blob: c9c384c4ef4b5852f6e4cd0c5b1eb565063ff633 [file] [log] [blame]
// Copyright 2021 The Wuffs Authors.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
// SPDX-License-Identifier: Apache-2.0 OR MIT
// ----------------
// Silence the nested slash-star warning for the next comment's command line.
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wcomment"
/*
This fuzzer (the fuzz function) is typically run indirectly, by a framework
such as https://github.com/google/oss-fuzz calling LLVMFuzzerTestOneInput.
When working on the fuzz implementation, or as a coherence check, defining
WUFFS_CONFIG__FUZZLIB_MAIN will let you manually run fuzz over a set of files:
gcc -DWUFFS_CONFIG__FUZZLIB_MAIN pixel_swizzler_fuzzer.c
./a.out ../../../test/data
rm -f ./a.out
It should print "PASS", amongst other information, and exit(0).
*/
#pragma clang diagnostic pop
// Wuffs ships as a "single file C library" or "header file library" as per
// https://github.com/nothings/stb/blob/master/docs/stb_howto.txt
//
// To use that single file as a "foo.c"-like implementation, instead of a
// "foo.h"-like header, #define WUFFS_IMPLEMENTATION before #include'ing or
// compiling it.
#define WUFFS_IMPLEMENTATION
#if defined(WUFFS_CONFIG__FUZZLIB_MAIN)
// Defining the WUFFS_CONFIG__STATIC_FUNCTIONS macro is optional, but when
// combined with WUFFS_IMPLEMENTATION, it demonstrates making all of Wuffs'
// functions have static storage.
//
// This can help the compiler ignore or discard unused code, which can produce
// faster compiles and smaller binaries. Other motivations are discussed in the
// "ALLOW STATIC IMPLEMENTATION" section of
// https://raw.githubusercontent.com/nothings/stb/master/docs/stb_howto.txt
#define WUFFS_CONFIG__STATIC_FUNCTIONS
#endif // defined(WUFFS_CONFIG__FUZZLIB_MAIN)
// Defining the WUFFS_CONFIG__MODULE* macros are optional, but it lets users of
// release/c/etc.c choose which parts of Wuffs to build. That file contains the
// entire Wuffs standard library, implementing a variety of codecs and file
// formats. Without this macro definition, an optimizing compiler or linker may
// very well discard Wuffs code for unused codecs, but listing the Wuffs
// modules we use makes that process explicit. Preprocessing means that such
// code simply isn't compiled.
#define WUFFS_CONFIG__MODULES
#define WUFFS_CONFIG__MODULE__BASE
#include <sys/mman.h>
#include <unistd.h>
// If building this program in an environment that doesn't easily accommodate
// relative includes, you can use the script/inline-c-relative-includes.go
// program to generate a stand-alone C file.
#include "../../../release/c/wuffs-unsupported-snapshot.c"
#include "../fuzzlib/fuzzlib.c"
const uint32_t pixfmts[] = {
WUFFS_BASE__PIXEL_FORMAT__Y,
WUFFS_BASE__PIXEL_FORMAT__Y_16BE,
WUFFS_BASE__PIXEL_FORMAT__Y_16LE,
WUFFS_BASE__PIXEL_FORMAT__YA_NONPREMUL,
WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_NONPREMUL,
WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_BINARY,
WUFFS_BASE__PIXEL_FORMAT__BGR_565,
WUFFS_BASE__PIXEL_FORMAT__BGR,
WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL,
WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL_4X16LE,
WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL,
WUFFS_BASE__PIXEL_FORMAT__BGRX,
WUFFS_BASE__PIXEL_FORMAT__RGB,
WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL,
WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL,
};
const wuffs_base__pixel_blend blends[] = {
WUFFS_BASE__PIXEL_BLEND__SRC,
WUFFS_BASE__PIXEL_BLEND__SRC_OVER,
};
size_t //
round_up_to_pagesize(size_t n) {
size_t ps = getpagesize();
if (ps <= 0) {
return n;
}
return ((n + (ps - 1)) / ps) * ps;
}
// allocate_guarded_pages allocates (2 * len) bytes of memory. The first half
// has read|write permissions. The second half has no permissions, so that
// attempting to read or write to it will cause a segmentation fault.
const char* //
allocate_guarded_pages(uint8_t** ptr_out, size_t len) {
void* ptr =
mmap(NULL, 2 * len, PROT_NONE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
if (ptr == MAP_FAILED) {
return "fuzz: internal error: mmap failed";
}
if (mprotect(ptr, len, PROT_READ | PROT_WRITE)) {
return "fuzz: internal error: mprotect failed";
}
*ptr_out = ptr;
return NULL;
}
// fuzz_swizzle_interleaved_from_slice tests that, regardless of the randomized
// inputs, calling wuffs_base__pixel_swizzler__swizzle_interleaved_from_slice
// will not crash the fuzzer (e.g. due to reads or write past buffer bounds).
const char* //
fuzz_swizzle_interleaved_from_slice(wuffs_base__io_buffer* src, uint64_t hash) {
uint8_t dst_palette_array[1024];
uint8_t src_palette_array[1024];
if ((src->meta.wi - src->meta.ri) >= 2048) {
memcpy(dst_palette_array, src->data.ptr + src->meta.ri, 1024);
src->meta.ri += 1024;
memcpy(src_palette_array, src->data.ptr + src->meta.ri, 1024);
src->meta.ri += 1024;
} else {
for (uint32_t i = 0; i < 1024; i++) {
dst_palette_array[i] = (uint8_t)i;
src_palette_array[i] = (uint8_t)i;
}
}
wuffs_base__slice_u8 dst_palette =
wuffs_base__make_slice_u8(&dst_palette_array[0], 1024);
wuffs_base__slice_u8 src_palette =
wuffs_base__make_slice_u8(&src_palette_array[0], 1024);
size_t num_pixfmts = sizeof(pixfmts) / sizeof(pixfmts[0]);
wuffs_base__pixel_format dst_pixfmt = wuffs_base__make_pixel_format(
pixfmts[(0xFF & (hash >> 0)) % num_pixfmts]);
wuffs_base__pixel_format src_pixfmt = wuffs_base__make_pixel_format(
pixfmts[(0xFF & (hash >> 8)) % num_pixfmts]);
size_t num_blends = sizeof(blends) / sizeof(blends[0]);
wuffs_base__pixel_blend blend = blends[(0xFF & (hash >> 16)) % num_blends];
size_t dst_len = 0xFF & (hash >> 24);
size_t src_len = 0xFF & (hash >> 32);
wuffs_base__pixel_swizzler swizzler;
wuffs_base__status status = wuffs_base__pixel_swizzler__prepare(
&swizzler, dst_pixfmt, dst_palette, src_pixfmt, src_palette, blend);
if (status.repr) {
return wuffs_base__status__message(&status);
}
static size_t alloc_size = 0;
if (alloc_size == 0) {
alloc_size = round_up_to_pagesize(0x100);
}
static uint8_t* dst_alloc = NULL;
if (!dst_alloc) {
const char* z = allocate_guarded_pages(&dst_alloc, alloc_size);
if (z != NULL) {
return z;
}
}
static uint8_t* src_alloc = NULL;
if (!src_alloc) {
const char* z = allocate_guarded_pages(&src_alloc, alloc_size);
if (z != NULL) {
return z;
}
}
// Position dst_slice and src_slice so that reading or writing one byte past
// their end will cause a segmentation fault.
wuffs_base__slice_u8 dst_slice =
wuffs_base__make_slice_u8(dst_alloc + alloc_size - dst_len, dst_len);
wuffs_base__slice_u8 src_slice =
wuffs_base__make_slice_u8(src_alloc + alloc_size - src_len, src_len);
// Fill in dst_slice and src_slice.
if ((src->meta.wi - src->meta.ri) >= (dst_len + src_len)) {
memcpy(dst_slice.ptr, src->data.ptr + src->meta.ri, dst_len);
src->meta.ri += dst_len;
memcpy(src_slice.ptr, src->data.ptr + src->meta.ri, src_len);
src->meta.ri += src_len;
} else {
for (size_t i = 0; i < dst_len; i++) {
dst_slice.ptr[i] = (uint8_t)i;
}
for (size_t i = 0; i < src_len; i++) {
src_slice.ptr[i] = (uint8_t)i;
}
}
// When manually testing this program, enabling this code should lead to a
// segmentation fault.
#if 0
src_slice.ptr[src_slice.len]++;
#endif
// Calling etc__swizzle_interleaved_from_slice should not crash, whether for
// reading/writing out of bounds or for other reasons.
wuffs_base__pixel_swizzler__swizzle_interleaved_from_slice(
&swizzler, dst_slice, dst_palette, src_slice);
return NULL;
}
const char* //
fuzz_swizzle_ycck(wuffs_base__io_buffer* src, uint64_t hash) {
uint8_t dst_palette_array[1024] = {0};
wuffs_base__slice_u8 dst_palette =
wuffs_base__make_slice_u8(&dst_palette_array[0], 1024);
size_t num_pixfmts = sizeof(pixfmts) / sizeof(pixfmts[0]);
wuffs_base__pixel_format dst_pixfmt = wuffs_base__make_pixel_format(
pixfmts[(0xFF & (hash >> 0)) % num_pixfmts]);
uint32_t x_min_incl = (63 & (hash >> 8)) + 1;
uint32_t x_max_excl = (63 & (hash >> 14)) + 1;
uint32_t y_min_incl = (63 & (hash >> 20)) + 1;
uint32_t y_max_excl = (63 & (hash >> 26)) + 1;
uint32_t width_in_mcus = (3 & (hash >> 32)) + 1;
uint32_t height_in_mcus = (3 & (hash >> 34)) + 1;
uint32_t allow_hv3 = 1 & (hash >> 36);
bool is_rgb_or_cmyk = 1 & (hash >> 37);
bool triangle_filter_for_2to1 = 1 & (hash >> 38);
bool use_4th_component = 1 & (hash >> 39);
if (triangle_filter_for_2to1) {
x_min_incl = 0;
y_min_incl = 0;
} else {
if (x_min_incl > x_max_excl) {
uint32_t a = x_min_incl;
x_min_incl = x_max_excl;
x_max_excl = a;
}
if (y_min_incl > y_max_excl) {
uint32_t a = y_min_incl;
y_min_incl = y_max_excl;
y_max_excl = a;
}
}
uint32_t possible_hv_values[2][4] = {
{1, 1, 2, 4},
{1, 1, 3, 3},
};
uint32_t h0 = possible_hv_values[allow_hv3][3 & (hash >> 28)];
uint32_t h1 = possible_hv_values[allow_hv3][3 & (hash >> 30)];
uint32_t h2 = possible_hv_values[allow_hv3][3 & (hash >> 32)];
uint32_t h3 =
use_4th_component ? possible_hv_values[allow_hv3][3 & (hash >> 34)] : 0;
uint32_t v0 = possible_hv_values[allow_hv3][3 & (hash >> 36)];
uint32_t v1 = possible_hv_values[allow_hv3][3 & (hash >> 38)];
uint32_t v2 = possible_hv_values[allow_hv3][3 & (hash >> 40)];
uint32_t v3 =
use_4th_component ? possible_hv_values[allow_hv3][3 & (hash >> 42)] : 0;
uint32_t width0 = 8 * width_in_mcus * h0;
uint32_t width1 = 8 * width_in_mcus * h1;
uint32_t width2 = 8 * width_in_mcus * h2;
uint32_t width3 = 8 * width_in_mcus * h3;
uint32_t height0 = 8 * height_in_mcus * v0;
uint32_t height1 = 8 * height_in_mcus * v1;
uint32_t height2 = 8 * height_in_mcus * v2;
uint32_t height3 = 8 * height_in_mcus * v3;
uint32_t hmax = wuffs_base__u32__max(
h0, wuffs_base__u32__max(h1, wuffs_base__u32__max(h2, h3)));
uint32_t vmax = wuffs_base__u32__max(
v0, wuffs_base__u32__max(v1, wuffs_base__u32__max(v2, v3)));
x_max_excl = x_min_incl + wuffs_base__u32__min(x_max_excl - x_min_incl,
8 * width_in_mcus * hmax);
y_max_excl = y_min_incl + wuffs_base__u32__min(y_max_excl - y_min_incl,
8 * height_in_mcus * vmax);
static size_t dst_alloc_size = 0;
if (dst_alloc_size == 0) {
dst_alloc_size = round_up_to_pagesize(8 * 64 * 64);
}
static uint8_t* dst_alloc = NULL;
if (!dst_alloc) {
const char* z = allocate_guarded_pages(&dst_alloc, dst_alloc_size);
if (z != NULL) {
return z;
}
}
wuffs_base__pixel_buffer dst_pixbuf;
wuffs_base__pixel_config dst_pixcfg;
wuffs_base__pixel_config__set(&dst_pixcfg, dst_pixfmt.repr, 0, x_max_excl,
y_max_excl);
uint64_t dst_pixbuf_len = wuffs_base__pixel_config__pixbuf_len(&dst_pixcfg);
if (dst_pixbuf_len > dst_alloc_size) {
return "fuzz: internal error: dst_alloc_size is too small";
} else {
wuffs_base__status status = wuffs_base__pixel_buffer__set_from_slice(
&dst_pixbuf, &dst_pixcfg,
wuffs_base__make_slice_u8(dst_alloc + dst_alloc_size - dst_pixbuf_len,
dst_pixbuf_len));
if (status.repr) {
return "fuzz: internal error: wuffs_base__pixel_buffer__set_from_slice "
"failed";
}
}
static size_t src_alloc_size = 0;
if (src_alloc_size == 0) {
src_alloc_size = round_up_to_pagesize(8 * 4 * 4 * 8 * 4 * 4);
}
static uint8_t* src_alloc0 = NULL;
static uint8_t* src_alloc1 = NULL;
static uint8_t* src_alloc2 = NULL;
static uint8_t* src_alloc3 = NULL;
if (!src_alloc0) {
const char* z = allocate_guarded_pages(&src_alloc0, src_alloc_size);
if (z != NULL) {
return z;
}
}
if (!src_alloc1) {
const char* z = allocate_guarded_pages(&src_alloc1, src_alloc_size);
if (z != NULL) {
return z;
}
}
if (!src_alloc2) {
const char* z = allocate_guarded_pages(&src_alloc2, src_alloc_size);
if (z != NULL) {
return z;
}
}
if (!src_alloc3) {
const char* z = allocate_guarded_pages(&src_alloc3, src_alloc_size);
if (z != NULL) {
return z;
}
}
uint32_t src_len0 = width0 * height0;
uint32_t src_len1 = width1 * height1;
uint32_t src_len2 = width2 * height2;
uint32_t src_len3 = width3 * height3;
if ((src_len0 > src_alloc_size) || //
(src_len1 > src_alloc_size) || //
(src_len2 > src_alloc_size) || //
(src_len3 > src_alloc_size)) {
return "fuzz: internal error: src_alloc_size is too small";
}
uint8_t s0 = 0x90;
if (src->meta.ri < src->meta.wi) {
s0 = src->data.ptr[src->meta.ri++];
}
uint8_t s1 = 0x91;
if (src->meta.ri < src->meta.wi) {
s1 = src->data.ptr[src->meta.ri++];
}
uint8_t s2 = 0x92;
if (src->meta.ri < src->meta.wi) {
s2 = src->data.ptr[src->meta.ri++];
}
uint8_t s3 = 0x93;
if (src->meta.ri < src->meta.wi) {
s3 = src->data.ptr[src->meta.ri++];
}
wuffs_base__slice_u8 src0 = wuffs_base__make_slice_u8(
src_alloc0 + src_alloc_size - src_len0, src_len0);
memset(src0.ptr, s0, src0.len);
wuffs_base__slice_u8 src1 = wuffs_base__make_slice_u8(
src_alloc1 + src_alloc_size - src_len1, src_len1);
memset(src1.ptr, s1, src1.len);
wuffs_base__slice_u8 src2 = wuffs_base__make_slice_u8(
src_alloc2 + src_alloc_size - src_len2, src_len2);
memset(src2.ptr, s2, src2.len);
wuffs_base__slice_u8 src3 = wuffs_base__empty_slice_u8();
if (use_4th_component) {
wuffs_base__slice_u8 src3 = wuffs_base__make_slice_u8(
src_alloc3 + src_alloc_size - src_len3, src_len3);
memset(src3.ptr, s3, src3.len);
}
wuffs_base__pixel_swizzler swizzler = {0};
uint8_t scratch_buffer[2048];
wuffs_base__status status = wuffs_base__pixel_swizzler__swizzle_ycck(
&swizzler, &dst_pixbuf, dst_palette, //
x_min_incl, x_max_excl, //
y_min_incl, y_max_excl, //
src0, src1, src2, src3, //
width0, width1, width2, width3, //
height0, height1, height2, height3, //
width0, width1, width2, width3, //
h0, h1, h2, h3, //
v0, v1, v2, v3, //
is_rgb_or_cmyk, //
triangle_filter_for_2to1, //
wuffs_base__make_slice_u8(scratch_buffer, sizeof(scratch_buffer)));
if (status.repr) {
return wuffs_base__status__message(&status);
}
return NULL;
}
const char* //
fuzz(wuffs_base__io_buffer* src, uint64_t hash) {
const char* s0 = fuzz_swizzle_interleaved_from_slice(src, hash);
const char* s1 = fuzz_swizzle_ycck(src, hash);
if (s0 && strstr(s0, "internal error:")) {
return s0;
}
if (s1 && strstr(s1, "internal error:")) {
return s1;
}
return s0 ? s0 : s1;
}