| #ifndef WUFFS_LZW_H |
| #define WUFFS_LZW_H |
| |
| // Code generated by wuffs-c. DO NOT EDIT. |
| |
| #ifndef WUFFS_BASE_HEADER_H |
| #define WUFFS_BASE_HEADER_H |
| |
| // Copyright 2017 The Wuffs Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <stdbool.h> |
| #include <stdint.h> |
| #include <string.h> |
| |
| // Wuffs assumes that: |
| // - converting a uint32_t to a size_t will never overflow. |
| // - converting a size_t to a uint64_t will never overflow. |
| #if (__WORDSIZE != 32) && (__WORDSIZE != 64) |
| #error "Wuffs requires a word size of either 32 or 64 bits" |
| #endif |
| |
| // WUFFS_VERSION is the major.minor version number as a uint32_t. The major |
| // number is the high 16 bits. The minor number is the low 16 bits. |
| // |
| // The intention is to bump the version number at least on every API / ABI |
| // backwards incompatible change. |
| // |
| // For now, the API and ABI are simply unstable and can change at any time. |
| // |
| // TODO: don't hard code this in base-header.h. |
| #define WUFFS_VERSION ((uint32_t)0x00001) |
| |
| // wuffs_base__empty_struct is used when a Wuffs function returns an empty |
| // struct. In C, if a function f returns void, you can't say "x = f()", but in |
| // Wuffs, if a function g returns empty, you can say "y = g()". |
| typedef struct { |
| } wuffs_base__empty_struct; |
| |
| // ---------------- Numeric Types |
| |
| // Flicks are a unit of time. One flick (frame-tick) is 1 / 705_600_000 of a |
| // second. See https://github.com/OculusVR/Flicks |
| typedef uint64_t wuffs_base__flicks; |
| |
| #define WUFFS_BASE__FLICKS_PER_SECOND ((uint64_t)705600000) |
| #define WUFFS_BASE__FLICKS_PER_MILLISECOND ((uint64_t)705600) |
| |
| // -------- |
| |
| static inline uint8_t wuffs_base__u8__min(uint8_t x, uint8_t y) { |
| return x < y ? x : y; |
| } |
| |
| static inline uint8_t wuffs_base__u8__max(uint8_t x, uint8_t y) { |
| return x > y ? x : y; |
| } |
| |
| static inline uint16_t wuffs_base__u16__min(uint16_t x, uint16_t y) { |
| return x < y ? x : y; |
| } |
| |
| static inline uint16_t wuffs_base__u16__max(uint16_t x, uint16_t y) { |
| return x > y ? x : y; |
| } |
| |
| static inline uint32_t wuffs_base__u32__min(uint32_t x, uint32_t y) { |
| return x < y ? x : y; |
| } |
| |
| static inline uint32_t wuffs_base__u32__max(uint32_t x, uint32_t y) { |
| return x > y ? x : y; |
| } |
| |
| static inline uint64_t wuffs_base__u64__min(uint64_t x, uint64_t y) { |
| return x < y ? x : y; |
| } |
| |
| static inline uint64_t wuffs_base__u64__max(uint64_t x, uint64_t y) { |
| return x > y ? x : y; |
| } |
| |
| // -------- |
| |
| // Saturating arithmetic (sat_add, sat_sub) branchless bit-twiddling algorithms |
| // are per https://locklessinc.com/articles/sat_arithmetic/ |
| // |
| // It is important that the underlying types are unsigned integers, as signed |
| // integer arithmetic overflow is undefined behavior in C. |
| |
| static inline uint8_t wuffs_base__u8__sat_add(uint8_t x, uint8_t y) { |
| uint8_t res = x + y; |
| res |= -(res < x); |
| return res; |
| } |
| |
| static inline uint8_t wuffs_base__u8__sat_sub(uint8_t x, uint8_t y) { |
| uint8_t res = x - y; |
| res &= -(res <= x); |
| return res; |
| } |
| |
| static inline uint16_t wuffs_base__u16__sat_add(uint16_t x, uint16_t y) { |
| uint16_t res = x + y; |
| res |= -(res < x); |
| return res; |
| } |
| |
| static inline uint16_t wuffs_base__u16__sat_sub(uint16_t x, uint16_t y) { |
| uint16_t res = x - y; |
| res &= -(res <= x); |
| return res; |
| } |
| |
| static inline uint32_t wuffs_base__u32__sat_add(uint32_t x, uint32_t y) { |
| uint32_t res = x + y; |
| res |= -(res < x); |
| return res; |
| } |
| |
| static inline uint32_t wuffs_base__u32__sat_sub(uint32_t x, uint32_t y) { |
| uint32_t res = x - y; |
| res &= -(res <= x); |
| return res; |
| } |
| |
| static inline uint64_t wuffs_base__u64__sat_add(uint64_t x, uint64_t y) { |
| uint64_t res = x + y; |
| res |= -(res < x); |
| return res; |
| } |
| |
| static inline uint64_t wuffs_base__u64__sat_sub(uint64_t x, uint64_t y) { |
| uint64_t res = x - y; |
| res &= -(res <= x); |
| return res; |
| } |
| |
| // -------- |
| |
| // Clang also defines "__GNUC__". |
| |
| static inline uint16_t wuffs_base__u16__byte_swapped(uint16_t x) { |
| #if defined(__GNUC__) |
| return __builtin_bswap16(x); |
| #else |
| return (x >> 8) | (x << 8); |
| #endif |
| } |
| |
| static inline uint32_t wuffs_base__u32__byte_swapped(uint32_t x) { |
| #if defined(__GNUC__) |
| return __builtin_bswap32(x); |
| #else |
| static const uint32_t mask8 = 0x00FF00FF; |
| x = ((x >> 8) & mask8) | ((x & mask8) << 8); |
| return (x >> 16) | (x << 16); |
| #endif |
| } |
| |
| static inline uint64_t wuffs_base__u64__byte_swapped(uint64_t x) { |
| #if defined(__GNUC__) |
| return __builtin_bswap64(x); |
| #else |
| static const uint64_t mask8 = 0x00FF00FF00FF00FF; |
| static const uint64_t mask16 = 0x0000FFFF0000FFFF; |
| x = ((x >> 8) & mask8) | ((x & mask8) << 8); |
| x = ((x >> 16) & mask16) | ((x & mask16) << 16); |
| return (x >> 32) | (x << 32); |
| #endif |
| } |
| |
| // ---------------- Slices and Tables |
| |
| // WUFFS_BASE__SLICE is a 1-dimensional buffer. |
| // |
| // A value with all fields NULL or zero is a valid, empty slice. |
| #define WUFFS_BASE__SLICE(T) \ |
| struct { \ |
| T* ptr; \ |
| size_t len; \ |
| } |
| |
| // WUFFS_BASE__TABLE is a 2-dimensional buffer. |
| // |
| // A value with all fields NULL or zero is a valid, empty table. |
| #define WUFFS_BASE__TABLE(T) \ |
| struct { \ |
| T* ptr; \ |
| size_t width; \ |
| size_t height; \ |
| size_t stride; \ |
| } |
| |
| typedef WUFFS_BASE__SLICE(uint8_t) wuffs_base__slice_u8; |
| typedef WUFFS_BASE__SLICE(uint16_t) wuffs_base__slice_u16; |
| typedef WUFFS_BASE__SLICE(uint32_t) wuffs_base__slice_u32; |
| typedef WUFFS_BASE__SLICE(uint64_t) wuffs_base__slice_u64; |
| |
| typedef WUFFS_BASE__TABLE(uint8_t) wuffs_base__table_u8; |
| typedef WUFFS_BASE__TABLE(uint16_t) wuffs_base__table_u16; |
| typedef WUFFS_BASE__TABLE(uint32_t) wuffs_base__table_u32; |
| typedef WUFFS_BASE__TABLE(uint64_t) wuffs_base__table_u64; |
| |
| // ---------------- Ranges and Rects |
| |
| // Ranges are either inclusive ("range_ii") or exclusive ("range_ie") on the |
| // high end. Both the "ii" and "ie" flavors are useful in practice. |
| // |
| // The "ei" and "ee" flavors also exist in theory, but aren't widely used. In |
| // Wuffs, the low end is always inclusive. |
| // |
| // The "ii" (closed interval) flavor is useful when refining e.g. "the set of |
| // all uint32_t values" to a contiguous subset: "uint32_t values in the closed |
| // interval [M, N]", for uint32_t values M and N. An unrefined type (in other |
| // words, the set of all uint32_t values) is not representable in the "ie" |
| // flavor because if N equals ((1<<32) - 1) then (N + 1) will overflow. |
| // |
| // On the other hand, the "ie" (half-open interval) flavor is recommended by |
| // Dijkstra's "Why numbering should start at zero" at |
| // http://www.cs.utexas.edu/users/EWD/ewd08xx/EWD831.PDF and a further |
| // discussion of motivating rationale is at |
| // https://www.quora.com/Why-are-Python-ranges-half-open-exclusive-instead-of-closed-inclusive |
| // |
| // For example, with "ie", the number of elements in "uint32_t values in the |
| // half-open interval [M, N)" is equal to max(0, N-M). Furthermore, that number |
| // of elements (in one dimension, a length, in two dimensions, a width or |
| // height) is itself representable as a uint32_t without overflow, again for |
| // uint32_t values M and N. In the contrasting "ii" flavor, the length of the |
| // closed interval [0, (1<<32) - 1] is 1<<32, which cannot be represented as a |
| // uint32_t. In Wuffs, because of this potential overflow, the "ie" flavor has |
| // length / width / height methods, but the "ii" flavor does not. |
| // |
| // It is valid for min > max (for range_ii) or for min >= max (for range_ie), |
| // in which case the range is empty. There are multiple representations of an |
| // empty range. |
| |
| typedef struct { |
| uint32_t min_inclusive; |
| uint32_t max_inclusive; |
| } wuffs_base__range_ii_u32; |
| |
| static inline bool wuffs_base__range_ii_u32__is_empty( |
| wuffs_base__range_ii_u32 r) { |
| return r.min_inclusive > r.max_inclusive; |
| } |
| |
| static inline bool wuffs_base__range_ii_u32__equals( |
| wuffs_base__range_ii_u32 r, |
| wuffs_base__range_ii_u32 s) { |
| return (r.min_inclusive == s.min_inclusive && |
| r.max_inclusive == s.max_inclusive) || |
| (wuffs_base__range_ii_u32__is_empty(r) && |
| wuffs_base__range_ii_u32__is_empty(s)); |
| } |
| |
| static inline bool wuffs_base__range_ii_u32__contains( |
| wuffs_base__range_ii_u32 r, |
| uint32_t x) { |
| return (r.min_inclusive <= x) && (x <= r.max_inclusive); |
| } |
| |
| static inline wuffs_base__range_ii_u32 wuffs_base__range_ii_u32__intersection( |
| wuffs_base__range_ii_u32 r, |
| wuffs_base__range_ii_u32 s) { |
| r.min_inclusive = wuffs_base__u32__max(r.min_inclusive, s.min_inclusive); |
| r.max_inclusive = wuffs_base__u32__min(r.max_inclusive, s.max_inclusive); |
| return r; |
| } |
| |
| static inline wuffs_base__range_ii_u32 wuffs_base__range_ii_u32__union( |
| wuffs_base__range_ii_u32 r, |
| wuffs_base__range_ii_u32 s) { |
| if (wuffs_base__range_ii_u32__is_empty(r)) { |
| return s; |
| } |
| if (wuffs_base__range_ii_u32__is_empty(s)) { |
| return r; |
| } |
| r.min_inclusive = wuffs_base__u32__min(r.min_inclusive, s.min_inclusive); |
| r.max_inclusive = wuffs_base__u32__max(r.max_inclusive, s.max_inclusive); |
| return r; |
| } |
| |
| // -------- |
| |
| typedef struct { |
| uint32_t min_inclusive; |
| uint32_t max_exclusive; |
| } wuffs_base__range_ie_u32; |
| |
| static inline bool wuffs_base__range_ie_u32__is_empty( |
| wuffs_base__range_ie_u32 r) { |
| return r.min_inclusive >= r.max_exclusive; |
| } |
| |
| static inline bool wuffs_base__range_ie_u32__equals( |
| wuffs_base__range_ie_u32 r, |
| wuffs_base__range_ie_u32 s) { |
| return (r.min_inclusive == s.min_inclusive && |
| r.max_exclusive == s.max_exclusive) || |
| (wuffs_base__range_ie_u32__is_empty(r) && |
| wuffs_base__range_ie_u32__is_empty(s)); |
| } |
| |
| static inline bool wuffs_base__range_ie_u32__contains( |
| wuffs_base__range_ie_u32 r, |
| uint32_t x) { |
| return (r.min_inclusive <= x) && (x < r.max_exclusive); |
| } |
| |
| static inline wuffs_base__range_ie_u32 wuffs_base__range_ie_u32__intersection( |
| wuffs_base__range_ie_u32 r, |
| wuffs_base__range_ie_u32 s) { |
| r.min_inclusive = wuffs_base__u32__max(r.min_inclusive, s.min_inclusive); |
| r.max_exclusive = wuffs_base__u32__min(r.max_exclusive, s.max_exclusive); |
| return r; |
| } |
| |
| static inline wuffs_base__range_ie_u32 wuffs_base__range_ie_u32__union( |
| wuffs_base__range_ie_u32 r, |
| wuffs_base__range_ie_u32 s) { |
| if (wuffs_base__range_ie_u32__is_empty(r)) { |
| return s; |
| } |
| if (wuffs_base__range_ie_u32__is_empty(s)) { |
| return r; |
| } |
| r.min_inclusive = wuffs_base__u32__min(r.min_inclusive, s.min_inclusive); |
| r.max_exclusive = wuffs_base__u32__max(r.max_exclusive, s.max_exclusive); |
| return r; |
| } |
| |
| static inline uint32_t wuffs_base__range_ie_u32__length( |
| wuffs_base__range_ie_u32 r) { |
| return wuffs_base__u32__sat_sub(r.max_exclusive, r.min_inclusive); |
| } |
| |
| // -------- |
| |
| typedef struct { |
| uint64_t min_inclusive; |
| uint64_t max_inclusive; |
| } wuffs_base__range_ii_u64; |
| |
| static inline bool wuffs_base__range_ii_u64__is_empty( |
| wuffs_base__range_ii_u64 r) { |
| return r.min_inclusive > r.max_inclusive; |
| } |
| |
| static inline bool wuffs_base__range_ii_u64__equals( |
| wuffs_base__range_ii_u64 r, |
| wuffs_base__range_ii_u64 s) { |
| return (r.min_inclusive == s.min_inclusive && |
| r.max_inclusive == s.max_inclusive) || |
| (wuffs_base__range_ii_u64__is_empty(r) && |
| wuffs_base__range_ii_u64__is_empty(s)); |
| } |
| |
| static inline bool wuffs_base__range_ii_u64__contains( |
| wuffs_base__range_ii_u64 r, |
| uint64_t x) { |
| return (r.min_inclusive <= x) && (x <= r.max_inclusive); |
| } |
| |
| static inline wuffs_base__range_ii_u64 wuffs_base__range_ii_u64__intersection( |
| wuffs_base__range_ii_u64 r, |
| wuffs_base__range_ii_u64 s) { |
| r.min_inclusive = wuffs_base__u64__max(r.min_inclusive, s.min_inclusive); |
| r.max_inclusive = wuffs_base__u64__min(r.max_inclusive, s.max_inclusive); |
| return r; |
| } |
| |
| static inline wuffs_base__range_ii_u64 wuffs_base__range_ii_u64__union( |
| wuffs_base__range_ii_u64 r, |
| wuffs_base__range_ii_u64 s) { |
| if (wuffs_base__range_ii_u64__is_empty(r)) { |
| return s; |
| } |
| if (wuffs_base__range_ii_u64__is_empty(s)) { |
| return r; |
| } |
| r.min_inclusive = wuffs_base__u64__min(r.min_inclusive, s.min_inclusive); |
| r.max_inclusive = wuffs_base__u64__max(r.max_inclusive, s.max_inclusive); |
| return r; |
| } |
| |
| // -------- |
| |
| typedef struct { |
| uint64_t min_inclusive; |
| uint64_t max_exclusive; |
| } wuffs_base__range_ie_u64; |
| |
| static inline bool wuffs_base__range_ie_u64__is_empty( |
| wuffs_base__range_ie_u64 r) { |
| return r.min_inclusive >= r.max_exclusive; |
| } |
| |
| static inline bool wuffs_base__range_ie_u64__equals( |
| wuffs_base__range_ie_u64 r, |
| wuffs_base__range_ie_u64 s) { |
| return (r.min_inclusive == s.min_inclusive && |
| r.max_exclusive == s.max_exclusive) || |
| (wuffs_base__range_ie_u64__is_empty(r) && |
| wuffs_base__range_ie_u64__is_empty(s)); |
| } |
| |
| static inline bool wuffs_base__range_ie_u64__contains( |
| wuffs_base__range_ie_u64 r, |
| uint64_t x) { |
| return (r.min_inclusive <= x) && (x < r.max_exclusive); |
| } |
| |
| static inline wuffs_base__range_ie_u64 wuffs_base__range_ie_u64__intersection( |
| wuffs_base__range_ie_u64 r, |
| wuffs_base__range_ie_u64 s) { |
| r.min_inclusive = wuffs_base__u64__max(r.min_inclusive, s.min_inclusive); |
| r.max_exclusive = wuffs_base__u64__min(r.max_exclusive, s.max_exclusive); |
| return r; |
| } |
| |
| static inline wuffs_base__range_ie_u64 wuffs_base__range_ie_u64__union( |
| wuffs_base__range_ie_u64 r, |
| wuffs_base__range_ie_u64 s) { |
| if (wuffs_base__range_ie_u64__is_empty(r)) { |
| return s; |
| } |
| if (wuffs_base__range_ie_u64__is_empty(s)) { |
| return r; |
| } |
| r.min_inclusive = wuffs_base__u64__min(r.min_inclusive, s.min_inclusive); |
| r.max_exclusive = wuffs_base__u64__max(r.max_exclusive, s.max_exclusive); |
| return r; |
| } |
| |
| static inline uint64_t wuffs_base__range_ie_u64__length( |
| wuffs_base__range_ie_u64 r) { |
| return wuffs_base__u64__sat_sub(r.max_exclusive, r.min_inclusive); |
| } |
| |
| // -------- |
| |
| // wuffs_base__rect_ii_u32 is a rectangle (a 2-dimensional range) on the |
| // integer grid. The "ii" means that the bounds are inclusive on the low end |
| // and inclusive on the high end. It contains all points (x, y) such that |
| // ((min_inclusive_x <= x) && (x <= max_inclusive_x)) and likewise for y. |
| // |
| // It is valid for min > max, in which case the rectangle is empty. There are |
| // multiple representations of an empty rectangle. |
| // |
| // The X and Y axes increase right and down. |
| typedef struct { |
| uint32_t min_inclusive_x; |
| uint32_t min_inclusive_y; |
| uint32_t max_inclusive_x; |
| uint32_t max_inclusive_y; |
| } wuffs_base__rect_ii_u32; |
| |
| static inline bool wuffs_base__rect_ii_u32__is_empty( |
| wuffs_base__rect_ii_u32 r) { |
| return (r.min_inclusive_x > r.max_inclusive_x) || |
| (r.min_inclusive_y > r.max_inclusive_y); |
| } |
| |
| static inline bool wuffs_base__rect_ii_u32__equals(wuffs_base__rect_ii_u32 r, |
| wuffs_base__rect_ii_u32 s) { |
| return (r.min_inclusive_x == s.min_inclusive_x && |
| r.min_inclusive_y == s.min_inclusive_y && |
| r.max_inclusive_x == s.max_inclusive_x && |
| r.max_inclusive_y == s.max_inclusive_y) || |
| (wuffs_base__rect_ii_u32__is_empty(r) && |
| wuffs_base__rect_ii_u32__is_empty(s)); |
| } |
| |
| static inline bool wuffs_base__rect_ii_u32__contains(wuffs_base__rect_ii_u32 r, |
| uint32_t x, |
| uint32_t y) { |
| return (r.min_inclusive_x <= x) && (x <= r.max_inclusive_x) && |
| (r.min_inclusive_y <= y) && (y <= r.max_inclusive_y); |
| } |
| |
| static inline wuffs_base__rect_ii_u32 wuffs_base__rect_ii_u32__intersection( |
| wuffs_base__rect_ii_u32 r, |
| wuffs_base__rect_ii_u32 s) { |
| r.min_inclusive_x = |
| wuffs_base__u32__max(r.min_inclusive_x, s.min_inclusive_x); |
| r.min_inclusive_y = |
| wuffs_base__u32__max(r.min_inclusive_y, s.min_inclusive_y); |
| r.max_inclusive_x = |
| wuffs_base__u32__min(r.max_inclusive_x, s.max_inclusive_x); |
| r.max_inclusive_y = |
| wuffs_base__u32__min(r.max_inclusive_y, s.max_inclusive_y); |
| return r; |
| } |
| |
| static inline wuffs_base__rect_ii_u32 wuffs_base__rect_ii_u32__union( |
| wuffs_base__rect_ii_u32 r, |
| wuffs_base__rect_ii_u32 s) { |
| if (wuffs_base__rect_ii_u32__is_empty(r)) { |
| return s; |
| } |
| if (wuffs_base__rect_ii_u32__is_empty(s)) { |
| return r; |
| } |
| r.min_inclusive_x = |
| wuffs_base__u32__min(r.min_inclusive_x, s.min_inclusive_x); |
| r.min_inclusive_y = |
| wuffs_base__u32__min(r.min_inclusive_y, s.min_inclusive_y); |
| r.max_inclusive_x = |
| wuffs_base__u32__max(r.max_inclusive_x, s.max_inclusive_x); |
| r.max_inclusive_y = |
| wuffs_base__u32__max(r.max_inclusive_y, s.max_inclusive_y); |
| return r; |
| } |
| |
| // -------- |
| |
| // wuffs_base__rect_ie_u32 is a rectangle (a 2-dimensional range) on the |
| // integer grid. The "ie" means that the bounds are inclusive on the low end |
| // and exclusive on the high end. It contains all points (x, y) such that |
| // ((min_inclusive_x <= x) && (x < max_exclusive_x)) and likewise for y. |
| // |
| // It is valid for min >= max, in which case the rectangle is empty. There are |
| // multiple representations of an empty rectangle, including a value with all |
| // fields zero. |
| // |
| // The X and Y axes increase right and down. |
| typedef struct { |
| uint32_t min_inclusive_x; |
| uint32_t min_inclusive_y; |
| uint32_t max_exclusive_x; |
| uint32_t max_exclusive_y; |
| } wuffs_base__rect_ie_u32; |
| |
| static inline bool wuffs_base__rect_ie_u32__is_empty( |
| wuffs_base__rect_ie_u32 r) { |
| return (r.min_inclusive_x >= r.max_exclusive_x) || |
| (r.min_inclusive_y >= r.max_exclusive_y); |
| } |
| |
| static inline bool wuffs_base__rect_ie_u32__equals(wuffs_base__rect_ie_u32 r, |
| wuffs_base__rect_ie_u32 s) { |
| return (r.min_inclusive_x == s.min_inclusive_x && |
| r.min_inclusive_y == s.min_inclusive_y && |
| r.max_exclusive_x == s.max_exclusive_x && |
| r.max_exclusive_y == s.max_exclusive_y) || |
| (wuffs_base__rect_ie_u32__is_empty(r) && |
| wuffs_base__rect_ie_u32__is_empty(s)); |
| } |
| |
| static inline bool wuffs_base__rect_ie_u32__contains(wuffs_base__rect_ie_u32 r, |
| uint32_t x, |
| uint32_t y) { |
| return (r.min_inclusive_x <= x) && (x < r.max_exclusive_x) && |
| (r.min_inclusive_y <= y) && (y < r.max_exclusive_y); |
| } |
| |
| static inline wuffs_base__rect_ie_u32 wuffs_base__rect_ie_u32__intersection( |
| wuffs_base__rect_ie_u32 r, |
| wuffs_base__rect_ie_u32 s) { |
| r.min_inclusive_x = |
| wuffs_base__u32__max(r.min_inclusive_x, s.min_inclusive_x); |
| r.min_inclusive_y = |
| wuffs_base__u32__max(r.min_inclusive_y, s.min_inclusive_y); |
| r.max_exclusive_x = |
| wuffs_base__u32__min(r.max_exclusive_x, s.max_exclusive_x); |
| r.max_exclusive_y = |
| wuffs_base__u32__min(r.max_exclusive_y, s.max_exclusive_y); |
| return r; |
| } |
| |
| static inline wuffs_base__rect_ie_u32 wuffs_base__rect_ie_u32__union( |
| wuffs_base__rect_ie_u32 r, |
| wuffs_base__rect_ie_u32 s) { |
| if (wuffs_base__rect_ie_u32__is_empty(r)) { |
| return s; |
| } |
| if (wuffs_base__rect_ie_u32__is_empty(s)) { |
| return r; |
| } |
| r.min_inclusive_x = |
| wuffs_base__u32__min(r.min_inclusive_x, s.min_inclusive_x); |
| r.min_inclusive_y = |
| wuffs_base__u32__min(r.min_inclusive_y, s.min_inclusive_y); |
| r.max_exclusive_x = |
| wuffs_base__u32__max(r.max_exclusive_x, s.max_exclusive_x); |
| r.max_exclusive_y = |
| wuffs_base__u32__max(r.max_exclusive_y, s.max_exclusive_y); |
| return r; |
| } |
| |
| static inline uint32_t wuffs_base__rect_ie_u32__width( |
| wuffs_base__rect_ie_u32 r) { |
| return wuffs_base__u32__sat_sub(r.max_exclusive_x, r.min_inclusive_x); |
| } |
| |
| static inline uint32_t wuffs_base__rect_ie_u32__height( |
| wuffs_base__rect_ie_u32 r) { |
| return wuffs_base__u32__sat_sub(r.max_exclusive_y, r.min_inclusive_y); |
| } |
| |
| // ---------------- I/O |
| |
| // wuffs_base__io_buffer is a 1-dimensional buffer (a pointer and length), plus |
| // additional indexes into that buffer, plus an opened / closed flag. |
| // |
| // A value with all fields NULL or zero is a valid, empty buffer. |
| typedef struct { |
| uint8_t* ptr; // Pointer. |
| size_t len; // Length. |
| size_t wi; // Write index. Invariant: wi <= len. |
| size_t ri; // Read index. Invariant: ri <= wi. |
| bool closed; // No further writes are expected. |
| } wuffs_base__io_buffer; |
| |
| typedef struct { |
| // Do not access the private_impl's fields directly. There is no API/ABI |
| // compatibility or safety guarantee if you do so. |
| struct { |
| wuffs_base__io_buffer* buf; |
| // The bounds values are typically NULL, when created by the Wuffs public |
| // API. NULL means that the callee substitutes the implicit bounds derived |
| // from buf. |
| uint8_t* bounds[2]; |
| } private_impl; |
| } wuffs_base__io_reader; |
| |
| typedef struct { |
| // Do not access the private_impl's fields directly. There is no API/ABI |
| // compatibility or safety guarantee if you do so. |
| struct { |
| wuffs_base__io_buffer* buf; |
| // The bounds values are typically NULL, when created by the Wuffs public |
| // API. NULL means that the callee substitutes the implicit bounds derived |
| // from buf. |
| uint8_t* bounds[2]; |
| } private_impl; |
| } wuffs_base__io_writer; |
| |
| static inline wuffs_base__io_reader wuffs_base__io_buffer__reader( |
| wuffs_base__io_buffer* buf) { |
| wuffs_base__io_reader ret = ((wuffs_base__io_reader){}); |
| ret.private_impl.buf = buf; |
| return ret; |
| } |
| |
| static inline wuffs_base__io_writer wuffs_base__io_buffer__writer( |
| wuffs_base__io_buffer* buf) { |
| wuffs_base__io_writer ret = ((wuffs_base__io_writer){}); |
| ret.private_impl.buf = buf; |
| return ret; |
| } |
| |
| // ---------------- Images |
| |
| // wuffs_base__pixel_format encodes the format of the bytes that constitute an |
| // image frame's pixel data. Its bits: |
| // - bit 31 is reserved. |
| // - bits 30 .. 28 encodes color (and channel order, in terms of memory). |
| // - bits 27 .. 26 are reserved. |
| // - bits 25 .. 24 encodes transparency. |
| // - bit 23 indicates big-endian/MSB-first (as opposed to little/LSB). |
| // - bit 22 indicates floating point (as opposed to integer). |
| // - bits 21 .. 20 are the number of planes, minus 1. Zero means packed. |
| // - bits 19 .. 16 encodes the number of bits (depth) in an index value. |
| // Zero means direct, not palette-indexed. |
| // - bits 15 .. 12 encodes the number of bits (depth) in the 3rd channel. |
| // - bits 11 .. 8 encodes the number of bits (depth) in the 2nd channel. |
| // - bits 7 .. 4 encodes the number of bits (depth) in the 1st channel. |
| // - bits 3 .. 0 encodes the number of bits (depth) in the 0th channel. |
| // |
| // The bit fields of a wuffs_base__pixel_format are not independent. For |
| // example, the number of planes should not be greater than the number of |
| // channels. Similarly, bits 15..4 are unused (and should be zero) if bits |
| // 31..24 (color and transparency) together imply only 1 channel (gray, no |
| // alpha) and floating point samples should mean a bit depth of 16, 32 or 64. |
| // |
| // Formats hold between 1 and 4 channels. For example: Y (1 channel: gray), YA |
| // (2 channels: gray and alpha), BGR (3 channels: blue, green, red) or CMYK (4 |
| // channels: cyan, magenta, yellow, black). |
| // |
| // For direct formats with N > 1 channels, those channels can be laid out in |
| // either 1 (packed) or N (planar) planes. For example, RGBA data is usually |
| // packed, but YUV data is usually planar, due to chroma subsampling (for |
| // details, see the wuffs_base__pixel_subsampling type). For indexed formats, |
| // the palette (always 256 × 4 bytes) holds up to 4 packed bytes of color data |
| // per index value, and there is only 1 plane (for the index). The distance |
| // between successive palette elements is always 4 bytes. |
| // |
| // The color field is encoded in 3 bits: |
| // - 0 means A (Alpha). |
| // - 1 means Y or YA (Gray, Alpha). |
| // - 2 means BGR, BGRX or BGRA (Blue, Green, Red, X-padding or Alpha). |
| // - 3 means RGB, RGBX or RGBA (Red, Green, Blue, X-padding or Alpha). |
| // - 4 means YUV or YUVA (Luma, Chroma-blue, Chroma-red, Alpha). |
| // - 5 means CMY or CMYK (Cyan, Magenta, Yellow, Black). |
| // - all other values are reserved. |
| // |
| // In Wuffs, channels are given in memory order, regardless of endianness, |
| // since the C type for the pixel data is an array of bytes, not an array of |
| // uint32_t. For example, packed BGRA with 8 bits per channel means that the |
| // bytes in memory are always Blue, Green, Red then Alpha. On big-endian |
| // systems, that is the uint32_t 0xBBGGRRAA. On little-endian, 0xAARRGGBB. |
| // |
| // When the color field (3 bits) encodes multiple options, the transparency |
| // field (2 bits) distinguishes them: |
| // - 0 means fully opaque, no extra channels |
| // - 1 means fully opaque, one extra channel (X or K, padding or black). |
| // - 2 means one extra alpha channel, other channels are non-premultiplied. |
| // - 3 means one extra alpha channel, other channels are premultiplied. |
| // |
| // The zero wuffs_base__pixel_format value is an invalid pixel format, as it is |
| // invalid to combine the zero color (alpha only) with the zero transparency. |
| // |
| // Bit depth is encoded in 4 bits: |
| // - 0 means the channel or index is unused. |
| // - x means a bit depth of x, for x in the range 1..8. |
| // - 9 means a bit depth of 10. |
| // - 10 means a bit depth of 12. |
| // - 11 means a bit depth of 16. |
| // - 12 means a bit depth of 24. |
| // - 13 means a bit depth of 32. |
| // - 14 means a bit depth of 48. |
| // - 15 means a bit depth of 64. |
| // |
| // For example, wuffs_base__pixel_format 0x3280BBBB is a natural format for |
| // decoding a PNG image - network byte order (also known as big-endian), |
| // packed, non-premultiplied alpha - that happens to be 16-bit-depth truecolor |
| // with alpha (RGBA). In memory order: |
| // |
| // ptr+0 ptr+1 ptr+2 ptr+3 ptr+4 ptr+5 ptr+6 ptr+7 |
| // Rhi Rlo Ghi Glo Bhi Blo Ahi Alo |
| // |
| // For example, the value wuffs_base__pixel_format 0x20000565 means BGR with no |
| // alpha or padding, 5/6/5 bits for blue/green/red, packed 2 bytes per pixel, |
| // laid out LSB-first in memory order: |
| // |
| // ptr+0........... ptr+1........... |
| // MSB LSB MSB LSB |
| // G₂G₁G₀B₄B₃B₂B₁B₀ R₄R₃R₂R₁R₀G₅G₄G₃ |
| // |
| // On little-endian systems (but not big-endian), this Wuffs pixel format value |
| // (0x20000565) corresponds to the Cairo library's CAIRO_FORMAT_RGB16_565, the |
| // SDL2 (Simple DirectMedia Layer 2) library's SDL_PIXELFORMAT_RGB565 and the |
| // Skia library's kRGB_565_SkColorType. Note BGR in Wuffs versus RGB in the |
| // other libraries. |
| // |
| // Regardless of endianness, this Wuffs pixel format value (0x20000565) |
| // corresponds to the V4L2 (Video For Linux 2) library's V4L2_PIX_FMT_RGB565 |
| // and the Wayland-DRM library's WL_DRM_FORMAT_RGB565. |
| // |
| // Different software libraries name their pixel formats (and especially their |
| // channel order) either according to memory layout or as bits of a native |
| // integer type like uint32_t. The two conventions differ because of a system's |
| // endianness. As mentioned earlier, Wuffs pixel formats are always in memory |
| // order. More detail of other software libraries' naming conventions is in the |
| // Pixel Format Guide at https://afrantzis.github.io/pixel-format-guide/ |
| // |
| // Do not manipulate these bits directly; they are private implementation |
| // details. Use methods such as wuffs_base__pixel_format__num_planes instead. |
| typedef uint32_t wuffs_base__pixel_format; |
| |
| // Common 8-bit-depth pixel formats. This list is not exhaustive; not all valid |
| // wuffs_base__pixel_format values are present. |
| |
| #define WUFFS_BASE__PIXEL_FORMAT__INVALID ((wuffs_base__pixel_format)0x00000000) |
| |
| #define WUFFS_BASE__PIXEL_FORMAT__A ((wuffs_base__pixel_format)0x02000008) |
| |
| #define WUFFS_BASE__PIXEL_FORMAT__Y ((wuffs_base__pixel_format)0x10000008) |
| #define WUFFS_BASE__PIXEL_FORMAT__YA_NONPREMUL \ |
| ((wuffs_base__pixel_format)0x12000008) |
| #define WUFFS_BASE__PIXEL_FORMAT__YA_PREMUL \ |
| ((wuffs_base__pixel_format)0x13000008) |
| |
| #define WUFFS_BASE__PIXEL_FORMAT__BGR ((wuffs_base__pixel_format)0x20000888) |
| #define WUFFS_BASE__PIXEL_FORMAT__BGRX ((wuffs_base__pixel_format)0x21008888) |
| #define WUFFS_BASE__PIXEL_FORMAT__BGRX_INDEXED \ |
| ((wuffs_base__pixel_format)0x21088888) |
| #define WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL \ |
| ((wuffs_base__pixel_format)0x22008888) |
| #define WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL_INDEXED \ |
| ((wuffs_base__pixel_format)0x22088888) |
| #define WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL \ |
| ((wuffs_base__pixel_format)0x23008888) |
| |
| #define WUFFS_BASE__PIXEL_FORMAT__RGB ((wuffs_base__pixel_format)0x30000888) |
| #define WUFFS_BASE__PIXEL_FORMAT__RGBX ((wuffs_base__pixel_format)0x31008888) |
| #define WUFFS_BASE__PIXEL_FORMAT__RGBX_INDEXED \ |
| ((wuffs_base__pixel_format)0x31088888) |
| #define WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL \ |
| ((wuffs_base__pixel_format)0x32008888) |
| #define WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL_INDEXED \ |
| ((wuffs_base__pixel_format)0x32088888) |
| #define WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL \ |
| ((wuffs_base__pixel_format)0x33008888) |
| |
| #define WUFFS_BASE__PIXEL_FORMAT__YUV ((wuffs_base__pixel_format)0x40200888) |
| #define WUFFS_BASE__PIXEL_FORMAT__YUVK ((wuffs_base__pixel_format)0x41308888) |
| #define WUFFS_BASE__PIXEL_FORMAT__YUVA_NONPREMUL \ |
| ((wuffs_base__pixel_format)0x42308888) |
| |
| #define WUFFS_BASE__PIXEL_FORMAT__CMY ((wuffs_base__pixel_format)0x50200888) |
| #define WUFFS_BASE__PIXEL_FORMAT__CMYK ((wuffs_base__pixel_format)0x51308888) |
| |
| static inline bool wuffs_base__pixel_format__is_valid( |
| wuffs_base__pixel_format f) { |
| return f != 0; |
| } |
| |
| static inline bool wuffs_base__pixel_format__is_indexed( |
| wuffs_base__pixel_format f) { |
| return ((f >> 16) & 0x0F) != 0; |
| } |
| |
| #define WUFFS_BASE__PIXEL_FORMAT__NUM_PLANES_MAX 4 |
| |
| static inline uint32_t wuffs_base__pixel_format__num_planes( |
| wuffs_base__pixel_format f) { |
| return f ? (((f >> 20) & 0x03) + 1) : 0; |
| } |
| |
| typedef struct { |
| wuffs_base__table_u8 planes[WUFFS_BASE__PIXEL_FORMAT__NUM_PLANES_MAX]; |
| } wuffs_base__pixel_buffer; |
| |
| // -------- |
| |
| // wuffs_base__pixel_subsampling encodes the mapping of pixel space coordinates |
| // (x, y) to pixel buffer indices (i, j). That mapping can differ for each |
| // plane p. For a depth of 8 bits (1 byte), the p'th plane's sample starts at |
| // (planes[p].ptr + (j * planes[p].stride) + i). |
| // |
| // For packed pixel formats, the mapping is trivial: i = x and j = y. For |
| // planar pixel formats, the mapping can differ due to chroma subsampling. For |
| // example, consider a three plane YUV pixel format with 4:2:2 subsampling. For |
| // the luma (Y) channel, there is one sample for every pixel, but for the |
| // chroma (U, V) channels, there is one sample for every two pixels: pairs of |
| // horizontally adjacent pixels form one macropixel, i = x / 2 and j == y. In |
| // general, for a given p: |
| // - i = (x + bias_x) >> shift_x. |
| // - j = (y + bias_y) >> shift_y. |
| // where biases and shifts are in the range 0..3 and 0..2 respectively. |
| // |
| // In general, the biases will be zero after decoding an image. However, making |
| // a sub-image may change the bias, since the (x, y) coordinates are relative |
| // to the sub-image's top-left origin, but the backing pixel buffers were |
| // created relative to the original image's origin. |
| // |
| // For each plane p, each of those four numbers (biases and shifts) are encoded |
| // in two bits, which combine to form an 8 bit unsigned integer: |
| // |
| // e_p = (bias_x << 6) | (shift_x << 4) | (bias_y << 2) | (shift_y << 0) |
| // |
| // Those e_p values (e_0 for the first plane, e_1 for the second plane, etc) |
| // combine to form a wuffs_base__pixel_subsampling value: |
| // |
| // pixsub = (e_3 << 24) | (e_2 << 16) | (e_1 << 8) | (e_0 << 0) |
| // |
| // Do not manipulate these bits directly; they are private implementation |
| // details. Use methods such as wuffs_base__pixel_subsampling__bias_x instead. |
| typedef uint32_t wuffs_base__pixel_subsampling; |
| |
| #define WUFFS_BASE__PIXEL_SUBSAMPLING__NONE ((wuffs_base__pixel_subsampling)0) |
| |
| #define WUFFS_BASE__PIXEL_SUBSAMPLING__444 \ |
| ((wuffs_base__pixel_subsampling)0x000000) |
| #define WUFFS_BASE__PIXEL_SUBSAMPLING__440 \ |
| ((wuffs_base__pixel_subsampling)0x010100) |
| #define WUFFS_BASE__PIXEL_SUBSAMPLING__422 \ |
| ((wuffs_base__pixel_subsampling)0x101000) |
| #define WUFFS_BASE__PIXEL_SUBSAMPLING__420 \ |
| ((wuffs_base__pixel_subsampling)0x111100) |
| #define WUFFS_BASE__PIXEL_SUBSAMPLING__411 \ |
| ((wuffs_base__pixel_subsampling)0x202000) |
| #define WUFFS_BASE__PIXEL_SUBSAMPLING__410 \ |
| ((wuffs_base__pixel_subsampling)0x212100) |
| |
| static inline uint32_t wuffs_base__pixel_subsampling__bias_x( |
| wuffs_base__pixel_subsampling s, |
| uint32_t plane) { |
| uint32_t shift = ((plane & 0x03) * 8) + 6; |
| return (s >> shift) & 0x03; |
| } |
| |
| static inline uint32_t wuffs_base__pixel_subsampling__shift_x( |
| wuffs_base__pixel_subsampling s, |
| uint32_t plane) { |
| uint32_t shift = ((plane & 0x03) * 8) + 4; |
| return (s >> shift) & 0x03; |
| } |
| |
| static inline uint32_t wuffs_base__pixel_subsampling__bias_y( |
| wuffs_base__pixel_subsampling s, |
| uint32_t plane) { |
| uint32_t shift = ((plane & 0x03) * 8) + 2; |
| return (s >> shift) & 0x03; |
| } |
| |
| static inline uint32_t wuffs_base__pixel_subsampling__shift_y( |
| wuffs_base__pixel_subsampling s, |
| uint32_t plane) { |
| uint32_t shift = ((plane & 0x03) * 8) + 0; |
| return (s >> shift) & 0x03; |
| } |
| |
| // -------- |
| |
| typedef struct { |
| // Do not access the private_impl's fields directly. There is no API/ABI |
| // compatibility or safety guarantee if you do so. |
| struct { |
| wuffs_base__pixel_format pixfmt; |
| wuffs_base__pixel_subsampling pixsub; |
| uint32_t width; |
| uint32_t height; |
| uint32_t num_loops; |
| } private_impl; |
| } wuffs_base__image_config; |
| |
| // TODO: Should this function return bool? An error type? |
| static inline void wuffs_base__image_config__initialize( |
| wuffs_base__image_config* c, |
| wuffs_base__pixel_format pixfmt, |
| wuffs_base__pixel_subsampling pixsub, |
| uint32_t width, |
| uint32_t height, |
| uint32_t num_loops) { |
| if (!c) { |
| return; |
| } |
| if (pixfmt) { |
| uint64_t wh = ((uint64_t)width) * ((uint64_t)height); |
| // TODO: handle things other than 1 byte per pixel. |
| if (wh <= ((uint64_t)SIZE_MAX)) { |
| c->private_impl.pixfmt = pixfmt; |
| c->private_impl.pixsub = pixsub; |
| c->private_impl.width = width; |
| c->private_impl.height = height; |
| c->private_impl.num_loops = num_loops; |
| return; |
| } |
| } |
| *c = ((wuffs_base__image_config){}); |
| } |
| |
| static inline void wuffs_base__image_config__invalidate( |
| wuffs_base__image_config* c) { |
| if (c) { |
| *c = ((wuffs_base__image_config){}); |
| } |
| } |
| |
| static inline bool wuffs_base__image_config__is_valid( |
| wuffs_base__image_config* c) { |
| return c && c->private_impl.pixfmt; |
| } |
| |
| static inline wuffs_base__pixel_format wuffs_base__image_config__pixel_format( |
| wuffs_base__image_config* c) { |
| return c ? c->private_impl.pixfmt : 0; |
| } |
| |
| static inline wuffs_base__pixel_subsampling |
| wuffs_base__image_config__pixel_subsampling(wuffs_base__image_config* c) { |
| return c ? c->private_impl.pixsub : 0; |
| } |
| |
| static inline uint32_t wuffs_base__image_config__width( |
| wuffs_base__image_config* c) { |
| return c ? c->private_impl.width : 0; |
| } |
| |
| static inline uint32_t wuffs_base__image_config__height( |
| wuffs_base__image_config* c) { |
| return c ? c->private_impl.height : 0; |
| } |
| |
| static inline uint32_t wuffs_base__image_config__num_loops( |
| wuffs_base__image_config* c) { |
| return c ? c->private_impl.num_loops : 0; |
| } |
| |
| // TODO: this is the right API for planar (not packed) pixbufs? Should it allow |
| // decoding into a color model different from the format's intrinsic one? For |
| // example, decoding a JPEG image straight to RGBA instead of to YCbCr? |
| static inline size_t wuffs_base__image_config__pixbuf_size( |
| wuffs_base__image_config* c) { |
| if (c) { |
| uint64_t wh = |
| ((uint64_t)c->private_impl.width) * ((uint64_t)c->private_impl.height); |
| // TODO: handle things other than 1 byte per pixel. |
| return (size_t)wh; |
| } |
| return 0; |
| } |
| |
| // -------- |
| |
| typedef struct { |
| // Do not access the private_impl's fields directly. There is no API/ABI |
| // compatibility or safety guarantee if you do so. |
| struct { |
| wuffs_base__image_config config; |
| uint32_t loop_count; // 0-based count of the current loop. |
| wuffs_base__pixel_buffer pixbuf; |
| // TODO: color spaces. |
| wuffs_base__rect_ie_u32 dirty_rect; |
| wuffs_base__flicks duration; |
| bool palette_changed; |
| uint8_t palette[1024]; |
| } private_impl; |
| } wuffs_base__image_buffer; |
| |
| static inline void wuffs_base__image_buffer__set_from_pixbuf( |
| wuffs_base__image_buffer* b, |
| wuffs_base__image_config config, |
| wuffs_base__pixel_buffer pixbuf) { |
| if (!b) { |
| return; |
| } |
| *b = ((wuffs_base__image_buffer){}); |
| b->private_impl.config = config; |
| b->private_impl.pixbuf = pixbuf; |
| } |
| |
| // TODO: Should this function return bool? An error type? |
| static inline void wuffs_base__image_buffer__set_from_slice( |
| wuffs_base__image_buffer* b, |
| wuffs_base__image_config config, |
| wuffs_base__slice_u8 pixbuf_memory) { |
| if (!b) { |
| return; |
| } |
| *b = ((wuffs_base__image_buffer){}); |
| // TODO: don't assume 1 byte per pixel. Don't assume packed. |
| uint64_t wh = ((uint64_t)config.private_impl.width) * |
| ((uint64_t)config.private_impl.height); |
| if (wh > pixbuf_memory.len) { |
| return; |
| } |
| b->private_impl.config = config; |
| wuffs_base__table_u8* tab = &b->private_impl.pixbuf.planes[0]; |
| tab->ptr = pixbuf_memory.ptr; |
| tab->width = config.private_impl.width; |
| tab->height = config.private_impl.height; |
| tab->stride = config.private_impl.width; |
| } |
| |
| // The palette argument is ignored unless its length is exactly 1024. |
| static inline void wuffs_base__image_buffer__update( |
| wuffs_base__image_buffer* b, |
| wuffs_base__rect_ie_u32 dirty_rect, |
| wuffs_base__flicks duration, |
| wuffs_base__slice_u8 palette) { |
| if (!b) { |
| return; |
| } |
| |
| // Clip the dirty_rect to the image bounds. |
| dirty_rect.max_exclusive_x = wuffs_base__u32__min( |
| dirty_rect.max_exclusive_x, b->private_impl.config.private_impl.width); |
| dirty_rect.max_exclusive_y = wuffs_base__u32__min( |
| dirty_rect.max_exclusive_y, b->private_impl.config.private_impl.height); |
| b->private_impl.dirty_rect = dirty_rect; |
| |
| b->private_impl.duration = duration; |
| b->private_impl.palette_changed = palette.ptr && (palette.len == 1024); |
| if (b->private_impl.palette_changed) { |
| memmove(b->private_impl.palette, palette.ptr, 1024); |
| } |
| } |
| |
| // wuffs_base__image_buffer__loop returns whether the image decoder should loop |
| // back to the beginning of the animation, assuming that we've reached the end |
| // of the encoded stream. If so, it increments b's count of the animation loops |
| // played so far. |
| static inline bool wuffs_base__image_buffer__loop(wuffs_base__image_buffer* b) { |
| if (!b) { |
| return false; |
| } |
| uint32_t n = b->private_impl.config.private_impl.num_loops; |
| if (n == 0) { |
| return true; |
| } |
| if (b->private_impl.loop_count < n - 1) { |
| b->private_impl.loop_count++; |
| return true; |
| } |
| return false; |
| } |
| |
| static inline wuffs_base__image_config* wuffs_base__image_buffer__image_config( |
| wuffs_base__image_buffer* b) { |
| return b ? &b->private_impl.config : NULL; |
| } |
| |
| // wuffs_base__image_buffer__palette_changed returns whether this frame's |
| // palette differs from the previous frame. It is conservative and may return |
| // false positives (but never false negatives). |
| static inline bool wuffs_base__image_buffer__palette_changed( |
| wuffs_base__image_buffer* b) { |
| return b && b->private_impl.palette_changed; |
| } |
| |
| // wuffs_base__image_buffer__dirty_rect returns an upper bound for what part of |
| // this frame's pixels differs from the previous frame. |
| static inline wuffs_base__rect_ie_u32 wuffs_base__image_buffer__dirty_rect( |
| wuffs_base__image_buffer* b) { |
| return b ? b->private_impl.dirty_rect : ((wuffs_base__rect_ie_u32){0}); |
| } |
| |
| // wuffs_base__image_buffer__duration returns the amount of time to display |
| // this frame. Zero means to display forever - a still (non-animated) image. |
| static inline wuffs_base__flicks wuffs_base__image_buffer__duration( |
| wuffs_base__image_buffer* b) { |
| return b ? b->private_impl.duration : 0; |
| } |
| |
| // wuffs_base__image_buffer__palette returns the palette that the pixel data |
| // can index. The backing array is inside b and has length 1024. |
| static inline wuffs_base__slice_u8 wuffs_base__image_buffer__palette( |
| wuffs_base__image_buffer* b) { |
| return b ? ((wuffs_base__slice_u8){.ptr = b->private_impl.palette, |
| .len = 1024}) |
| : ((wuffs_base__slice_u8){}); |
| } |
| |
| static inline wuffs_base__table_u8 wuffs_base__image_buffer__plane( |
| wuffs_base__image_buffer* b, |
| uint32_t p) { |
| return (b && (p < WUFFS_BASE__PIXEL_FORMAT__NUM_PLANES_MAX)) |
| ? b->private_impl.pixbuf.planes[p] |
| : ((wuffs_base__table_u8){}); |
| } |
| |
| #endif // WUFFS_BASE_HEADER_H |
| |
| // ---------------- Use Declarations |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| // ---------------- Status Codes |
| |
| // Status codes are int32_t values. Its bits: |
| // - bit 31 (the sign bit) indicates unrecoverable-ness: an error. |
| // - bits 30 .. 10 are the packageid: a namespace. |
| // - bits 9 .. 8 are reserved. |
| // - bits 7 .. 0 are a package-namespaced numeric code. |
| // |
| // Do not manipulate these bits directly; they are private implementation |
| // details. Use methods such as wuffs_lzw__status__is_error instead. |
| typedef int32_t wuffs_lzw__status; |
| |
| #define wuffs_lzw__packageid 1316776 // 0x001417A8 |
| |
| #define WUFFS_LZW__STATUS_OK 0 // 0x00000000 |
| #define WUFFS_LZW__ERROR_BAD_WUFFS_VERSION -2147483647 // 0x80000001 |
| #define WUFFS_LZW__ERROR_BAD_SIZEOF_RECEIVER -2147483646 // 0x80000002 |
| #define WUFFS_LZW__ERROR_BAD_RECEIVER -2147483645 // 0x80000003 |
| #define WUFFS_LZW__ERROR_BAD_ARGUMENT -2147483644 // 0x80000004 |
| #define WUFFS_LZW__ERROR_CHECK_WUFFS_VERSION_NOT_CALLED \ |
| -2147483643 // 0x80000005 |
| #define WUFFS_LZW__ERROR_CHECK_WUFFS_VERSION_CALLED_TWICE \ |
| -2147483642 // 0x80000006 |
| #define WUFFS_LZW__ERROR_INVALID_I_O_OPERATION -2147483641 // 0x80000007 |
| #define WUFFS_LZW__ERROR_CLOSED_FOR_WRITES -2147483640 // 0x80000008 |
| #define WUFFS_LZW__ERROR_UNEXPECTED_EOF -2147483639 // 0x80000009 |
| #define WUFFS_LZW__SUSPENSION_SHORT_READ 10 // 0x0000000A |
| #define WUFFS_LZW__SUSPENSION_SHORT_WRITE 11 // 0x0000000B |
| #define WUFFS_LZW__ERROR_CANNOT_RETURN_A_SUSPENSION -2147483636 // 0x8000000C |
| #define WUFFS_LZW__ERROR_INVALID_CALL_SEQUENCE -2147483635 // 0x8000000D |
| #define WUFFS_LZW__SUSPENSION_END_OF_DATA 14 // 0x0000000E |
| |
| #define WUFFS_LZW__ERROR_CODE_IS_OUT_OF_RANGE -799105024 // 0xD05EA000 |
| #define WUFFS_LZW__ERROR_PREFIX_CHAIN_IS_CYCLICAL -799105023 // 0xD05EA001 |
| |
| bool wuffs_lzw__status__is_error(wuffs_lzw__status s); |
| |
| const char* wuffs_lzw__status__string(wuffs_lzw__status s); |
| |
| // ---------------- Public Consts |
| |
| // ---------------- Structs |
| |
| typedef struct { |
| // Do not access the private_impl's fields directly. There is no API/ABI |
| // compatibility or safety guarantee if you do so. Instead, use the |
| // wuffs_lzw__decoder__etc functions. |
| // |
| // In C++, these fields would be "private", but C does not support that. |
| // |
| // It is a struct, not a struct*, so that it can be stack allocated. |
| struct { |
| wuffs_lzw__status status; |
| uint32_t magic; |
| |
| uint32_t f_literal_width; |
| uint8_t f_stack[4096]; |
| uint8_t f_suffixes[4096]; |
| uint16_t f_prefixes[4096]; |
| |
| struct { |
| uint32_t coro_susp_point; |
| uint32_t v_literal_width; |
| uint32_t v_clear_code; |
| uint32_t v_end_code; |
| uint32_t v_save_code; |
| uint32_t v_prev_code; |
| uint32_t v_width; |
| uint32_t v_bits; |
| uint32_t v_n_bits; |
| uint32_t v_code; |
| uint32_t v_s; |
| uint32_t v_c; |
| uint64_t v_n_copied; |
| } c_decode[1]; |
| } private_impl; |
| } wuffs_lzw__decoder; |
| |
| // ---------------- Public Initializer Prototypes |
| |
| // wuffs_lzw__decoder__check_wuffs_version is an initializer function. |
| // |
| // It should be called before any other wuffs_lzw__decoder__* function. |
| // |
| // Pass sizeof(*self) and WUFFS_VERSION for sizeof_star_self and wuffs_version. |
| void wuffs_lzw__decoder__check_wuffs_version(wuffs_lzw__decoder* self, |
| size_t sizeof_star_self, |
| uint32_t wuffs_version); |
| |
| // ---------------- Public Function Prototypes |
| |
| void wuffs_lzw__decoder__set_literal_width(wuffs_lzw__decoder* self, |
| uint32_t a_lw); |
| |
| wuffs_lzw__status wuffs_lzw__decoder__decode(wuffs_lzw__decoder* self, |
| wuffs_base__io_writer a_dst, |
| wuffs_base__io_reader a_src); |
| |
| #ifdef __cplusplus |
| } // extern "C" |
| #endif |
| |
| #endif // WUFFS_LZW_H |
| |
| // C HEADER ENDS HERE. |
| |
| #ifndef WUFFS_BASE_IMPL_H |
| #define WUFFS_BASE_IMPL_H |
| |
| // Copyright 2017 The Wuffs Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| static inline wuffs_base__empty_struct wuffs_base__return_empty_struct() { |
| return ((wuffs_base__empty_struct){}); |
| } |
| |
| #define WUFFS_BASE__IGNORE_POTENTIALLY_UNUSED_VARIABLE(x) (void)(x) |
| |
| // WUFFS_BASE__MAGIC is a magic number to check that initializers are called. |
| // It's not foolproof, given C doesn't automatically zero memory before use, |
| // but it should catch 99.99% of cases. |
| // |
| // Its (non-zero) value is arbitrary, based on md5sum("wuffs"). |
| #define WUFFS_BASE__MAGIC ((uint32_t)0x3CCB6C71) |
| |
| // Denote intentional fallthroughs for -Wimplicit-fallthrough. |
| // |
| // The order matters here. Clang also defines "__GNUC__". |
| #if defined(__clang__) && __cplusplus >= 201103L |
| #define WUFFS_BASE__FALLTHROUGH [[clang::fallthrough]] |
| #elif !defined(__clang__) && defined(__GNUC__) && (__GNUC__ >= 7) |
| #define WUFFS_BASE__FALLTHROUGH __attribute__((fallthrough)) |
| #else |
| #define WUFFS_BASE__FALLTHROUGH |
| #endif |
| |
| // Use switch cases for coroutine suspension points, similar to the technique |
| // in https://www.chiark.greenend.org.uk/~sgtatham/coroutines.html |
| // |
| // We use trivial macros instead of an explicit assignment and case statement |
| // so that clang-format doesn't get confused by the unusual "case"s. |
| #define WUFFS_BASE__COROUTINE_SUSPENSION_POINT_0 case 0:; |
| #define WUFFS_BASE__COROUTINE_SUSPENSION_POINT(n) \ |
| coro_susp_point = n; \ |
| WUFFS_BASE__FALLTHROUGH; \ |
| case n:; |
| |
| #define WUFFS_BASE__COROUTINE_SUSPENSION_POINT_MAYBE_SUSPEND(n) \ |
| if (status < 0) { \ |
| goto exit; \ |
| } else if (status == 0) { \ |
| goto ok; \ |
| } \ |
| coro_susp_point = n; \ |
| goto suspend; \ |
| case n:; |
| |
| // Clang also defines "__GNUC__". |
| #if defined(__GNUC__) |
| #define WUFFS_BASE__LIKELY(expr) (__builtin_expect(!!(expr), 1)) |
| #define WUFFS_BASE__UNLIKELY(expr) (__builtin_expect(!!(expr), 0)) |
| #else |
| #define WUFFS_BASE__LIKELY(expr) (expr) |
| #define WUFFS_BASE__UNLIKELY(expr) (expr) |
| #endif |
| |
| // Uncomment this #include for printf-debugging. |
| // #include <stdio.h> |
| |
| // The helpers below are functions, instead of macros, because their arguments |
| // can be an expression that we shouldn't evaluate more than once. |
| // |
| // They are in base-impl.h and hence copy/pasted into every generated C file, |
| // instead of being in some "base.c" file, since a design goal is that users of |
| // the generated C code can often just #include a single .c file, such as |
| // "gif.c", without having to additionally include or otherwise build and link |
| // a "base.c" file. |
| // |
| // They are static, so that linking multiple wuffs .o files won't complain about |
| // duplicate function definitions. |
| // |
| // They are explicitly marked inline, even if modern compilers don't use the |
| // inline attribute to guide optimizations such as inlining, to avoid the |
| // -Wunused-function warning, and we like to compile with -Wall -Werror. |
| |
| // ---------------- Numeric Types |
| |
| static inline uint16_t wuffs_base__load_u16be(uint8_t* p) { |
| return ((uint16_t)(p[0]) << 8) | ((uint16_t)(p[1]) << 0); |
| } |
| |
| static inline uint16_t wuffs_base__load_u16le(uint8_t* p) { |
| return ((uint16_t)(p[0]) << 0) | ((uint16_t)(p[1]) << 8); |
| } |
| |
| static inline uint32_t wuffs_base__load_u24be(uint8_t* p) { |
| return ((uint32_t)(p[0]) << 16) | ((uint32_t)(p[1]) << 8) | |
| ((uint32_t)(p[2]) << 0); |
| } |
| |
| static inline uint32_t wuffs_base__load_u24le(uint8_t* p) { |
| return ((uint32_t)(p[0]) << 0) | ((uint32_t)(p[1]) << 8) | |
| ((uint32_t)(p[2]) << 16); |
| } |
| |
| static inline uint32_t wuffs_base__load_u32be(uint8_t* p) { |
| return ((uint32_t)(p[0]) << 24) | ((uint32_t)(p[1]) << 16) | |
| ((uint32_t)(p[2]) << 8) | ((uint32_t)(p[3]) << 0); |
| } |
| |
| static inline uint32_t wuffs_base__load_u32le(uint8_t* p) { |
| return ((uint32_t)(p[0]) << 0) | ((uint32_t)(p[1]) << 8) | |
| ((uint32_t)(p[2]) << 16) | ((uint32_t)(p[3]) << 24); |
| } |
| |
| static inline uint64_t wuffs_base__load_u40be(uint8_t* p) { |
| return ((uint64_t)(p[0]) << 32) | ((uint64_t)(p[1]) << 24) | |
| ((uint64_t)(p[2]) << 16) | ((uint64_t)(p[3]) << 8) | |
| ((uint64_t)(p[4]) << 0); |
| } |
| |
| static inline uint64_t wuffs_base__load_u40le(uint8_t* p) { |
| return ((uint64_t)(p[0]) << 0) | ((uint64_t)(p[1]) << 8) | |
| ((uint64_t)(p[2]) << 16) | ((uint64_t)(p[3]) << 24) | |
| ((uint64_t)(p[4]) << 32); |
| } |
| |
| static inline uint64_t wuffs_base__load_u48be(uint8_t* p) { |
| return ((uint64_t)(p[0]) << 40) | ((uint64_t)(p[1]) << 32) | |
| ((uint64_t)(p[2]) << 24) | ((uint64_t)(p[3]) << 16) | |
| ((uint64_t)(p[4]) << 8) | ((uint64_t)(p[5]) << 0); |
| } |
| |
| static inline uint64_t wuffs_base__load_u48le(uint8_t* p) { |
| return ((uint64_t)(p[0]) << 0) | ((uint64_t)(p[1]) << 8) | |
| ((uint64_t)(p[2]) << 16) | ((uint64_t)(p[3]) << 24) | |
| ((uint64_t)(p[4]) << 32) | ((uint64_t)(p[5]) << 40); |
| } |
| |
| static inline uint64_t wuffs_base__load_u56be(uint8_t* p) { |
| return ((uint64_t)(p[0]) << 48) | ((uint64_t)(p[1]) << 40) | |
| ((uint64_t)(p[2]) << 32) | ((uint64_t)(p[3]) << 24) | |
| ((uint64_t)(p[4]) << 16) | ((uint64_t)(p[5]) << 8) | |
| ((uint64_t)(p[6]) << 0); |
| } |
| |
| static inline uint64_t wuffs_base__load_u56le(uint8_t* p) { |
| return ((uint64_t)(p[0]) << 0) | ((uint64_t)(p[1]) << 8) | |
| ((uint64_t)(p[2]) << 16) | ((uint64_t)(p[3]) << 24) | |
| ((uint64_t)(p[4]) << 32) | ((uint64_t)(p[5]) << 40) | |
| ((uint64_t)(p[6]) << 48); |
| } |
| |
| static inline uint64_t wuffs_base__load_u64be(uint8_t* p) { |
| return ((uint64_t)(p[0]) << 56) | ((uint64_t)(p[1]) << 48) | |
| ((uint64_t)(p[2]) << 40) | ((uint64_t)(p[3]) << 32) | |
| ((uint64_t)(p[4]) << 24) | ((uint64_t)(p[5]) << 16) | |
| ((uint64_t)(p[6]) << 8) | ((uint64_t)(p[7]) << 0); |
| } |
| |
| static inline uint64_t wuffs_base__load_u64le(uint8_t* p) { |
| return ((uint64_t)(p[0]) << 0) | ((uint64_t)(p[1]) << 8) | |
| ((uint64_t)(p[2]) << 16) | ((uint64_t)(p[3]) << 24) | |
| ((uint64_t)(p[4]) << 32) | ((uint64_t)(p[5]) << 40) | |
| ((uint64_t)(p[6]) << 48) | ((uint64_t)(p[7]) << 56); |
| } |
| |
| // -------- |
| |
| static inline void wuffs_base__u8__sat_add_indirect(uint8_t* x, uint8_t y) { |
| *x = wuffs_base__u8__sat_add(*x, y); |
| } |
| |
| static inline void wuffs_base__u8__sat_sub_indirect(uint8_t* x, uint8_t y) { |
| *x = wuffs_base__u8__sat_sub(*x, y); |
| } |
| |
| static inline void wuffs_base__u16__sat_add_indirect(uint16_t* x, uint16_t y) { |
| *x = wuffs_base__u16__sat_add(*x, y); |
| } |
| |
| static inline void wuffs_base__u16__sat_sub_indirect(uint16_t* x, uint16_t y) { |
| *x = wuffs_base__u16__sat_sub(*x, y); |
| } |
| |
| static inline void wuffs_base__u32__sat_add_indirect(uint32_t* x, uint32_t y) { |
| *x = wuffs_base__u32__sat_add(*x, y); |
| } |
| |
| static inline void wuffs_base__u32__sat_sub_indirect(uint32_t* x, uint32_t y) { |
| *x = wuffs_base__u32__sat_sub(*x, y); |
| } |
| |
| static inline void wuffs_base__u64__sat_add_indirect(uint64_t* x, uint64_t y) { |
| *x = wuffs_base__u64__sat_add(*x, y); |
| } |
| |
| static inline void wuffs_base__u64__sat_sub_indirect(uint64_t* x, uint64_t y) { |
| *x = wuffs_base__u64__sat_sub(*x, y); |
| } |
| |
| // ---------------- Slices and Tables |
| |
| static inline wuffs_base__slice_u8 wuffs_base__slice_u8__subslice_i( |
| wuffs_base__slice_u8 s, |
| uint64_t i) { |
| if ((i <= SIZE_MAX) && (i <= s.len)) { |
| return ((wuffs_base__slice_u8){ |
| .ptr = s.ptr + i, |
| .len = s.len - i, |
| }); |
| } |
| return ((wuffs_base__slice_u8){}); |
| } |
| |
| static inline wuffs_base__slice_u8 wuffs_base__slice_u8__subslice_j( |
| wuffs_base__slice_u8 s, |
| uint64_t j) { |
| if ((j <= SIZE_MAX) && (j <= s.len)) { |
| return ((wuffs_base__slice_u8){.ptr = s.ptr, .len = j}); |
| } |
| return ((wuffs_base__slice_u8){}); |
| } |
| |
| static inline wuffs_base__slice_u8 wuffs_base__slice_u8__subslice_ij( |
| wuffs_base__slice_u8 s, |
| uint64_t i, |
| uint64_t j) { |
| if ((i <= j) && (j <= SIZE_MAX) && (j <= s.len)) { |
| return ((wuffs_base__slice_u8){ |
| .ptr = s.ptr + i, |
| .len = j - i, |
| }); |
| } |
| return ((wuffs_base__slice_u8){}); |
| } |
| |
| // wuffs_base__slice_u8__prefix returns up to the first up_to bytes of s. |
| static inline wuffs_base__slice_u8 wuffs_base__slice_u8__prefix( |
| wuffs_base__slice_u8 s, |
| uint64_t up_to) { |
| if ((uint64_t)(s.len) > up_to) { |
| s.len = up_to; |
| } |
| return s; |
| } |
| |
| // wuffs_base__slice_u8__suffix returns up to the last up_to bytes of s. |
| static inline wuffs_base__slice_u8 wuffs_base__slice_u8__suffix( |
| wuffs_base__slice_u8 s, |
| uint64_t up_to) { |
| if ((uint64_t)(s.len) > up_to) { |
| s.ptr += (uint64_t)(s.len) - up_to; |
| s.len = up_to; |
| } |
| return s; |
| } |
| |
| // wuffs_base__slice_u8__copy_from_slice calls memmove(dst.ptr, src.ptr, |
| // length) where length is the minimum of dst.len and src.len. |
| // |
| // Passing a wuffs_base__slice_u8 with all fields NULL or zero (a valid, empty |
| // slice) is valid and results in a no-op. |
| static inline uint64_t wuffs_base__slice_u8__copy_from_slice( |
| wuffs_base__slice_u8 dst, |
| wuffs_base__slice_u8 src) { |
| size_t length = dst.len < src.len ? dst.len : src.len; |
| if (length > 0) { |
| memmove(dst.ptr, src.ptr, length); |
| } |
| return length; |
| } |
| |
| // -------- |
| |
| static inline wuffs_base__slice_u8 wuffs_base__table_u8__row( |
| wuffs_base__table_u8 t, |
| uint32_t y) { |
| if (y < t.height) { |
| return ((wuffs_base__slice_u8){ |
| .ptr = t.ptr + (t.stride * y), |
| .len = t.width, |
| }); |
| } |
| return ((wuffs_base__slice_u8){}); |
| } |
| |
| // ---------------- Ranges and Rects |
| |
| static inline wuffs_base__empty_struct |
| wuffs_base__rect_ii_u32__set_min_inclusive_x(wuffs_base__rect_ii_u32* r, |
| uint32_t x) { |
| r->min_inclusive_x = x; |
| return ((wuffs_base__empty_struct){}); |
| } |
| |
| static inline wuffs_base__empty_struct |
| wuffs_base__rect_ii_u32__set_min_inclusive_y(wuffs_base__rect_ii_u32* r, |
| uint32_t y) { |
| r->min_inclusive_y = y; |
| return ((wuffs_base__empty_struct){}); |
| } |
| |
| static inline wuffs_base__empty_struct |
| wuffs_base__rect_ii_u32__set_max_inclusive_x(wuffs_base__rect_ii_u32* r, |
| uint32_t x) { |
| r->max_inclusive_x = x; |
| return ((wuffs_base__empty_struct){}); |
| } |
| |
| static inline wuffs_base__empty_struct |
| wuffs_base__rect_ii_u32__set_max_inclusive_y(wuffs_base__rect_ii_u32* r, |
| uint32_t y) { |
| r->max_inclusive_y = y; |
| return ((wuffs_base__empty_struct){}); |
| } |
| |
| // -------- |
| |
| static inline wuffs_base__empty_struct |
| wuffs_base__rect_ie_u32__set_min_inclusive_x(wuffs_base__rect_ie_u32* r, |
| uint32_t x) { |
| r->min_inclusive_x = x; |
| return ((wuffs_base__empty_struct){}); |
| } |
| |
| static inline wuffs_base__empty_struct |
| wuffs_base__rect_ie_u32__set_min_inclusive_y(wuffs_base__rect_ie_u32* r, |
| uint32_t y) { |
| r->min_inclusive_y = y; |
| return ((wuffs_base__empty_struct){}); |
| } |
| |
| static inline wuffs_base__empty_struct |
| wuffs_base__rect_ie_u32__set_max_exclusive_x(wuffs_base__rect_ie_u32* r, |
| uint32_t x) { |
| r->max_exclusive_x = x; |
| return ((wuffs_base__empty_struct){}); |
| } |
| |
| static inline wuffs_base__empty_struct |
| wuffs_base__rect_ie_u32__set_max_exclusive_y(wuffs_base__rect_ie_u32* r, |
| uint32_t y) { |
| r->max_exclusive_y = y; |
| return ((wuffs_base__empty_struct){}); |
| } |
| |
| // ---------------- I/O |
| |
| static inline bool wuffs_base__io_buffer__is_valid(wuffs_base__io_buffer buf) { |
| return (buf.ptr || (buf.len == 0)) && (buf.len >= buf.wi) && |
| (buf.wi >= buf.ri); |
| } |
| |
| static inline bool wuffs_base__io_reader__is_eof(wuffs_base__io_reader o) { |
| wuffs_base__io_buffer* buf = o.private_impl.buf; |
| return buf && buf->closed && (buf->ptr + buf->wi == o.private_impl.bounds[1]); |
| } |
| |
| static inline bool wuffs_base__io_reader__is_valid(wuffs_base__io_reader o) { |
| wuffs_base__io_buffer* buf = o.private_impl.buf; |
| // Note: if making this function public (i.e. moving it to base-header.h), it |
| // also needs to allow NULL (i.e. implicit, callee-calculated) bounds. |
| return buf ? ((buf->ptr <= o.private_impl.bounds[0]) && |
| (o.private_impl.bounds[0] <= o.private_impl.bounds[1]) && |
| (o.private_impl.bounds[1] <= buf->ptr + buf->len)) |
| : ((o.private_impl.bounds[0] == NULL) && |
| (o.private_impl.bounds[1] == NULL)); |
| } |
| |
| static inline bool wuffs_base__io_writer__is_valid(wuffs_base__io_writer o) { |
| wuffs_base__io_buffer* buf = o.private_impl.buf; |
| // Note: if making this function public (i.e. moving it to base-header.h), it |
| // also needs to allow NULL (i.e. implicit, callee-calculated) bounds. |
| return buf ? ((buf->ptr <= o.private_impl.bounds[0]) && |
| (o.private_impl.bounds[0] <= o.private_impl.bounds[1]) && |
| (o.private_impl.bounds[1] <= buf->ptr + buf->len)) |
| : ((o.private_impl.bounds[0] == NULL) && |
| (o.private_impl.bounds[1] == NULL)); |
| } |
| |
| static inline uint32_t wuffs_base__io_writer__copy_from_history32( |
| uint8_t** ptr_ptr, |
| uint8_t* start, |
| uint8_t* end, |
| uint32_t distance, |
| uint32_t length) { |
| if (!distance) { |
| return 0; |
| } |
| uint8_t* ptr = *ptr_ptr; |
| if ((size_t)(ptr - start) < (size_t)(distance)) { |
| return 0; |
| } |
| start = ptr - distance; |
| size_t n = end - ptr; |
| if ((size_t)(length) > n) { |
| length = n; |
| } else { |
| n = length; |
| } |
| // TODO: unrolling by 3 seems best for the std/deflate benchmarks, but that |
| // is mostly because 3 is the minimum length for the deflate format. This |
| // function implementation shouldn't overfit to that one format. Perhaps the |
| // copy_from_history32 Wuffs method should also take an unroll hint argument, |
| // and the cgen can look if that argument is the constant expression '3'. |
| // |
| // See also wuffs_base__io_writer__copy_from_history32__bco below. |
| // |
| // Alternatively, or additionally, have a sloppy_copy_from_history32 method |
| // that copies 8 bytes at a time, possibly writing more than length bytes? |
| for (; n >= 3; n -= 3) { |
| *ptr++ = *start++; |
| *ptr++ = *start++; |
| *ptr++ = *start++; |
| } |
| for (; n; n--) { |
| *ptr++ = *start++; |
| } |
| *ptr_ptr = ptr; |
| return length; |
| } |
| |
| // wuffs_base__io_writer__copy_from_history32__bco is a Bounds Check Optimized |
| // version of the wuffs_base__io_writer__copy_from_history32 function above. |
| // The caller needs to prove that: |
| // - distance > 0 |
| // - distance <= (*ptr_ptr - start) |
| // - length <= (end - *ptr_ptr) |
| static inline uint32_t wuffs_base__io_writer__copy_from_history32__bco( |
| uint8_t** ptr_ptr, |
| uint8_t* start, |
| uint8_t* end, |
| uint32_t distance, |
| uint32_t length) { |
| uint8_t* ptr = *ptr_ptr; |
| start = ptr - distance; |
| uint32_t n = length; |
| for (; n >= 3; n -= 3) { |
| *ptr++ = *start++; |
| *ptr++ = *start++; |
| *ptr++ = *start++; |
| } |
| for (; n; n--) { |
| *ptr++ = *start++; |
| } |
| *ptr_ptr = ptr; |
| return length; |
| } |
| |
| static inline uint32_t wuffs_base__io_writer__copy_from_reader32( |
| uint8_t** ptr_ioptr_w, |
| uint8_t* iobounds1_w, |
| uint8_t** ptr_ioptr_r, |
| uint8_t* iobounds1_r, |
| uint32_t length) { |
| uint8_t* ioptr_w = *ptr_ioptr_w; |
| size_t n = length; |
| if (n > iobounds1_w - ioptr_w) { |
| n = iobounds1_w - ioptr_w; |
| } |
| uint8_t* ioptr_r = *ptr_ioptr_r; |
| if (n > iobounds1_r - ioptr_r) { |
| n = iobounds1_r - ioptr_r; |
| } |
| if (n > 0) { |
| memmove(ioptr_w, ioptr_r, n); |
| *ptr_ioptr_w += n; |
| *ptr_ioptr_r += n; |
| } |
| return n; |
| } |
| |
| static inline uint64_t wuffs_base__io_writer__copy_from_slice( |
| uint8_t** ptr_ioptr_w, |
| uint8_t* iobounds1_w, |
| wuffs_base__slice_u8 src) { |
| uint8_t* ioptr_w = *ptr_ioptr_w; |
| size_t n = src.len; |
| if (n > iobounds1_w - ioptr_w) { |
| n = iobounds1_w - ioptr_w; |
| } |
| if (n > 0) { |
| memmove(ioptr_w, src.ptr, n); |
| *ptr_ioptr_w += n; |
| } |
| return n; |
| } |
| |
| static inline uint32_t wuffs_base__io_writer__copy_from_slice32( |
| uint8_t** ptr_ioptr_w, |
| uint8_t* iobounds1_w, |
| wuffs_base__slice_u8 src, |
| uint32_t length) { |
| uint8_t* ioptr_w = *ptr_ioptr_w; |
| size_t n = src.len; |
| if (n > length) { |
| n = length; |
| } |
| if (n > iobounds1_w - ioptr_w) { |
| n = iobounds1_w - ioptr_w; |
| } |
| if (n > 0) { |
| memmove(ioptr_w, src.ptr, n); |
| *ptr_ioptr_w += n; |
| } |
| return n; |
| } |
| |
| static inline wuffs_base__empty_struct wuffs_base__io_reader__set_limit( |
| wuffs_base__io_reader* o, |
| uint8_t* ioptr_r, |
| uint64_t limit) { |
| if (o && ((o->private_impl.bounds[1] - ioptr_r) > limit)) { |
| o->private_impl.bounds[1] = ioptr_r + limit; |
| } |
| return ((wuffs_base__empty_struct){}); |
| } |
| |
| static inline wuffs_base__empty_struct wuffs_base__io_reader__set_mark( |
| wuffs_base__io_reader* o, |
| uint8_t* mark) { |
| o->private_impl.bounds[0] = mark; |
| return ((wuffs_base__empty_struct){}); |
| } |
| |
| static inline wuffs_base__empty_struct wuffs_base__io_writer__set( |
| wuffs_base__io_writer* o, |
| wuffs_base__io_buffer* b, |
| uint8_t** ioptr1_ptr, |
| uint8_t** ioptr2_ptr, |
| wuffs_base__slice_u8 s) { |
| b->ptr = s.ptr; |
| b->len = s.len; |
| b->wi = 0; |
| b->ri = 0; |
| b->closed = false; |
| o->private_impl.buf = b; |
| o->private_impl.bounds[0] = s.ptr; |
| o->private_impl.bounds[1] = s.ptr + s.len; |
| *ioptr1_ptr = s.ptr; |
| *ioptr2_ptr = s.ptr + s.len; |
| return ((wuffs_base__empty_struct){}); |
| } |
| |
| static inline wuffs_base__empty_struct wuffs_base__io_writer__set_mark( |
| wuffs_base__io_writer* o, |
| uint8_t* mark) { |
| o->private_impl.bounds[0] = mark; |
| return ((wuffs_base__empty_struct){}); |
| } |
| |
| static const char* wuffs_base__status__strings[15] = { |
| "ok", |
| "bad wuffs version", |
| "bad sizeof receiver", |
| "bad receiver", |
| "bad argument", |
| "check_wuffs_version not called", |
| "check_wuffs_version called twice", |
| "invalid I/O operation", |
| "closed for writes", |
| "unexpected EOF", |
| "short read", |
| "short write", |
| "cannot return a suspension", |
| "invalid call sequence", |
| "end of data", |
| }; |
| |
| #endif // WUFFS_BASE_IMPL_H |
| |
| // ---------------- Status Codes Implementations |
| |
| bool wuffs_lzw__status__is_error(wuffs_lzw__status s) { |
| return s < 0; |
| } |
| |
| const char* wuffs_lzw__status__strings[2] = { |
| "lzw: code is out of range", |
| "lzw: prefix chain is cyclical", |
| }; |
| |
| const char* wuffs_lzw__status__string(wuffs_lzw__status s) { |
| const char** a = NULL; |
| uint32_t n = 0; |
| switch ((s >> 10) & 0x1FFFFF) { |
| case 0: |
| a = wuffs_base__status__strings; |
| n = 15; |
| break; |
| case wuffs_lzw__packageid: |
| a = wuffs_lzw__status__strings; |
| n = 2; |
| break; |
| } |
| uint32_t i = s & 0xFF; |
| return i < n ? a[i] : "unknown status"; |
| } |
| |
| // ---------------- Private Consts |
| |
| // ---------------- Private Initializer Prototypes |
| |
| // ---------------- Private Function Prototypes |
| |
| // ---------------- Initializer Implementations |
| |
| void wuffs_lzw__decoder__check_wuffs_version(wuffs_lzw__decoder* self, |
| size_t sizeof_star_self, |
| uint32_t wuffs_version) { |
| if (!self) { |
| return; |
| } |
| if (sizeof(*self) != sizeof_star_self) { |
| self->private_impl.status = WUFFS_LZW__ERROR_BAD_SIZEOF_RECEIVER; |
| return; |
| } |
| if (wuffs_version != WUFFS_VERSION) { |
| self->private_impl.status = WUFFS_LZW__ERROR_BAD_WUFFS_VERSION; |
| return; |
| } |
| if (self->private_impl.magic != 0) { |
| self->private_impl.status = |
| WUFFS_LZW__ERROR_CHECK_WUFFS_VERSION_CALLED_TWICE; |
| return; |
| } |
| self->private_impl.magic = WUFFS_BASE__MAGIC; |
| } |
| |
| // ---------------- Function Implementations |
| |
| // -------- func decoder.set_literal_width |
| |
| void wuffs_lzw__decoder__set_literal_width(wuffs_lzw__decoder* self, |
| uint32_t a_lw) { |
| if (!self) { |
| return; |
| } |
| if (self->private_impl.magic != WUFFS_BASE__MAGIC) { |
| self->private_impl.status = WUFFS_LZW__ERROR_CHECK_WUFFS_VERSION_NOT_CALLED; |
| } |
| if (self->private_impl.status < 0) { |
| return; |
| } |
| |
| if (a_lw <= 8) { |
| self->private_impl.f_literal_width = a_lw; |
| } |
| } |
| |
| // -------- func decoder.decode |
| |
| wuffs_lzw__status wuffs_lzw__decoder__decode(wuffs_lzw__decoder* self, |
| wuffs_base__io_writer a_dst, |
| wuffs_base__io_reader a_src) { |
| if (!self) { |
| return WUFFS_LZW__ERROR_BAD_RECEIVER; |
| } |
| if (self->private_impl.magic != WUFFS_BASE__MAGIC) { |
| self->private_impl.status = WUFFS_LZW__ERROR_CHECK_WUFFS_VERSION_NOT_CALLED; |
| } |
| if (self->private_impl.status < 0) { |
| return self->private_impl.status; |
| } |
| wuffs_lzw__status status = WUFFS_LZW__STATUS_OK; |
| |
| uint32_t v_literal_width; |
| uint32_t v_clear_code; |
| uint32_t v_end_code; |
| uint32_t v_save_code; |
| uint32_t v_prev_code; |
| uint32_t v_width; |
| uint32_t v_bits; |
| uint32_t v_n_bits; |
| uint32_t v_code; |
| uint32_t v_s; |
| uint32_t v_c; |
| wuffs_base__slice_u8 v_expansion; |
| uint64_t v_n_copied; |
| |
| uint8_t* ioptr_dst = NULL; |
| uint8_t* iobounds0orig_dst = NULL; |
| uint8_t* iobounds1_dst = NULL; |
| WUFFS_BASE__IGNORE_POTENTIALLY_UNUSED_VARIABLE(iobounds0orig_dst); |
| WUFFS_BASE__IGNORE_POTENTIALLY_UNUSED_VARIABLE(iobounds1_dst); |
| if (a_dst.private_impl.buf) { |
| ioptr_dst = a_dst.private_impl.buf->ptr + a_dst.private_impl.buf->wi; |
| if (!a_dst.private_impl.bounds[0]) { |
| a_dst.private_impl.bounds[0] = ioptr_dst; |
| a_dst.private_impl.bounds[1] = |
| a_dst.private_impl.buf->ptr + a_dst.private_impl.buf->len; |
| } |
| if (a_dst.private_impl.buf->closed) { |
| a_dst.private_impl.bounds[1] = ioptr_dst; |
| } |
| iobounds0orig_dst = a_dst.private_impl.bounds[0]; |
| iobounds1_dst = a_dst.private_impl.bounds[1]; |
| } |
| uint8_t* ioptr_src = NULL; |
| uint8_t* iobounds0orig_src = NULL; |
| uint8_t* iobounds1_src = NULL; |
| WUFFS_BASE__IGNORE_POTENTIALLY_UNUSED_VARIABLE(iobounds0orig_src); |
| WUFFS_BASE__IGNORE_POTENTIALLY_UNUSED_VARIABLE(iobounds1_src); |
| if (a_src.private_impl.buf) { |
| ioptr_src = a_src.private_impl.buf->ptr + a_src.private_impl.buf->ri; |
| if (!a_src.private_impl.bounds[0]) { |
| a_src.private_impl.bounds[0] = ioptr_src; |
| a_src.private_impl.bounds[1] = |
| a_src.private_impl.buf->ptr + a_src.private_impl.buf->wi; |
| } |
| iobounds0orig_src = a_src.private_impl.bounds[0]; |
| iobounds1_src = a_src.private_impl.bounds[1]; |
| } |
| |
| uint32_t coro_susp_point = self->private_impl.c_decode[0].coro_susp_point; |
| if (coro_susp_point) { |
| v_literal_width = self->private_impl.c_decode[0].v_literal_width; |
| v_clear_code = self->private_impl.c_decode[0].v_clear_code; |
| v_end_code = self->private_impl.c_decode[0].v_end_code; |
| v_save_code = self->private_impl.c_decode[0].v_save_code; |
| v_prev_code = self->private_impl.c_decode[0].v_prev_code; |
| v_width = self->private_impl.c_decode[0].v_width; |
| v_bits = self->private_impl.c_decode[0].v_bits; |
| v_n_bits = self->private_impl.c_decode[0].v_n_bits; |
| v_code = self->private_impl.c_decode[0].v_code; |
| v_s = self->private_impl.c_decode[0].v_s; |
| v_c = self->private_impl.c_decode[0].v_c; |
| v_expansion = ((wuffs_base__slice_u8){}); |
| v_n_copied = self->private_impl.c_decode[0].v_n_copied; |
| } else { |
| v_expansion = ((wuffs_base__slice_u8){}); |
| } |
| switch (coro_susp_point) { |
| WUFFS_BASE__COROUTINE_SUSPENSION_POINT_0; |
| |
| v_literal_width = 8; |
| if (self->private_impl.f_literal_width >= 2) { |
| v_literal_width = self->private_impl.f_literal_width; |
| } |
| v_clear_code = (((uint32_t)(1)) << v_literal_width); |
| v_end_code = (v_clear_code + 1); |
| v_save_code = v_end_code; |
| v_prev_code = 0; |
| v_width = (v_literal_width + 1); |
| v_bits = 0; |
| v_n_bits = 0; |
| label_0_continue:; |
| while (true) { |
| while (v_n_bits < v_width) { |
| { |
| WUFFS_BASE__COROUTINE_SUSPENSION_POINT(1); |
| if (WUFFS_BASE__UNLIKELY(ioptr_src == iobounds1_src)) { |
| goto short_read_src; |
| } |
| uint8_t t_0 = *ioptr_src++; |
| v_bits |= (((uint32_t)(t_0)) << v_n_bits); |
| } |
| v_n_bits += 8; |
| } |
| v_code = ((v_bits) & ((1 << (v_width)) - 1)); |
| v_bits >>= v_width; |
| v_n_bits -= v_width; |
| if (v_code < v_clear_code) { |
| WUFFS_BASE__COROUTINE_SUSPENSION_POINT(2); |
| if (ioptr_dst == iobounds1_dst) { |
| status = WUFFS_LZW__SUSPENSION_SHORT_WRITE; |
| goto suspend; |
| } |
| *ioptr_dst++ = ((uint8_t)(v_code)); |
| if (v_save_code <= 4095) { |
| self->private_impl.f_suffixes[v_save_code] = ((uint8_t)(v_code)); |
| self->private_impl.f_prefixes[v_save_code] = |
| ((uint16_t)(v_prev_code)); |
| } |
| } else if (v_code == v_clear_code) { |
| v_save_code = v_end_code; |
| v_prev_code = 0; |
| v_width = (v_literal_width + 1); |
| goto label_0_continue; |
| } else if (v_code == v_end_code) { |
| status = WUFFS_LZW__STATUS_OK; |
| goto ok; |
| } else if (v_code <= v_save_code) { |
| v_s = 4095; |
| v_c = v_code; |
| if (v_code == v_save_code) { |
| v_s -= 1; |
| v_c = v_prev_code; |
| } |
| while (v_c >= v_clear_code) { |
| self->private_impl.f_stack[v_s] = self->private_impl.f_suffixes[v_c]; |
| if (v_s == 0) { |
| status = WUFFS_LZW__ERROR_PREFIX_CHAIN_IS_CYCLICAL; |
| goto exit; |
| } |
| v_s -= 1; |
| v_c = ((uint32_t)(self->private_impl.f_prefixes[v_c])); |
| } |
| self->private_impl.f_stack[v_s] = ((uint8_t)(v_c)); |
| if (v_code == v_save_code) { |
| self->private_impl.f_stack[4095] = ((uint8_t)(v_c)); |
| } |
| while (true) { |
| v_expansion = wuffs_base__slice_u8__subslice_i( |
| ((wuffs_base__slice_u8){.ptr = self->private_impl.f_stack, |
| .len = 4096}), |
| v_s); |
| v_n_copied = wuffs_base__io_writer__copy_from_slice( |
| &ioptr_dst, iobounds1_dst, v_expansion); |
| if (v_n_copied == ((uint64_t)(v_expansion.len))) { |
| goto label_1_break; |
| } |
| v_s = ((v_s + ((uint32_t)((v_n_copied & 4095)))) & 4095); |
| status = WUFFS_LZW__SUSPENSION_SHORT_WRITE; |
| WUFFS_BASE__COROUTINE_SUSPENSION_POINT_MAYBE_SUSPEND(3); |
| } |
| label_1_break:; |
| if (v_save_code <= 4095) { |
| self->private_impl.f_suffixes[v_save_code] = ((uint8_t)(v_c)); |
| self->private_impl.f_prefixes[v_save_code] = |
| ((uint16_t)(v_prev_code)); |
| } |
| } else { |
| status = WUFFS_LZW__ERROR_CODE_IS_OUT_OF_RANGE; |
| goto exit; |
| } |
| if (v_save_code <= 4095) { |
| v_save_code += 1; |
| if ((v_save_code == (((uint32_t)(1)) << v_width)) && (v_width < 12)) { |
| v_width += 1; |
| } |
| } |
| v_prev_code = v_code; |
| } |
| |
| goto ok; |
| ok: |
| self->private_impl.c_decode[0].coro_susp_point = 0; |
| goto exit; |
| } |
| |
| goto suspend; |
| suspend: |
| self->private_impl.c_decode[0].coro_susp_point = coro_susp_point; |
| self->private_impl.c_decode[0].v_literal_width = v_literal_width; |
| self->private_impl.c_decode[0].v_clear_code = v_clear_code; |
| self->private_impl.c_decode[0].v_end_code = v_end_code; |
| self->private_impl.c_decode[0].v_save_code = v_save_code; |
| self->private_impl.c_decode[0].v_prev_code = v_prev_code; |
| self->private_impl.c_decode[0].v_width = v_width; |
| self->private_impl.c_decode[0].v_bits = v_bits; |
| self->private_impl.c_decode[0].v_n_bits = v_n_bits; |
| self->private_impl.c_decode[0].v_code = v_code; |
| self->private_impl.c_decode[0].v_s = v_s; |
| self->private_impl.c_decode[0].v_c = v_c; |
| self->private_impl.c_decode[0].v_n_copied = v_n_copied; |
| |
| goto exit; |
| exit: |
| if (a_dst.private_impl.buf) { |
| a_dst.private_impl.buf->wi = ioptr_dst - a_dst.private_impl.buf->ptr; |
| } |
| if (a_src.private_impl.buf) { |
| a_src.private_impl.buf->ri = ioptr_src - a_src.private_impl.buf->ptr; |
| } |
| |
| self->private_impl.status = status; |
| return status; |
| |
| short_read_src: |
| if (wuffs_base__io_reader__is_eof(a_src)) { |
| status = WUFFS_LZW__ERROR_UNEXPECTED_EOF; |
| goto exit; |
| } |
| status = WUFFS_LZW__SUSPENSION_SHORT_READ; |
| goto suspend; |
| } |