Add PARSE_NUMBER_FXX__REJECT_INF_AND_NAN
diff --git a/internal/cgen/base/floatconv-submodule-code.c b/internal/cgen/base/floatconv-submodule-code.c
index b92eb54..5017453 100644
--- a/internal/cgen/base/floatconv-submodule-code.c
+++ b/internal/cgen/base/floatconv-submodule-code.c
@@ -977,15 +977,19 @@
 static wuffs_base__result_f64  //
 wuffs_base__private_implementation__parse_number_f64_special(
     wuffs_base__slice_u8 s,
-    const char* fallback_status_repr) {
+    uint32_t options) {
   do {
+    if (options & WUFFS_BASE__PARSE_NUMBER_FXX__REJECT_INF_AND_NAN) {
+      goto fail;
+    }
+
     uint8_t* p = s.ptr;
     uint8_t* q = s.ptr + s.len;
 
     for (; (p < q) && (*p == '_'); p++) {
     }
     if (p >= q) {
-      goto fallback;
+      goto fail;
     }
 
     // Parse sign.
@@ -1003,7 +1007,7 @@
       }
     } while (0);
     if (p >= q) {
-      goto fallback;
+      goto fail;
     }
 
     bool nan = false;
@@ -1013,7 +1017,7 @@
         if (((q - p) < 3) ||                     //
             ((p[1] != 'N') && (p[1] != 'n')) ||  //
             ((p[2] != 'F') && (p[2] != 'f'))) {
-          goto fallback;
+          goto fail;
         }
         p += 3;
 
@@ -1025,21 +1029,21 @@
                    ((p[2] != 'I') && (p[2] != 'i')) ||  //
                    ((p[3] != 'T') && (p[3] != 't')) ||  //
                    ((p[4] != 'Y') && (p[4] != 'y'))) {
-          goto fallback;
+          goto fail;
         }
         p += 5;
 
         if ((p >= q) || (*p == '_')) {
           break;
         }
-        goto fallback;
+        goto fail;
 
       case 'N':
       case 'n':
         if (((q - p) < 3) ||                     //
             ((p[1] != 'A') && (p[1] != 'a')) ||  //
             ((p[2] != 'N') && (p[2] != 'n'))) {
-          goto fallback;
+          goto fail;
         }
         p += 3;
 
@@ -1047,17 +1051,17 @@
           nan = true;
           break;
         }
-        goto fallback;
+        goto fail;
 
       default:
-        goto fallback;
+        goto fail;
     }
 
     // Finish.
     for (; (p < q) && (*p == '_'); p++) {
     }
     if (p != q) {
-      goto fallback;
+      goto fail;
     }
     wuffs_base__result_f64 ret;
     ret.status.repr = NULL;
@@ -1067,10 +1071,10 @@
     return ret;
   } while (0);
 
-fallback:
+fail:
   do {
     wuffs_base__result_f64 ret;
-    ret.status.repr = fallback_status_repr;
+    ret.status.repr = wuffs_base__error__bad_argument;
     ret.value = 0;
     return ret;
   } while (0);
@@ -1078,7 +1082,8 @@
 
 WUFFS_BASE__MAYBE_STATIC wuffs_base__result_f64  //
 wuffs_base__private_implementation__high_prec_dec__to_f64(
-    wuffs_base__private_implementation__high_prec_dec* h) {
+    wuffs_base__private_implementation__high_prec_dec* h,
+    uint32_t options) {
   do {
     // powers converts decimal powers of 10 to binary powers of 2. For example,
     // (10000 >> 13) is 1. It stops before the elements exceed 60, also known
@@ -1226,6 +1231,13 @@
 
 infinity:
   do {
+    if (options & WUFFS_BASE__PARSE_NUMBER_FXX__REJECT_INF_AND_NAN) {
+      wuffs_base__result_f64 ret;
+      ret.status.repr = wuffs_base__error__bad_argument;
+      ret.value = 0;
+      return ret;
+    }
+
     uint64_t bits = h->negative ? 0xFFF0000000000000 : 0x7FF0000000000000;
 
     wuffs_base__result_f64 ret;
@@ -1459,9 +1471,10 @@
                                                                  options);
     if (status.repr) {
       return wuffs_base__private_implementation__parse_number_f64_special(
-          s, status.repr);
+          s, options);
     }
-    return wuffs_base__private_implementation__high_prec_dec__to_f64(&h);
+    return wuffs_base__private_implementation__high_prec_dec__to_f64(&h,
+                                                                     options);
   } while (0);
 }
 
diff --git a/internal/cgen/data/data.go b/internal/cgen/data/data.go
index 70b5a8a..b6311ba 100644
--- a/internal/cgen/data/data.go
+++ b/internal/cgen/data/data.go
@@ -70,23 +70,23 @@
 	"o \"73 or 74,\n  // depending on msb\", but a flat \"73\" is simpler.\n  if ((x_lo == 0) && ((x_hi & 0x1FF) == 0) && ((ret_mantissa & 3) == 1)) {\n    return -1;\n  }\n\n  // If we're not halfway then it's rounding to-nearest. Starting with a 54-bit\n  // number, carry the lowest bit (bit 0) up if it's on. Regardless of whether\n  // it was on or off, shifting right by one then produces a 53-bit number. If\n  // carrying up overflowed, shift again.\n  ret_mantissa += ret_mantissa & 1;\n  ret_mantissa >>= 1;\n  if ((ret_mantissa >> 53) > 0) {\n    ret_mantissa >>= 1;\n    ret_exp2++;\n  }\n\n  // Starting with a 53-bit number, IEEE 754 double-precision normal numbers\n  // have an implicit mantissa bit. Mask that away and keep the low 52 bits.\n  ret_mantissa &= 0x000FFFFFFFFFFFFF;\n\n  // IEEE 754 double-precision floating point has 11 exponent bits. All off (0)\n  // means subnormal numbers. All on (2047) means infinity or NaN.\n  if ((ret_exp2 <= 0) || (2047 <= ret_exp2)) {\n    return -1;\n  }\n\n  // Pack the bits and return.\n  return " +
 	"((int64_t)(ret_mantissa | (ret_exp2 << 52)));\n}\n\n" +
 	"" +
-	"// --------\n\nstatic wuffs_base__result_f64  //\nwuffs_base__private_implementation__parse_number_f64_special(\n    wuffs_base__slice_u8 s,\n    const char* fallback_status_repr) {\n  do {\n    uint8_t* p = s.ptr;\n    uint8_t* q = s.ptr + s.len;\n\n    for (; (p < q) && (*p == '_'); p++) {\n    }\n    if (p >= q) {\n      goto fallback;\n    }\n\n    // Parse sign.\n    bool negative = false;\n    do {\n      if (*p == '+') {\n        p++;\n      } else if (*p == '-') {\n        negative = true;\n        p++;\n      } else {\n        break;\n      }\n      for (; (p < q) && (*p == '_'); p++) {\n      }\n    } while (0);\n    if (p >= q) {\n      goto fallback;\n    }\n\n    bool nan = false;\n    switch (p[0]) {\n      case 'I':\n      case 'i':\n        if (((q - p) < 3) ||                     //\n            ((p[1] != 'N') && (p[1] != 'n')) ||  //\n            ((p[2] != 'F') && (p[2] != 'f'))) {\n          goto fallback;\n        }\n        p += 3;\n\n        if ((p >= q) || (*p == '_')) {\n          break;\n        } else if (((q - p) < 5) ||        " +
-	"             //\n                   ((p[0] != 'I') && (p[0] != 'i')) ||  //\n                   ((p[1] != 'N') && (p[1] != 'n')) ||  //\n                   ((p[2] != 'I') && (p[2] != 'i')) ||  //\n                   ((p[3] != 'T') && (p[3] != 't')) ||  //\n                   ((p[4] != 'Y') && (p[4] != 'y'))) {\n          goto fallback;\n        }\n        p += 5;\n\n        if ((p >= q) || (*p == '_')) {\n          break;\n        }\n        goto fallback;\n\n      case 'N':\n      case 'n':\n        if (((q - p) < 3) ||                     //\n            ((p[1] != 'A') && (p[1] != 'a')) ||  //\n            ((p[2] != 'N') && (p[2] != 'n'))) {\n          goto fallback;\n        }\n        p += 3;\n\n        if ((p >= q) || (*p == '_')) {\n          nan = true;\n          break;\n        }\n        goto fallback;\n\n      default:\n        goto fallback;\n    }\n\n    // Finish.\n    for (; (p < q) && (*p == '_'); p++) {\n    }\n    if (p != q) {\n      goto fallback;\n    }\n    wuffs_base__result_f64 ret;\n    ret.status.repr = NULL;\n    ret.value " +
-	"= wuffs_base__ieee_754_bit_representation__to_f64(\n        (nan ? 0x7FFFFFFFFFFFFFFF : 0x7FF0000000000000) |\n        (negative ? 0x8000000000000000 : 0));\n    return ret;\n  } while (0);\n\nfallback:\n  do {\n    wuffs_base__result_f64 ret;\n    ret.status.repr = fallback_status_repr;\n    ret.value = 0;\n    return ret;\n  } while (0);\n}\n\nWUFFS_BASE__MAYBE_STATIC wuffs_base__result_f64  //\nwuffs_base__private_implementation__high_prec_dec__to_f64(\n    wuffs_base__private_implementation__high_prec_dec* h) {\n  do {\n    // powers converts decimal powers of 10 to binary powers of 2. For example,\n    // (10000 >> 13) is 1. It stops before the elements exceed 60, also known\n    // as WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL.\n    static const uint32_t num_powers = 19;\n    static const uint8_t powers[19] = {\n        0,  3,  6,  9,  13, 16, 19, 23, 26, 29,  //\n        33, 36, 39, 43, 46, 49, 53, 56, 59,      //\n    };\n\n    // Handle zero and obvious extremes. The largest and smallest positive\n    // finite f64" +
-	" values are approximately 1.8e+308 and 4.9e-324.\n    if ((h->num_digits == 0) || (h->decimal_point < -326)) {\n      goto zero;\n    } else if (h->decimal_point > 310) {\n      goto infinity;\n    }\n\n    // Try the fast Eisel algorithm again. Calculating the (man, exp10) pair\n    // from the high_prec_dec h is more correct but slower than the approach\n    // taken in wuffs_base__parse_number_f64. The latter is optimized for the\n    // common cases (e.g. assuming no underscores or a leading '+' sign) rather\n    // than the full set of cases allowed by the Wuffs API.\n    if (h->num_digits <= 19) {\n      uint64_t man = 0;\n      uint32_t i;\n      for (i = 0; i < h->num_digits; i++) {\n        man = (10 * man) + h->digits[i];\n      }\n      int32_t exp10 = h->decimal_point - ((int32_t)(h->num_digits));\n      if ((man != 0) && (-326 <= exp10) && (exp10 <= 310)) {\n        int64_t r = wuffs_base__private_implementation__parse_number_f64_eisel(\n            man, exp10);\n        if (r >= 0) {\n          wuffs_base__result_f64 " +
-	"ret;\n          ret.status.repr = NULL;\n          ret.value = wuffs_base__ieee_754_bit_representation__to_f64(\n              ((uint64_t)r) | (((uint64_t)(h->negative)) << 63));\n          return ret;\n        }\n      }\n    }\n\n    // Scale by powers of 2 until we're in the range [½ .. 1], which gives us\n    // our exponent (in base-2). First we shift right, possibly a little too\n    // far, ending with a value certainly below 1 and possibly below ½...\n    const int32_t f64_bias = -1023;\n    int32_t exp2 = 0;\n    while (h->decimal_point > 0) {\n      uint32_t n = (uint32_t)(+h->decimal_point);\n      uint32_t shift =\n          (n < num_powers)\n              ? powers[n]\n              : WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;\n\n      wuffs_base__private_implementation__high_prec_dec__small_rshift(h, shift);\n      if (h->decimal_point <\n          -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {\n        goto zero;\n      }\n      exp2 += (int32_t)shift;\n    }\n    // ...then we shift lef" +
-	"t, putting us in [½ .. 1].\n    while (h->decimal_point <= 0) {\n      uint32_t shift;\n      if (h->decimal_point == 0) {\n        if (h->digits[0] >= 5) {\n          break;\n        }\n        shift = (h->digits[0] <= 2) ? 2 : 1;\n      } else {\n        uint32_t n = (uint32_t)(-h->decimal_point);\n        shift = (n < num_powers)\n                    ? powers[n]\n                    : WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;\n      }\n\n      wuffs_base__private_implementation__high_prec_dec__small_lshift(h, shift);\n      if (h->decimal_point >\n          +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {\n        goto infinity;\n      }\n      exp2 -= (int32_t)shift;\n    }\n\n    // We're in the range [½ .. 1] but f64 uses [1 .. 2].\n    exp2--;\n\n    // The minimum normal exponent is (f64_bias + 1).\n    while ((f64_bias + 1) > exp2) {\n      uint32_t n = (uint32_t)((f64_bias + 1) - exp2);\n      if (n > WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL) {\n        n = WUFFS_BASE__PRIVATE_I" +
-	"MPLEMENTATION__HPD__SHIFT__MAX_INCL;\n      }\n      wuffs_base__private_implementation__high_prec_dec__small_rshift(h, n);\n      exp2 += (int32_t)n;\n    }\n\n    // Check for overflow.\n    if ((exp2 - f64_bias) >= 0x07FF) {  // (1 << 11) - 1.\n      goto infinity;\n    }\n\n    // Extract 53 bits for the mantissa (in base-2).\n    wuffs_base__private_implementation__high_prec_dec__small_lshift(h, 53);\n    uint64_t man2 =\n        wuffs_base__private_implementation__high_prec_dec__rounded_integer(h);\n\n    // Rounding might have added one bit. If so, shift and re-check overflow.\n    if ((man2 >> 53) != 0) {\n      man2 >>= 1;\n      exp2++;\n      if ((exp2 - f64_bias) >= 0x07FF) {  // (1 << 11) - 1.\n        goto infinity;\n      }\n    }\n\n    // Handle subnormal numbers.\n    if ((man2 >> 52) == 0) {\n      exp2 = f64_bias;\n    }\n\n    // Pack the bits and return.\n    uint64_t exp2_bits =\n        (uint64_t)((exp2 - f64_bias) & 0x07FF);              // (1 << 11) - 1.\n    uint64_t bits = (man2 & 0x000FFFFFFFFFFFFF) |            " +
-	"// (1 << 52) - 1.\n                    (exp2_bits << 52) |                      //\n                    (h->negative ? 0x8000000000000000 : 0);  // (1 << 63).\n\n    wuffs_base__result_f64 ret;\n    ret.status.repr = NULL;\n    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(bits);\n    return ret;\n  } while (0);\n\nzero:\n  do {\n    uint64_t bits = h->negative ? 0x8000000000000000 : 0;\n\n    wuffs_base__result_f64 ret;\n    ret.status.repr = NULL;\n    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(bits);\n    return ret;\n  } while (0);\n\ninfinity:\n  do {\n    uint64_t bits = h->negative ? 0xFFF0000000000000 : 0x7FF0000000000000;\n\n    wuffs_base__result_f64 ret;\n    ret.status.repr = NULL;\n    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(bits);\n    return ret;\n  } while (0);\n}\n\nstatic inline bool  //\nwuffs_base__private_implementation__is_decimal_digit(uint8_t c) {\n  return ('0' <= c) && (c <= '9');\n}\n\nWUFFS_BASE__MAYBE_STATIC wuffs_base__result_f64  //\nwuffs_base__parse_number_f64(wu" +
-	"ffs_base__slice_u8 s, uint32_t options) {\n  // In practice, almost all \"dd.ddddE±xxx\" numbers can be represented\n  // losslessly by a uint64_t mantissa \"dddddd\" and an int32_t base-10\n  // exponent, adjusting \"xxx\" for the position (if present) of the decimal\n  // separator '.' or ','.\n  //\n  // This (u64 man, i32 exp10) data structure is superficially similar to the\n  // \"Do It Yourself Floating Point\" type from Loitsch (†), but the exponent\n  // here is base-10, not base-2.\n  //\n  // If s's number fits in a (man, exp10), parse that pair with the Eisel\n  // algorithm. If not, or if Eisel fails, parsing s with the fallback\n  // algorithm is slower but comprehensive.\n  //\n  // † \"Printing Floating-Point Numbers Quickly and Accurately with Integers\"\n  // (https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf).\n  // Florian Loitsch is also the primary contributor to\n  // https://github.com/google/double-conversion\n  do {\n    // Calculating that (man, exp10) pair needs to stay within s's boun" +
-	"ds.\n    // Provided that s isn't extremely long, work on a NUL-terminated copy of\n    // s's contents. The NUL byte isn't a valid part of \"±dd.ddddE±xxx\".\n    //\n    // As the pointer p walks the contents, it's faster to repeatedly check \"is\n    // *p a valid digit\" than \"is p within bounds and *p a valid digit\".\n    if (s.len >= 256) {\n      goto fallback;\n    }\n    uint8_t z[256];\n    memcpy(&z[0], s.ptr, s.len);\n    z[s.len] = 0;\n    const uint8_t* p = &z[0];\n\n    // Look for a leading minus sign. Technically, we could also look for an\n    // optional plus sign, but the \"script/process-json-numbers.c with -p\"\n    // benchmark is noticably slower if we do. It's optional and, in practice,\n    // usually absent. Let the fallback catch it.\n    bool negative = (*p == '-');\n    if (negative) {\n      p++;\n    }\n\n    // After walking \"dd.dddd\", comparing p later with p now will produce the\n    // number of \"d\"s and \".\"s.\n    const uint8_t* const start_of_digits_ptr = p;\n\n    // Walk the \"d\"s before a '.', 'E', N" +
-	"UL byte, etc. If it starts with '0',\n    // it must be a single '0'. If it starts with a non-zero decimal digit, it\n    // can be a sequence of decimal digits.\n    //\n    // Update the man variable during the walk. It's OK if man overflows now.\n    // We'll detect that later.\n    uint64_t man;\n    if (*p == '0') {\n      man = 0;\n      p++;\n      if (wuffs_base__private_implementation__is_decimal_digit(*p)) {\n        goto fallback;\n      }\n    } else if (wuffs_base__private_implementation__is_decimal_digit(*p)) {\n      man = ((uint8_t)(*p - '0'));\n      p++;\n      for (; wuffs_base__private_implementation__is_decimal_digit(*p); p++) {\n        man = (10 * man) + ((uint8_t)(*p - '0'));\n      }\n    } else {\n      goto fallback;\n    }\n\n    // Walk the \"d\"s after the optional decimal separator ('.' or ','),\n    // updating the man and exp10 variables.\n    int32_t exp10 = 0;\n    if (*p ==\n        ((options & WUFFS_BASE__PARSE_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA)\n             ? ','\n             : '.')) {\n      p" +
-	"++;\n      const uint8_t* first_after_separator_ptr = p;\n      if (!wuffs_base__private_implementation__is_decimal_digit(*p)) {\n        goto fallback;\n      }\n      man = (10 * man) + ((uint8_t)(*p - '0'));\n      p++;\n      for (; wuffs_base__private_implementation__is_decimal_digit(*p); p++) {\n        man = (10 * man) + ((uint8_t)(*p - '0'));\n      }\n      exp10 = ((int32_t)(first_after_separator_ptr - p));\n    }\n\n    // Count the number of digits:\n    //  - for an input of \"314159\",  digit_count is 6.\n    //  - for an input of \"3.14159\", digit_count is 7.\n    //\n    // This is off-by-one if there is a decimal separator. That's OK for now.\n    // We'll correct for that later. The \"script/process-json-numbers.c with\n    // -p\" benchmark is noticably slower if we try to correct for that now.\n    uint32_t digit_count = (uint32_t)(p - start_of_digits_ptr);\n\n    // Update exp10 for the optional exponent, starting with 'E' or 'e'.\n    if ((*p | 0x20) == 'e') {\n      p++;\n      int32_t exp_sign = +1;\n      if (*p ==" +
-	" '-') {\n        p++;\n        exp_sign = -1;\n      } else if (*p == '+') {\n        p++;\n      }\n      if (!wuffs_base__private_implementation__is_decimal_digit(*p)) {\n        goto fallback;\n      }\n      int32_t exp_num = ((uint8_t)(*p - '0'));\n      p++;\n      // The rest of the exp_num walking has a peculiar control flow but, once\n      // again, the \"script/process-json-numbers.c with -p\" benchmark is\n      // sensitive to alternative formulations.\n      if (wuffs_base__private_implementation__is_decimal_digit(*p)) {\n        exp_num = (10 * exp_num) + ((uint8_t)(*p - '0'));\n        p++;\n      }\n      if (wuffs_base__private_implementation__is_decimal_digit(*p)) {\n        exp_num = (10 * exp_num) + ((uint8_t)(*p - '0'));\n        p++;\n      }\n      while (wuffs_base__private_implementation__is_decimal_digit(*p)) {\n        if (exp_num > 0x1000000) {\n          goto fallback;\n        }\n        exp_num = (10 * exp_num) + ((uint8_t)(*p - '0'));\n        p++;\n      }\n      exp10 += exp_sign * exp_num;\n    }\n\n    // " +
-	"The Wuffs API is that the original slice has no trailing data. It also\n    // allows underscores, which we don't catch here but the fallback should.\n    if (p != &z[s.len]) {\n      goto fallback;\n    }\n\n    // Check that the uint64_t typed man variable has not overflowed, based on\n    // digit_count.\n    //\n    // For reference:\n    //   - (1 << 63) is  9223372036854775808, which has 19 decimal digits.\n    //   - (1 << 64) is 18446744073709551616, which has 20 decimal digits.\n    //   - 19 nines,  9999999999999999999, is  0x8AC7230489E7FFFF, which has 64\n    //     bits and 16 hexadecimal digits.\n    //   - 20 nines, 99999999999999999999, is 0x56BC75E2D630FFFFF, which has 67\n    //     bits and 17 hexadecimal digits.\n    if (digit_count > 19) {\n      // Even if we have more than 19 pseudo-digits, it's not yet definitely an\n      // overflow. Recall that digit_count might be off-by-one (too large) if\n      // there's a decimal separator. It will also over-report the number of\n      // meaningful digits if the " +
-	"input looks something like \"0.000dddExxx\".\n      //\n      // We adjust by the number of leading '0's and '.'s and re-compare to 19.\n      // Once again, technically, we could skip ','s too, but that perturbs the\n      // \"script/process-json-numbers.c with -p\" benchmark.\n      const uint8_t* q = start_of_digits_ptr;\n      for (; (*q == '0') || (*q == '.'); q++) {\n      }\n      digit_count -= (uint32_t)(q - start_of_digits_ptr);\n      if (digit_count > 19) {\n        goto fallback;\n      }\n    }\n\n    // The wuffs_base__private_implementation__parse_number_f64_eisel\n    // preconditions include that exp10 is in the range -326 ..= 310.\n    if ((exp10 < -326) || (310 < exp10)) {\n      goto fallback;\n    }\n\n    // If man and exp10 are small enough, all three of (man), (10 ** exp10) and\n    // (man ** (10 ** exp10)) are exactly representable by a double. We don't\n    // need to run the Eisel algorithm.\n    if ((-22 <= exp10) && (exp10 <= 22) && ((man >> 53) == 0)) {\n      double d = (double)man;\n      if (exp10 >= 0" +
-	") {\n        d *= wuffs_base__private_implementation__f64_powers_of_10[+exp10];\n      } else {\n        d /= wuffs_base__private_implementation__f64_powers_of_10[-exp10];\n      }\n      wuffs_base__result_f64 ret;\n      ret.status.repr = NULL;\n      ret.value = negative ? -d : +d;\n      return ret;\n    }\n\n    // The wuffs_base__private_implementation__parse_number_f64_eisel\n    // preconditions include that man is non-zero. Parsing \"0\" should be caught\n    // by the \"If man and exp10 are small enough\" above, but \"0e99\" might not.\n    if (man == 0) {\n      goto fallback;\n    }\n\n    // Our man and exp10 are in range. Run the Eisel algorithm.\n    int64_t r =\n        wuffs_base__private_implementation__parse_number_f64_eisel(man, exp10);\n    if (r < 0) {\n      goto fallback;\n    }\n    wuffs_base__result_f64 ret;\n    ret.status.repr = NULL;\n    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(\n        ((uint64_t)r) | (((uint64_t)negative) << 63));\n    return ret;\n  } while (0);\n\nfallback:\n  do {\n    wuffs_" +
-	"base__private_implementation__high_prec_dec h;\n    wuffs_base__status status =\n        wuffs_base__private_implementation__high_prec_dec__parse(&h, s,\n                                                                 options);\n    if (status.repr) {\n      return wuffs_base__private_implementation__parse_number_f64_special(\n          s, status.repr);\n    }\n    return wuffs_base__private_implementation__high_prec_dec__to_f64(&h);\n  } while (0);\n}\n\n" +
+	"// --------\n\nstatic wuffs_base__result_f64  //\nwuffs_base__private_implementation__parse_number_f64_special(\n    wuffs_base__slice_u8 s,\n    uint32_t options) {\n  do {\n    if (options & WUFFS_BASE__PARSE_NUMBER_FXX__REJECT_INF_AND_NAN) {\n      goto fail;\n    }\n\n    uint8_t* p = s.ptr;\n    uint8_t* q = s.ptr + s.len;\n\n    for (; (p < q) && (*p == '_'); p++) {\n    }\n    if (p >= q) {\n      goto fail;\n    }\n\n    // Parse sign.\n    bool negative = false;\n    do {\n      if (*p == '+') {\n        p++;\n      } else if (*p == '-') {\n        negative = true;\n        p++;\n      } else {\n        break;\n      }\n      for (; (p < q) && (*p == '_'); p++) {\n      }\n    } while (0);\n    if (p >= q) {\n      goto fail;\n    }\n\n    bool nan = false;\n    switch (p[0]) {\n      case 'I':\n      case 'i':\n        if (((q - p) < 3) ||                     //\n            ((p[1] != 'N') && (p[1] != 'n')) ||  //\n            ((p[2] != 'F') && (p[2] != 'f'))) {\n          goto fail;\n        }\n        p += 3;\n\n        if ((p >= q) || (*p == '_" +
+	"')) {\n          break;\n        } else if (((q - p) < 5) ||                     //\n                   ((p[0] != 'I') && (p[0] != 'i')) ||  //\n                   ((p[1] != 'N') && (p[1] != 'n')) ||  //\n                   ((p[2] != 'I') && (p[2] != 'i')) ||  //\n                   ((p[3] != 'T') && (p[3] != 't')) ||  //\n                   ((p[4] != 'Y') && (p[4] != 'y'))) {\n          goto fail;\n        }\n        p += 5;\n\n        if ((p >= q) || (*p == '_')) {\n          break;\n        }\n        goto fail;\n\n      case 'N':\n      case 'n':\n        if (((q - p) < 3) ||                     //\n            ((p[1] != 'A') && (p[1] != 'a')) ||  //\n            ((p[2] != 'N') && (p[2] != 'n'))) {\n          goto fail;\n        }\n        p += 3;\n\n        if ((p >= q) || (*p == '_')) {\n          nan = true;\n          break;\n        }\n        goto fail;\n\n      default:\n        goto fail;\n    }\n\n    // Finish.\n    for (; (p < q) && (*p == '_'); p++) {\n    }\n    if (p != q) {\n      goto fail;\n    }\n    wuffs_base__result_f64 ret;\n" +
+	"    ret.status.repr = NULL;\n    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(\n        (nan ? 0x7FFFFFFFFFFFFFFF : 0x7FF0000000000000) |\n        (negative ? 0x8000000000000000 : 0));\n    return ret;\n  } while (0);\n\nfail:\n  do {\n    wuffs_base__result_f64 ret;\n    ret.status.repr = wuffs_base__error__bad_argument;\n    ret.value = 0;\n    return ret;\n  } while (0);\n}\n\nWUFFS_BASE__MAYBE_STATIC wuffs_base__result_f64  //\nwuffs_base__private_implementation__high_prec_dec__to_f64(\n    wuffs_base__private_implementation__high_prec_dec* h,\n    uint32_t options) {\n  do {\n    // powers converts decimal powers of 10 to binary powers of 2. For example,\n    // (10000 >> 13) is 1. It stops before the elements exceed 60, also known\n    // as WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL.\n    static const uint32_t num_powers = 19;\n    static const uint8_t powers[19] = {\n        0,  3,  6,  9,  13, 16, 19, 23, 26, 29,  //\n        33, 36, 39, 43, 46, 49, 53, 56, 59,      //\n    };\n\n    // Handle zero an" +
+	"d obvious extremes. The largest and smallest positive\n    // finite f64 values are approximately 1.8e+308 and 4.9e-324.\n    if ((h->num_digits == 0) || (h->decimal_point < -326)) {\n      goto zero;\n    } else if (h->decimal_point > 310) {\n      goto infinity;\n    }\n\n    // Try the fast Eisel algorithm again. Calculating the (man, exp10) pair\n    // from the high_prec_dec h is more correct but slower than the approach\n    // taken in wuffs_base__parse_number_f64. The latter is optimized for the\n    // common cases (e.g. assuming no underscores or a leading '+' sign) rather\n    // than the full set of cases allowed by the Wuffs API.\n    if (h->num_digits <= 19) {\n      uint64_t man = 0;\n      uint32_t i;\n      for (i = 0; i < h->num_digits; i++) {\n        man = (10 * man) + h->digits[i];\n      }\n      int32_t exp10 = h->decimal_point - ((int32_t)(h->num_digits));\n      if ((man != 0) && (-326 <= exp10) && (exp10 <= 310)) {\n        int64_t r = wuffs_base__private_implementation__parse_number_f64_eisel(\n         " +
+	"   man, exp10);\n        if (r >= 0) {\n          wuffs_base__result_f64 ret;\n          ret.status.repr = NULL;\n          ret.value = wuffs_base__ieee_754_bit_representation__to_f64(\n              ((uint64_t)r) | (((uint64_t)(h->negative)) << 63));\n          return ret;\n        }\n      }\n    }\n\n    // Scale by powers of 2 until we're in the range [½ .. 1], which gives us\n    // our exponent (in base-2). First we shift right, possibly a little too\n    // far, ending with a value certainly below 1 and possibly below ½...\n    const int32_t f64_bias = -1023;\n    int32_t exp2 = 0;\n    while (h->decimal_point > 0) {\n      uint32_t n = (uint32_t)(+h->decimal_point);\n      uint32_t shift =\n          (n < num_powers)\n              ? powers[n]\n              : WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;\n\n      wuffs_base__private_implementation__high_prec_dec__small_rshift(h, shift);\n      if (h->decimal_point <\n          -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {\n        goto zero;\n" +
+	"      }\n      exp2 += (int32_t)shift;\n    }\n    // ...then we shift left, putting us in [½ .. 1].\n    while (h->decimal_point <= 0) {\n      uint32_t shift;\n      if (h->decimal_point == 0) {\n        if (h->digits[0] >= 5) {\n          break;\n        }\n        shift = (h->digits[0] <= 2) ? 2 : 1;\n      } else {\n        uint32_t n = (uint32_t)(-h->decimal_point);\n        shift = (n < num_powers)\n                    ? powers[n]\n                    : WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;\n      }\n\n      wuffs_base__private_implementation__high_prec_dec__small_lshift(h, shift);\n      if (h->decimal_point >\n          +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) {\n        goto infinity;\n      }\n      exp2 -= (int32_t)shift;\n    }\n\n    // We're in the range [½ .. 1] but f64 uses [1 .. 2].\n    exp2--;\n\n    // The minimum normal exponent is (f64_bias + 1).\n    while ((f64_bias + 1) > exp2) {\n      uint32_t n = (uint32_t)((f64_bias + 1) - exp2);\n      if (n > WUFFS_BASE__PRIVATE_IM" +
+	"PLEMENTATION__HPD__SHIFT__MAX_INCL) {\n        n = WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL;\n      }\n      wuffs_base__private_implementation__high_prec_dec__small_rshift(h, n);\n      exp2 += (int32_t)n;\n    }\n\n    // Check for overflow.\n    if ((exp2 - f64_bias) >= 0x07FF) {  // (1 << 11) - 1.\n      goto infinity;\n    }\n\n    // Extract 53 bits for the mantissa (in base-2).\n    wuffs_base__private_implementation__high_prec_dec__small_lshift(h, 53);\n    uint64_t man2 =\n        wuffs_base__private_implementation__high_prec_dec__rounded_integer(h);\n\n    // Rounding might have added one bit. If so, shift and re-check overflow.\n    if ((man2 >> 53) != 0) {\n      man2 >>= 1;\n      exp2++;\n      if ((exp2 - f64_bias) >= 0x07FF) {  // (1 << 11) - 1.\n        goto infinity;\n      }\n    }\n\n    // Handle subnormal numbers.\n    if ((man2 >> 52) == 0) {\n      exp2 = f64_bias;\n    }\n\n    // Pack the bits and return.\n    uint64_t exp2_bits =\n        (uint64_t)((exp2 - f64_bias) & 0x07FF);              // (1 <<" +
+	" 11) - 1.\n    uint64_t bits = (man2 & 0x000FFFFFFFFFFFFF) |            // (1 << 52) - 1.\n                    (exp2_bits << 52) |                      //\n                    (h->negative ? 0x8000000000000000 : 0);  // (1 << 63).\n\n    wuffs_base__result_f64 ret;\n    ret.status.repr = NULL;\n    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(bits);\n    return ret;\n  } while (0);\n\nzero:\n  do {\n    uint64_t bits = h->negative ? 0x8000000000000000 : 0;\n\n    wuffs_base__result_f64 ret;\n    ret.status.repr = NULL;\n    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(bits);\n    return ret;\n  } while (0);\n\ninfinity:\n  do {\n    if (options & WUFFS_BASE__PARSE_NUMBER_FXX__REJECT_INF_AND_NAN) {\n      wuffs_base__result_f64 ret;\n      ret.status.repr = wuffs_base__error__bad_argument;\n      ret.value = 0;\n      return ret;\n    }\n\n    uint64_t bits = h->negative ? 0xFFF0000000000000 : 0x7FF0000000000000;\n\n    wuffs_base__result_f64 ret;\n    ret.status.repr = NULL;\n    ret.value = wuffs_base__ieee_754_" +
+	"bit_representation__to_f64(bits);\n    return ret;\n  } while (0);\n}\n\nstatic inline bool  //\nwuffs_base__private_implementation__is_decimal_digit(uint8_t c) {\n  return ('0' <= c) && (c <= '9');\n}\n\nWUFFS_BASE__MAYBE_STATIC wuffs_base__result_f64  //\nwuffs_base__parse_number_f64(wuffs_base__slice_u8 s, uint32_t options) {\n  // In practice, almost all \"dd.ddddE±xxx\" numbers can be represented\n  // losslessly by a uint64_t mantissa \"dddddd\" and an int32_t base-10\n  // exponent, adjusting \"xxx\" for the position (if present) of the decimal\n  // separator '.' or ','.\n  //\n  // This (u64 man, i32 exp10) data structure is superficially similar to the\n  // \"Do It Yourself Floating Point\" type from Loitsch (†), but the exponent\n  // here is base-10, not base-2.\n  //\n  // If s's number fits in a (man, exp10), parse that pair with the Eisel\n  // algorithm. If not, or if Eisel fails, parsing s with the fallback\n  // algorithm is slower but comprehensive.\n  //\n  // † \"Printing Floating-Point Numbers Quickly and Accuratel" +
+	"y with Integers\"\n  // (https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf).\n  // Florian Loitsch is also the primary contributor to\n  // https://github.com/google/double-conversion\n  do {\n    // Calculating that (man, exp10) pair needs to stay within s's bounds.\n    // Provided that s isn't extremely long, work on a NUL-terminated copy of\n    // s's contents. The NUL byte isn't a valid part of \"±dd.ddddE±xxx\".\n    //\n    // As the pointer p walks the contents, it's faster to repeatedly check \"is\n    // *p a valid digit\" than \"is p within bounds and *p a valid digit\".\n    if (s.len >= 256) {\n      goto fallback;\n    }\n    uint8_t z[256];\n    memcpy(&z[0], s.ptr, s.len);\n    z[s.len] = 0;\n    const uint8_t* p = &z[0];\n\n    // Look for a leading minus sign. Technically, we could also look for an\n    // optional plus sign, but the \"script/process-json-numbers.c with -p\"\n    // benchmark is noticably slower if we do. It's optional and, in practice,\n    // usually absent. Let the fallback catch" +
+	" it.\n    bool negative = (*p == '-');\n    if (negative) {\n      p++;\n    }\n\n    // After walking \"dd.dddd\", comparing p later with p now will produce the\n    // number of \"d\"s and \".\"s.\n    const uint8_t* const start_of_digits_ptr = p;\n\n    // Walk the \"d\"s before a '.', 'E', NUL byte, etc. If it starts with '0',\n    // it must be a single '0'. If it starts with a non-zero decimal digit, it\n    // can be a sequence of decimal digits.\n    //\n    // Update the man variable during the walk. It's OK if man overflows now.\n    // We'll detect that later.\n    uint64_t man;\n    if (*p == '0') {\n      man = 0;\n      p++;\n      if (wuffs_base__private_implementation__is_decimal_digit(*p)) {\n        goto fallback;\n      }\n    } else if (wuffs_base__private_implementation__is_decimal_digit(*p)) {\n      man = ((uint8_t)(*p - '0'));\n      p++;\n      for (; wuffs_base__private_implementation__is_decimal_digit(*p); p++) {\n        man = (10 * man) + ((uint8_t)(*p - '0'));\n      }\n    } else {\n      goto fallback;\n    }\n\n    /" +
+	"/ Walk the \"d\"s after the optional decimal separator ('.' or ','),\n    // updating the man and exp10 variables.\n    int32_t exp10 = 0;\n    if (*p ==\n        ((options & WUFFS_BASE__PARSE_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA)\n             ? ','\n             : '.')) {\n      p++;\n      const uint8_t* first_after_separator_ptr = p;\n      if (!wuffs_base__private_implementation__is_decimal_digit(*p)) {\n        goto fallback;\n      }\n      man = (10 * man) + ((uint8_t)(*p - '0'));\n      p++;\n      for (; wuffs_base__private_implementation__is_decimal_digit(*p); p++) {\n        man = (10 * man) + ((uint8_t)(*p - '0'));\n      }\n      exp10 = ((int32_t)(first_after_separator_ptr - p));\n    }\n\n    // Count the number of digits:\n    //  - for an input of \"314159\",  digit_count is 6.\n    //  - for an input of \"3.14159\", digit_count is 7.\n    //\n    // This is off-by-one if there is a decimal separator. That's OK for now.\n    // We'll correct for that later. The \"script/process-json-numbers.c with\n    // -p\" benchmark " +
+	"is noticably slower if we try to correct for that now.\n    uint32_t digit_count = (uint32_t)(p - start_of_digits_ptr);\n\n    // Update exp10 for the optional exponent, starting with 'E' or 'e'.\n    if ((*p | 0x20) == 'e') {\n      p++;\n      int32_t exp_sign = +1;\n      if (*p == '-') {\n        p++;\n        exp_sign = -1;\n      } else if (*p == '+') {\n        p++;\n      }\n      if (!wuffs_base__private_implementation__is_decimal_digit(*p)) {\n        goto fallback;\n      }\n      int32_t exp_num = ((uint8_t)(*p - '0'));\n      p++;\n      // The rest of the exp_num walking has a peculiar control flow but, once\n      // again, the \"script/process-json-numbers.c with -p\" benchmark is\n      // sensitive to alternative formulations.\n      if (wuffs_base__private_implementation__is_decimal_digit(*p)) {\n        exp_num = (10 * exp_num) + ((uint8_t)(*p - '0'));\n        p++;\n      }\n      if (wuffs_base__private_implementation__is_decimal_digit(*p)) {\n        exp_num = (10 * exp_num) + ((uint8_t)(*p - '0'));\n        p++;\n " +
+	"     }\n      while (wuffs_base__private_implementation__is_decimal_digit(*p)) {\n        if (exp_num > 0x1000000) {\n          goto fallback;\n        }\n        exp_num = (10 * exp_num) + ((uint8_t)(*p - '0'));\n        p++;\n      }\n      exp10 += exp_sign * exp_num;\n    }\n\n    // The Wuffs API is that the original slice has no trailing data. It also\n    // allows underscores, which we don't catch here but the fallback should.\n    if (p != &z[s.len]) {\n      goto fallback;\n    }\n\n    // Check that the uint64_t typed man variable has not overflowed, based on\n    // digit_count.\n    //\n    // For reference:\n    //   - (1 << 63) is  9223372036854775808, which has 19 decimal digits.\n    //   - (1 << 64) is 18446744073709551616, which has 20 decimal digits.\n    //   - 19 nines,  9999999999999999999, is  0x8AC7230489E7FFFF, which has 64\n    //     bits and 16 hexadecimal digits.\n    //   - 20 nines, 99999999999999999999, is 0x56BC75E2D630FFFFF, which has 67\n    //     bits and 17 hexadecimal digits.\n    if (digit_count" +
+	" > 19) {\n      // Even if we have more than 19 pseudo-digits, it's not yet definitely an\n      // overflow. Recall that digit_count might be off-by-one (too large) if\n      // there's a decimal separator. It will also over-report the number of\n      // meaningful digits if the input looks something like \"0.000dddExxx\".\n      //\n      // We adjust by the number of leading '0's and '.'s and re-compare to 19.\n      // Once again, technically, we could skip ','s too, but that perturbs the\n      // \"script/process-json-numbers.c with -p\" benchmark.\n      const uint8_t* q = start_of_digits_ptr;\n      for (; (*q == '0') || (*q == '.'); q++) {\n      }\n      digit_count -= (uint32_t)(q - start_of_digits_ptr);\n      if (digit_count > 19) {\n        goto fallback;\n      }\n    }\n\n    // The wuffs_base__private_implementation__parse_number_f64_eisel\n    // preconditions include that exp10 is in the range -326 ..= 310.\n    if ((exp10 < -326) || (310 < exp10)) {\n      goto fallback;\n    }\n\n    // If man and exp10 are small e" +
+	"nough, all three of (man), (10 ** exp10) and\n    // (man ** (10 ** exp10)) are exactly representable by a double. We don't\n    // need to run the Eisel algorithm.\n    if ((-22 <= exp10) && (exp10 <= 22) && ((man >> 53) == 0)) {\n      double d = (double)man;\n      if (exp10 >= 0) {\n        d *= wuffs_base__private_implementation__f64_powers_of_10[+exp10];\n      } else {\n        d /= wuffs_base__private_implementation__f64_powers_of_10[-exp10];\n      }\n      wuffs_base__result_f64 ret;\n      ret.status.repr = NULL;\n      ret.value = negative ? -d : +d;\n      return ret;\n    }\n\n    // The wuffs_base__private_implementation__parse_number_f64_eisel\n    // preconditions include that man is non-zero. Parsing \"0\" should be caught\n    // by the \"If man and exp10 are small enough\" above, but \"0e99\" might not.\n    if (man == 0) {\n      goto fallback;\n    }\n\n    // Our man and exp10 are in range. Run the Eisel algorithm.\n    int64_t r =\n        wuffs_base__private_implementation__parse_number_f64_eisel(man, exp10);\n    i" +
+	"f (r < 0) {\n      goto fallback;\n    }\n    wuffs_base__result_f64 ret;\n    ret.status.repr = NULL;\n    ret.value = wuffs_base__ieee_754_bit_representation__to_f64(\n        ((uint64_t)r) | (((uint64_t)negative) << 63));\n    return ret;\n  } while (0);\n\nfallback:\n  do {\n    wuffs_base__private_implementation__high_prec_dec h;\n    wuffs_base__status status =\n        wuffs_base__private_implementation__high_prec_dec__parse(&h, s,\n                                                                 options);\n    if (status.repr) {\n      return wuffs_base__private_implementation__parse_number_f64_special(\n          s, options);\n    }\n    return wuffs_base__private_implementation__high_prec_dec__to_f64(&h,\n                                                                     options);\n  } while (0);\n}\n\n" +
 	"" +
 	"// --------\n\nstatic inline size_t  //\nwuffs_base__private_implementation__render_inf(wuffs_base__slice_u8 dst,\n                                               bool neg,\n                                               uint32_t options) {\n  if (neg) {\n    if (dst.len < 4) {\n      return 0;\n    }\n    wuffs_base__store_u32le__no_bounds_check(dst.ptr, 0x666E492D);  // '-Inf'le.\n    return 4;\n  }\n\n  if (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN) {\n    if (dst.len < 4) {\n      return 0;\n    }\n    wuffs_base__store_u32le__no_bounds_check(dst.ptr, 0x666E492B);  // '+Inf'le.\n    return 4;\n  }\n\n  if (dst.len < 3) {\n    return 0;\n  }\n  wuffs_base__store_u24le__no_bounds_check(dst.ptr, 0x666E49);  // 'Inf'le.\n  return 3;\n}\n\nstatic inline size_t  //\nwuffs_base__private_implementation__render_nan(wuffs_base__slice_u8 dst) {\n  if (dst.len < 3) {\n    return 0;\n  }\n  wuffs_base__store_u24le__no_bounds_check(dst.ptr, 0x4E614E);  // 'NaN'le.\n  return 3;\n}\n\nstatic size_t  //\nwuffs_base__private_implementation__high" +
 	"_prec_dec__render_exponent_absent(\n    wuffs_base__slice_u8 dst,\n    wuffs_base__private_implementation__high_prec_dec* h,\n    uint32_t precision,\n    uint32_t options) {\n  size_t n = (h->negative ||\n              (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN))\n                 ? 1\n                 : 0;\n  if (h->decimal_point <= 0) {\n    n += 1;\n  } else {\n    n += (size_t)(h->decimal_point);\n  }\n  if (precision > 0) {\n    n += precision + 1;  // +1 for the '.'.\n  }\n\n  // Don't modify dst if the formatted number won't fit.\n  if (n > dst.len) {\n    return 0;\n  }\n\n  // Align-left or align-right.\n  uint8_t* ptr = (options & WUFFS_BASE__RENDER_NUMBER_XXX__ALIGN_RIGHT)\n                     ? &dst.ptr[dst.len - n]\n                     : &dst.ptr[0];\n\n  // Leading \"±\".\n  if (h->negative) {\n    *ptr++ = '-';\n  } else if (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN) {\n    *ptr++ = '+';\n  }\n\n  // Integral digits.\n  if (h->decimal_point <= 0) {\n    *ptr++ = '0';\n  } else {\n    uint32_t m =\n" +
diff --git a/release/c/wuffs-unsupported-snapshot.c b/release/c/wuffs-unsupported-snapshot.c
index 53252dd..b096523 100644
--- a/release/c/wuffs-unsupported-snapshot.c
+++ b/release/c/wuffs-unsupported-snapshot.c
@@ -10858,15 +10858,19 @@
 static wuffs_base__result_f64  //
 wuffs_base__private_implementation__parse_number_f64_special(
     wuffs_base__slice_u8 s,
-    const char* fallback_status_repr) {
+    uint32_t options) {
   do {
+    if (options & WUFFS_BASE__PARSE_NUMBER_FXX__REJECT_INF_AND_NAN) {
+      goto fail;
+    }
+
     uint8_t* p = s.ptr;
     uint8_t* q = s.ptr + s.len;
 
     for (; (p < q) && (*p == '_'); p++) {
     }
     if (p >= q) {
-      goto fallback;
+      goto fail;
     }
 
     // Parse sign.
@@ -10884,7 +10888,7 @@
       }
     } while (0);
     if (p >= q) {
-      goto fallback;
+      goto fail;
     }
 
     bool nan = false;
@@ -10894,7 +10898,7 @@
         if (((q - p) < 3) ||                     //
             ((p[1] != 'N') && (p[1] != 'n')) ||  //
             ((p[2] != 'F') && (p[2] != 'f'))) {
-          goto fallback;
+          goto fail;
         }
         p += 3;
 
@@ -10906,21 +10910,21 @@
                    ((p[2] != 'I') && (p[2] != 'i')) ||  //
                    ((p[3] != 'T') && (p[3] != 't')) ||  //
                    ((p[4] != 'Y') && (p[4] != 'y'))) {
-          goto fallback;
+          goto fail;
         }
         p += 5;
 
         if ((p >= q) || (*p == '_')) {
           break;
         }
-        goto fallback;
+        goto fail;
 
       case 'N':
       case 'n':
         if (((q - p) < 3) ||                     //
             ((p[1] != 'A') && (p[1] != 'a')) ||  //
             ((p[2] != 'N') && (p[2] != 'n'))) {
-          goto fallback;
+          goto fail;
         }
         p += 3;
 
@@ -10928,17 +10932,17 @@
           nan = true;
           break;
         }
-        goto fallback;
+        goto fail;
 
       default:
-        goto fallback;
+        goto fail;
     }
 
     // Finish.
     for (; (p < q) && (*p == '_'); p++) {
     }
     if (p != q) {
-      goto fallback;
+      goto fail;
     }
     wuffs_base__result_f64 ret;
     ret.status.repr = NULL;
@@ -10948,10 +10952,10 @@
     return ret;
   } while (0);
 
-fallback:
+fail:
   do {
     wuffs_base__result_f64 ret;
-    ret.status.repr = fallback_status_repr;
+    ret.status.repr = wuffs_base__error__bad_argument;
     ret.value = 0;
     return ret;
   } while (0);
@@ -10959,7 +10963,8 @@
 
 WUFFS_BASE__MAYBE_STATIC wuffs_base__result_f64  //
 wuffs_base__private_implementation__high_prec_dec__to_f64(
-    wuffs_base__private_implementation__high_prec_dec* h) {
+    wuffs_base__private_implementation__high_prec_dec* h,
+    uint32_t options) {
   do {
     // powers converts decimal powers of 10 to binary powers of 2. For example,
     // (10000 >> 13) is 1. It stops before the elements exceed 60, also known
@@ -11107,6 +11112,13 @@
 
 infinity:
   do {
+    if (options & WUFFS_BASE__PARSE_NUMBER_FXX__REJECT_INF_AND_NAN) {
+      wuffs_base__result_f64 ret;
+      ret.status.repr = wuffs_base__error__bad_argument;
+      ret.value = 0;
+      return ret;
+    }
+
     uint64_t bits = h->negative ? 0xFFF0000000000000 : 0x7FF0000000000000;
 
     wuffs_base__result_f64 ret;
@@ -11340,9 +11352,10 @@
                                                                  options);
     if (status.repr) {
       return wuffs_base__private_implementation__parse_number_f64_special(
-          s, status.repr);
+          s, options);
     }
-    return wuffs_base__private_implementation__high_prec_dec__to_f64(&h);
+    return wuffs_base__private_implementation__high_prec_dec__to_f64(&h,
+                                                                     options);
   } while (0);
 }
 
diff --git a/test/c/std/json.c b/test/c/std/json.c
index 809a05e..e4663fd 100644
--- a/test/c/std/json.c
+++ b/test/c/std/json.c
@@ -384,7 +384,7 @@
 
       CHECK_STATUS("DECIMAL_SEPARATOR_IS_A_COMMA on", status);
       wuffs_base__result_f64 r =
-          wuffs_base__private_implementation__high_prec_dec__to_f64(&hpd);
+          wuffs_base__private_implementation__high_prec_dec__to_f64(&hpd, 0);
       uint64_t have =
           wuffs_base__ieee_754_bit_representation__from_f64(r.value);
       uint64_t want = 0x3FFC000000000000;
@@ -396,6 +396,33 @@
     }
   }
 
+  // Test WUFFS_BASE__PARSE_NUMBER_FXX__REJECT_INF_AND_NAN, based on calling
+  // wuffs_base__parse_number_f64. It does not call
+  // wuffs_base__private_implementation__high_prec_dec__parse directly.
+  {
+    int o;
+    for (o = 0; o < 4; o++) {
+      const char* str = (o & 2) ? "1e999" : "nan";
+      wuffs_base__result_f64 r = wuffs_base__parse_number_f64(
+          wuffs_base__make_slice_u8((void*)str, strlen(str)),
+          ((o & 1) ? WUFFS_BASE__PARSE_NUMBER_FXX__REJECT_INF_AND_NAN
+                   : WUFFS_BASE__PARSE_NUMBER_XXX__DEFAULT_OPTIONS));
+
+      if (o & 1) {
+        if (r.status.repr != wuffs_base__error__bad_argument) {
+          RETURN_FAIL("REJECT_INF_AND_NAN off: have \"%s\", want \"%s\"",
+                      r.status.repr, wuffs_base__error__bad_argument);
+        }
+        continue;
+      }
+
+      if (r.status.repr != NULL) {
+        RETURN_FAIL("REJECT_INF_AND_NAN on: have \"%s\", want NULL",
+                    r.status.repr);
+      }
+    }
+  }
+
   return NULL;
 }