffer, |
| JCOEFPTR block, int last_dc_val, |
| c_derived_tbl *dctbl, |
| c_derived_tbl *actbl) |
| { |
| uint16_t block_diff[DCTSIZE2]; |
| |
| /* Load lookup table indices for rows of zig-zag ordering. */ |
| #ifdef HAVE_VLD1Q_U8_X4 |
| const uint8x16x4_t idx_rows_0123 = |
| vld1q_u8_x4(jsimd_huff_encode_one_block_consts + 0 * DCTSIZE); |
| const uint8x16x4_t idx_rows_4567 = |
| vld1q_u8_x4(jsimd_huff_encode_one_block_consts + 8 * DCTSIZE); |
| #else |
| /* GCC does not currently support intrinsics vl1dq_<type>_x4(). */ |
| const uint8x16x4_t idx_rows_0123 = { { |
| vld1q_u8(jsimd_huff_encode_one_block_consts + 0 * DCTSIZE), |
| vld1q_u8(jsimd_huff_encode_one_block_consts + 2 * DCTSIZE), |
| vld1q_u8(jsimd_huff_encode_one_block_consts + 4 * DCTSIZE), |
| vld1q_u8(jsimd_huff_encode_one_block_consts + 6 * DCTSIZE) |
| } }; |
| const uint8x16x4_t idx_rows_4567 = { { |
| vld1q_u8(jsimd_huff_encode_one_block_consts + 8 * DCTSIZE), |
| vld1q_u8(jsimd_huff_encode_one_block_consts + 10 * DCTSIZE), |
| vld1q_u8(jsimd_huff_encode_one_block_consts + 12 * DCTSIZE), |
| vld1q_u8(jsimd_huff_encode_one_block_consts + 14 * DCTSIZE) |
| } }; |
| #endif |
| |
| /* Load 8x8 block of DCT coefficients. */ |
| #ifdef HAVE_VLD1Q_U8_X4 |
| const int8x16x4_t tbl_rows_0123 = |
| vld1q_s8_x4((int8_t *)(block + 0 * DCTSIZE)); |
| const int8x16x4_t tbl_rows_4567 = |
| vld1q_s8_x4((int8_t *)(block + 4 * DCTSIZE)); |
| #else |
| const int8x16x4_t tbl_rows_0123 = { { |
| vld1q_s8((int8_t *)(block + 0 * DCTSIZE)), |
| vld1q_s8((int8_t *)(block + 1 * DCTSIZE)), |
| vld1q_s8((int8_t *)(block + 2 * DCTSIZE)), |
| vld1q_s8((int8_t *)(block + 3 * DCTSIZE)) |
| } }; |
| const int8x16x4_t tbl_rows_4567 = { { |
| vld1q_s8((int8_t *)(block + 4 * DCTSIZE)), |
| vld1q_s8((int8_t *)(block + 5 * DCTSIZE)), |
| vld1q_s8((int8_t *)(block + 6 * DCTSIZE)), |
| vld1q_s8((int8_t *)(block + 7 * DCTSIZE)) |
| } }; |
| #endif |
| |
| /* Initialise extra lookup tables. */ |
| const int8x16x4_t tbl_rows_2345 = { { |
| tbl_rows_0123.val[2], tbl_rows_0123.val[3], |
| tbl_rows_4567.val[0], tbl_rows_4567.val[1] |
| } }; |
| const int8x16x3_t tbl_rows_567 = |
| { { tbl_rows_4567.val[1], tbl_rows_4567.val[2], tbl_rows_4567.val[3] } }; |
| |
| /* Shuffle coefficients into zig-zag order. */ |
| int16x8_t row0 = |
| vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_0123, idx_rows_0123.val[0])); |
| int16x8_t row1 = |
| vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_0123, idx_rows_0123.val[1])); |
| int16x8_t row2 = |
| vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_2345, idx_rows_0123.val[2])); |
| int16x8_t row3 = |
| vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_0123, idx_rows_0123.val[3])); |
| int16x8_t row4 = |
| vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_4567, idx_rows_4567.val[0])); |
| int16x8_t row5 = |
| vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_2345, idx_rows_4567.val[1])); |
| int16x8_t row6 = |
| vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_4567, idx_rows_4567.val[2])); |
| int16x8_t row7 = |
| vreinterpretq_s16_s8(vqtbl3q_s8(tbl_rows_567, idx_rows_4567.val[3])); |
| |
| /* Compute DC coefficient difference value (F.1.1.5.1). */ |
| row0 = vsetq_lane_s16(block[0] - last_dc_val, row0, 0); |
| /* Initialize AC coefficient lanes not reachable by lookup tables. */ |
| row1 = |
| vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_4567.val[0]), |
| 0), row1, 2); |
| row2 = |
| vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_0123.val[1]), |
| 4), row2, 0); |
| row2 = |
| vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_4567.val[2]), |
| 0), row2, 5); |
| row5 = |
| vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_0123.val[1]), |
| 7), row5, 2); |
| row5 = |
| vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_4567.val[2]), |
| 3), row5, 7); |
| row6 = |
| vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_0123.val[3]), |
| 7), row6, 5); |
| |
| /* DCT block is now in zig-zag order; start Huffman encoding process. */ |
| int16x8_t abs_row0 = vabsq_s16(row0); |
| int16x8_t abs_row1 = vabsq_s16(row1); |
| int16x8_t abs_row2 = vabsq_s16(row2); |
| int16x8_t abs_row3 = vabsq_s16(row3); |
| int16x8_t abs_row4 = vabsq_s16(row4); |
| int16x8_t abs_row5 = vabsq_s16(row5); |
| int16x8_t abs_row6 = vabsq_s16(row6); |
| int16x8_t abs_row7 = vabsq_s16(row7); |
| |
| /* For negative coeffs: diff = abs(coeff) -1 = ~abs(coeff) */ |
| uint16x8_t row0_diff = |
| vreinterpretq_u16_s16(veorq_s16(abs_row0, vshrq_n_s16(row0, 15))); |
| uint16x8_t row1_diff = |
| vreinterpretq_u16_s16(veorq_s16(abs_row1, vshrq_n_s16(row1, 15))); |
| uint16x8_t row2_diff = |
| vreinterpretq_u16_s16(veorq_s16(abs_row2, vshrq_n_s16(row2, 15))); |
| uint16x8_t row3_diff = |
| vreinterpretq_u16_s16(veorq_s16(abs_row3, vshrq_n_s16(row3, 15))); |
| uint16x8_t row4_diff = |
| vreinterpretq_u16_s16(veorq_s16(abs_row4, vshrq_n_s16(row4, 15))); |
| uint16x8_t row5_diff = |
| vreinterpretq_u16_s16(veorq_s16(abs_row5, vshrq_n_s16(row5, 15))); |
| uint16x8_t row6_diff = |
| vreinterpretq_u16_s16(veorq_s16(abs_row6, vshrq_n_s16(row6, 15))); |
| uint16x8_t row7_diff = |
| vreinterpretq_u16_s16(veorq_s16(abs_row7, vshrq_n_s16(row7, 15))); |
| |
| /* Construct bitmap to accelerate encoding of AC coefficients. A set bit |
| * means that the corresponding coefficient != 0. |
| */ |
| uint8x8_t abs_row0_gt0 = vmovn_u16(vcgtq_u16(vreinterpretq_u16_s16(abs_row0), |
| vdupq_n_u16(0))); |
| uint8x8_t abs_row1_gt0 = vmovn_u16(vcgtq_u16(vreinterpretq_u16_s16(abs_row1), |
| vdupq_n_u16(0))); |
| uint8x8_t abs_row2_gt0 = vmovn_u16(vcgtq_u16(vreinterpretq_u16_s16(abs_row2), |
| vdupq_n_u16(0))); |
| uint8x8_t abs_row3_gt0 = vmovn_u16(vcgtq_u16(vreinterpretq_u16_s16(abs_row3), |
| vdupq_n_u16(0))); |
| uint8x8_t abs_row4_gt0 = vmovn_u16(vcgtq_u16(vreinterpretq_u16_s16(abs_row4), |
| vdupq_n_u16(0))); |
| uint8x8_t abs_row5_gt0 = vmovn_u16(vcgtq_u16(vreinterpretq_u16_s16(abs_row5), |
| vdupq_n_u16(0))); |
| uint8x8_t abs_row6_gt0 = vmovn_u16(vcgtq_u16(vreinterpretq_u16_s16(abs_row6), |
| vdupq_n_u16(0))); |
| uint8x8_t abs_row7_gt0 = vmovn_u16(vcgtq_u16(vreinterpretq_u16_s16(abs_row7), |
| vdupq_n_u16(0))); |
| |
| /* { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 } */ |
| const uint8x8_t bitmap_mask = |
| vreinterpret_u8_u64(vmov_n_u64(0x0102040810204080)); |
| |
| abs_row0_gt0 = vand_u8(abs_row0_gt0, bitmap_mask); |
| abs_row1_gt0 = vand_u8(abs_row1_gt0, bitmap_mask); |
| abs_row2_gt0 = vand_u8(abs_row2_gt0, bitmap_mask); |
| abs_row3_gt0 = vand_u8(abs_row3_gt0, bitmap_mask); |
| abs_row4_gt0 = vand_u8(abs_row4_gt0, bitmap_mask); |
| abs_row5_gt0 = vand_u8(abs_row5_gt0, bitmap_mask); |
| abs_row6_gt0 = vand_u8(abs_row6_gt0, bitmap_mask); |
| abs_row7_gt0 = vand_u8(abs_row7_gt0, bitmap_mask); |
| |
| uint8x8_t bitmap_rows_10 = vpadd_u8(abs_row1_gt0, abs_row0_gt0); |
| uint8x8_t bitmap_rows_32 = vpadd_u8(abs_row3_gt0, abs_row2_gt0); |
| uint8x8_t bitmap_rows_54 = vpadd_u8(abs_row5_gt0, abs_row4_gt0); |
| uint8x8_t bitmap_rows_76 = vpadd_u8(abs_row7_gt0, abs_row6_gt0); |
| uint8x8_t bitmap_rows_3210 = vpadd_u8(bitmap_rows_32, bitmap_rows_10); |
| uint8x8_t bitmap_rows_7654 = vpadd_u8(bitmap_rows_76, bitmap_rows_54); |
| uint8x8_t bitmap_all = vpadd_u8(bitmap_rows_7654, bitmap_rows_3210); |
| |
| /* Shift left to remove DC bit. */ |
| bitmap_all = |
| vreinterpret_u8_u64(vshl_n_u64(vreinterpret_u64_u8(bitmap_all), 1)); |
| /* Count bits set (number of non-zero coefficients) in bitmap. */ |
| unsigned int non_zero_coefficients = vaddv_u8(vcnt_u8(bitmap_all)); |
| /* Move bitmap to 64-bit scalar register. */ |
| uint64_t bitmap = vget_lane_u64(vreinterpret_u64_u8(bitmap_all), 0); |
| |
| /* Set up state and bit buffer for output bitstream. */ |
| working_state *state_ptr = (working_state *)state; |
| int free_bits = state_ptr->cur.free_bits; |
| size_t put_buffer = state_ptr->cur.put_buffer; |
| |
| /* Encode DC coefficient. */ |
| |
| /* Find nbits required to specify sign and amplitude of coefficient. */ |
| #if defined(_MSC_VER) && !defined(__clang__) |
| unsigned int lz = BUILTIN_CLZ(vgetq_lane_s16(abs_row0, 0)); |
| #else |
| unsigned int lz; |
| __asm__("clz %w0, %w1" : "=r"(lz) : "r"(vgetq_lane_s16(abs_row0, 0))); |
| #endif |
| unsigned int nbits = 32 - lz; |
| /* Emit Huffman-coded symbol and additional diff bits. */ |
| unsigned int diff = (unsigned int)(vgetq_lane_u16(row0_diff, 0) << lz) >> lz; |
| PUT_CODE(dctbl->ehufco[nbits], dctbl->ehufsi[nbits], diff) |
| |
| /* Encode AC coefficients. */ |
| |
| unsigned int r = 0; /* r = run length of zeros */ |
| unsigned int i = 1; /* i = number of coefficients encoded */ |
| /* Code and size information for a run length of 16 zero coefficients */ |
| const unsigned int code_0xf0 = actbl->ehufco[0xf0]; |
| const unsigned int size_0xf0 = actbl->ehufsi[0xf0]; |
| |
| /* The most efficient method of computing nbits and diff depends on the |
| * number of non-zero coefficients. If the bitmap is not too sparse (> 8 |
| * non-zero AC coefficients), it is beneficial to use Neon; else we compute |
| * nbits and diff on demand using scalar code. |
| */ |
| if (non_zero_coefficients > 8) { |
| uint8_t block_nbits[DCTSIZE2]; |
| |
| int16x8_t row0_lz = vclzq_s16(abs_row0); |
| int16x8_t row1_lz = vclzq_s16(abs_row1); |
| int16x8_t row2_lz = vclzq_s16(abs_row2); |
| int16x8_t row3_lz = vclzq_s16(abs_row3); |
| int16x8_t row4_lz = vclzq_s16(abs_row4); |
| int16x8_t row5_lz = vclzq_s16(abs_row5); |
| int16x8_t row6_lz = vclzq_s16(abs_row6); |
| int16x8_t row7_lz = vclzq_s16(abs_row7); |
| /* Compute nbits needed to specify magnitude of each coefficient. */ |
| uint8x8_t row0_nbits = vsub_u8(vdup_n_u8(16), |
| vmovn_u16(vreinterpretq_u16_s16(row0_lz))); |
| uint8x8_t row1_nbits = vsub_u8(vdup_n_u8(16), |
| vmovn_u16(vreinterpretq_u16_s16(row1_lz))); |
| uint8x8_t row2_nbits = vsub_u8(vdup_n_u8(16), |
| vmovn_u16(vreinterpretq_u16_s16(row2_lz))); |
| uint8x8_t row3_nbits = vsub_u8(vdup_n_u8(16), |
| vmovn_u16(vreinterpretq_u16_s16(row3_lz))); |
| uint8x8_t row4_nbits = vsub_u8(vdup_n_u8(16), |
| vmovn_u16(vreinterpretq_u16_s16(row4_lz))); |
| uint8x8_t row5_nbits = vsub_u8(vdup_n_u8(16), |
| vmovn_u16(vreinterpretq_u16_s16(row5_lz))); |
| uint8x8_t row6_nbits = vsub_u8(vdup_n_u8(16), |
| vmovn_u16(vreinterpretq_u16_s16(row6_lz))); |
| uint8x8_t row7_nbits = vsub_u8(vdup_n_u8(16), |
| vmovn_u16(vreinterpretq_u16_s16(row7_lz))); |
| /* Store nbits. */ |
| vst1_u8(block_nbits + 0 * DCTSIZE, row0_nbits); |
| vst1_u8(block_nbits + 1 * DCTSIZE, row1_nbits); |
| vst1_u8(block_nbits + 2 * DCTSIZE, row2_nbits); |
| vst1_u8(block_nbits + 3 * DCTSIZE, row3_nbits); |
| vst1_u8(block_nbits + 4 * DCTSIZE, row4_nbits); |
| vst1_u8(block_nbits + 5 * DCTSIZE, row5_nbits); |
| vst1_u8(block_nbits + 6 * DCTSIZE, row6_nbits); |
| vst1_u8(block_nbits + 7 * DCTSIZE, row7_nbits); |
| /* Mask bits not required to specify sign and amplitude of diff. */ |
| row0_diff = vshlq_u16(row0_diff, row0_lz); |
| row1_diff = vshlq_u16(row1_diff, row1_lz); |
| row2_diff = vshlq_u16(row2_diff, row2_lz); |
| row3_diff = vshlq_u16(row3_diff, row3_lz); |
| row4_diff = vshlq_u16(row4_diff, row4_lz); |
| row5_diff = vshlq_u16(row5_diff, row5_lz); |
| row6_diff = vshlq_u16(row6_diff, row6_lz); |
| row7_diff = vshlq_u16(row7_diff, row7_lz); |
| row0_diff = vshlq_u16(row0_diff, vnegq_s16(row0_lz)); |
| row1_diff = vshlq_u16(row1_diff, vnegq_s16(row1_lz)); |
| row2_diff = vshlq_u16(row2_diff, vnegq_s16(row2_lz)); |
| row3_diff = vshlq_u16(row3_diff, vnegq_s16(row3_lz)); |
| row4_diff = vshlq_u16(row4_diff, vnegq_s16(row4_lz)); |
| row5_diff = vshlq_u16(row5_diff, vnegq_s16(row5_lz)); |
| row6_diff = vshlq_u16(row6_diff, vnegq_s16(row6_lz)); |
| row7_diff = vshlq_u16(row7_diff, vnegq_s16(row7_lz)); |
| /* Store diff bits. */ |
| vst1q_u16(block_diff + 0 * DCTSIZE, row0_diff); |
| vst1q_u16(block_diff + 1 * DCTSIZE, row1_diff); |
| vst1q_u16(block_diff + 2 * DCTSIZE, row2_diff); |
| vst1q_u16(block_diff + 3 * DCTSIZE, row3_diff); |
| vst1q_u16(block_diff + 4 * DCTSIZE, row4_diff); |
| vst1q_u16(block_diff + 5 * DCTSIZE, row5_diff); |
| vst1q_u16(block_diff + 6 * DCTSIZE, row6_diff); |
| vst1q_u16(block_diff + 7 * DCTSIZE, row7_diff); |
| |
| while (bitmap != 0) { |
| r = BUILTIN_CLZL(bitmap); |
| i += r; |
| bitmap <<= r; |
| nbits = block_nbits[i]; |
| diff = block_diff[i]; |
| while (r > 15) { |
| /* If run length > 15, emit special run-length-16 codes. */ |
| PUT_BITS(code_0xf0, size_0xf0) |
| r -= 16; |
| } |
| /* Emit Huffman symbol for run length / number of bits. (F.1.2.2.1) */ |
| unsigned int rs = (r << 4) + nbits; |
| PUT_CODE(actbl->ehufco[rs], actbl->ehufsi[rs], diff) |
| i++; |
| bitmap <<= 1; |
| } |
| } else if (bitmap != 0) { |
| uint16_t block_abs[DCTSIZE2]; |
| /* Store absolute value of coefficients. */ |
| vst1q_u16(block_abs + 0 * DCTSIZE, vreinterpretq_u16_s16(abs_row0)); |
| vst1q_u16(block_abs + 1 * DCTSIZE, vreinterpretq_u16_s16(abs_row1)); |
| vst1q_u16(block_abs + 2 * DCTSIZE, vreinterpretq_u16_s16(abs_row2)); |
| vst1q_u16(block_abs + 3 * DCTSIZE, vreinterpretq_u16_s16(abs_row3)); |
| vst1q_u16(block_abs + 4 * DCTSIZE, vreinterpretq_u16_s16(abs_row4)); |
| vst1q_u16(block_abs + 5 * DCTSIZE, vreinterpretq_u16_s16(abs_row5)); |
| vst1q_u16(block_abs + 6 * DCTSIZE, vreinterpretq_u16_s16(abs_row6)); |
| vst1q_u16(block_abs + 7 * DCTSIZE, vreinterpretq_u16_s16(abs_row7)); |
| /* Store diff bits. */ |
| vst1q_u16(block_diff + 0 * DCTSIZE, row0_diff); |
| vst1q_u16(block_diff + 1 * DCTSIZE, row1_diff); |
| vst1q_u16(block_diff + 2 * DCTSIZE, row2_diff); |
| vst1q_u16(block_diff + 3 * DCTSIZE, row3_diff); |
| vst1q_u16(block_diff + 4 * DCTSIZE, row4_diff); |
| vst1q_u16(block_diff + 5 * DCTSIZE, row5_diff); |
| vst1q_u16(block_diff + 6 * DCTSIZE, row6_diff); |
| vst1q_u16(block_diff + 7 * DCTSIZE, row7_diff); |
| |
| /* Same as above but must mask diff bits and compute nbits on demand. */ |
| while (bitmap != 0) { |
| r = BUILTIN_CLZL(bitmap); |
| i += r; |
| bitmap <<= r; |
| lz = BUILTIN_CLZ(block_abs[i]); |
| nbits = 32 - lz; |
| diff = (unsigned int)(block_diff[i] << lz) >> lz; |
| while (r > 15) { |
| /* If run length > 15, emit special run-length-16 codes. */ |
| PUT_BITS(code_0xf0, size_0xf0) |
| r -= 16; |
| } |
| /* Emit Huffman symbol for run length / number of bits. (F.1.2.2.1) */ |
| unsigned int rs = (r << 4) + nbits; |
| PUT_CODE(actbl->ehufco[rs], actbl->ehufsi[rs], diff) |
| i++; |
| bitmap <<= 1; |
| } |
| } |
| |
| /* If the last coefficient(s) were zero, emit an end-of-block (EOB) code. |
| * The value of RS for the EOB code is 0. |
| */ |
| if (i != 64) { |
| PUT_BITS(actbl->ehufco[0], actbl->ehufsi[0]) |
| } |
| |
| state_ptr->cur.put_buffer = put_buffer; |
| state_ptr->cur.free_bits = free_bits; |
| |
| return buffer; |
| } |