blob: 3d7038db9d64877066c4e559260b28085864916f [file] [log] [blame]
/* Copyright 2013 Google Inc. All Rights Reserved.
Distributed under MIT license, or public domain if desired and
recognized in your jurisdiction.
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/
// Implementation of Brotli compressor.
#include "./encode.h"
#include <algorithm>
#include <limits>
#include "./backward_references.h"
#include "./bit_cost.h"
#include "./block_splitter.h"
#include "./brotli_bit_stream.h"
#include "./cluster.h"
#include "./context.h"
#include "./metablock.h"
#include "./transform.h"
#include "./entropy_encode.h"
#include "./fast_log.h"
#include "./hash.h"
#include "./histogram.h"
#include "./prefix.h"
#include "./utf8_util.h"
#include "./write_bits.h"
namespace brotli {
static const int kMinQualityForBlockSplit = 4;
static const int kMinQualityForContextModeling = 5;
static const int kMinQualityForOptimizeHistograms = 4;
// For quality 1 there is no block splitting, so we buffer at most this much
// literals and commands.
static const int kMaxNumDelayedSymbols = 0x2fff;
void RecomputeDistancePrefixes(Command* cmds,
size_t num_commands,
int num_direct_distance_codes,
int distance_postfix_bits) {
if (num_direct_distance_codes == 0 && distance_postfix_bits == 0) {
return;
}
for (size_t i = 0; i < num_commands; ++i) {
Command* cmd = &cmds[i];
if (cmd->copy_len_ > 0 && cmd->cmd_prefix_ >= 128) {
PrefixEncodeCopyDistance(cmd->DistanceCode(),
num_direct_distance_codes,
distance_postfix_bits,
&cmd->dist_prefix_,
&cmd->dist_extra_);
}
}
}
uint8_t* BrotliCompressor::GetBrotliStorage(size_t size) {
if (storage_size_ < size) {
delete[] storage_;
storage_ = new uint8_t[size];
storage_size_ = size;
}
return storage_;
}
BrotliCompressor::BrotliCompressor(BrotliParams params)
: params_(params),
hashers_(new Hashers()),
input_pos_(0),
num_commands_(0),
num_literals_(0),
last_insert_len_(0),
last_flush_pos_(0),
last_processed_pos_(0),
prev_byte_(0),
prev_byte2_(0),
storage_size_(0),
storage_(0) {
// Sanitize params.
params_.quality = std::max(1, params_.quality);
if (params_.lgwin < kMinWindowBits) {
params_.lgwin = kMinWindowBits;
} else if (params_.lgwin > kMaxWindowBits) {
params_.lgwin = kMaxWindowBits;
}
if (params_.lgblock == 0) {
params_.lgblock = params_.quality < kMinQualityForBlockSplit ? 14 : 16;
if (params_.quality >= 9 && params_.lgwin > params_.lgblock) {
params_.lgblock = std::min(21, params_.lgwin);
}
} else {
params_.lgblock = std::min(kMaxInputBlockBits,
std::max(kMinInputBlockBits, params_.lgblock));
}
// Set maximum distance, see section 9.1. of the spec.
max_backward_distance_ = (1 << params_.lgwin) - 16;
// Initialize input and literal cost ring buffers.
// We allocate at least lgwin + 1 bits for the ring buffer so that the newly
// added block fits there completely and we still get lgwin bits and at least
// read_block_size_bits + 1 bits because the copy tail length needs to be
// smaller than ringbuffer size.
int ringbuffer_bits = std::max(params_.lgwin + 1, params_.lgblock + 1);
ringbuffer_ = new RingBuffer(ringbuffer_bits, params_.lgblock);
commands_ = 0;
cmd_alloc_size_ = 0;
// Initialize last byte with stream header.
if (params_.lgwin == 16) {
last_byte_ = 0;
last_byte_bits_ = 1;
} else if (params_.lgwin == 17) {
last_byte_ = 1;
last_byte_bits_ = 7;
} else if (params_.lgwin > 17) {
last_byte_ = static_cast<uint8_t>(((params_.lgwin - 17) << 1) | 1);
last_byte_bits_ = 4;
} else {
last_byte_ = static_cast<uint8_t>(((params_.lgwin - 8) << 4) | 1);
last_byte_bits_ = 7;
}
// Initialize distance cache.
dist_cache_[0] = 4;
dist_cache_[1] = 11;
dist_cache_[2] = 15;
dist_cache_[3] = 16;
// Save the state of the distance cache in case we need to restore it for
// emitting an uncompressed block.
memcpy(saved_dist_cache_, dist_cache_, sizeof(dist_cache_));
// Initialize hashers.
hash_type_ = std::min(9, params_.quality);
hashers_->Init(hash_type_);
}
BrotliCompressor::~BrotliCompressor() {
delete[] storage_;
free(commands_);
delete ringbuffer_;
delete hashers_;
}
void BrotliCompressor::CopyInputToRingBuffer(const size_t input_size,
const uint8_t* input_buffer) {
ringbuffer_->Write(input_buffer, input_size);
input_pos_ += input_size;
// TL;DR: If needed, initialize 7 more bytes in the ring buffer to make the
// hashing not depend on uninitialized data. This makes compression
// deterministic and it prevents uninitialized memory warnings in Valgrind.
// Even without erasing, the output would be valid (but nondeterministic).
//
// Background information: The compressor stores short (at most 8 bytes)
// substrings of the input already read in a hash table, and detects
// repetitions by looking up such substrings in the hash table. If it
// can find a substring, it checks whether the substring is really there
// in the ring buffer (or it's just a hash collision). Should the hash
// table become corrupt, this check makes sure that the output is
// still valid, albeit the compression ratio would be bad.
//
// The compressor populates the hash table from the ring buffer as it's
// reading new bytes from the input. However, at the last few indexes of
// the ring buffer, there are not enough bytes to build full-length
// substrings from. Since the hash table always contains full-length
// substrings, we erase with dummy 0s here to make sure that those
// substrings will contain 0s at the end instead of uninitialized
// data.
//
// Please note that erasing is not necessary (because the
// memory region is already initialized since he ring buffer
// has a `tail' that holds a copy of the beginning,) so we
// skip erasing if we have already gone around at least once in
// the ring buffer.
size_t pos = ringbuffer_->position();
// Only clear during the first round of ringbuffer writes. On
// subsequent rounds data in the ringbuffer would be affected.
if (pos <= ringbuffer_->mask()) {
// This is the first time when the ring buffer is being written.
// We clear 7 bytes just after the bytes that have been copied from
// the input buffer.
//
// The ringbuffer has a "tail" that holds a copy of the beginning,
// but only once the ring buffer has been fully written once, i.e.,
// pos <= mask. For the first time, we need to write values
// in this tail (where index may be larger than mask), so that
// we have exactly defined behavior and don't read un-initialized
// memory. Due to performance reasons, hashing reads data using a
// LOAD64, which can go 7 bytes beyond the bytes written in the
// ringbuffer.
memset(ringbuffer_->start() + pos, 0, 7);
}
}
void BrotliCompressor::BrotliSetCustomDictionary(
const size_t size, const uint8_t* dict) {
CopyInputToRingBuffer(size, dict);
last_flush_pos_ = size;
last_processed_pos_ = size;
if (size > 0) {
prev_byte_ = dict[size - 1];
}
if (size > 1) {
prev_byte2_ = dict[size - 2];
}
hashers_->PrependCustomDictionary(hash_type_, size, dict);
}
bool BrotliCompressor::WriteBrotliData(const bool is_last,
const bool force_flush,
size_t* out_size,
uint8_t** output) {
const size_t bytes = input_pos_ - last_processed_pos_;
const uint8_t* data = ringbuffer_->start();
const size_t mask = ringbuffer_->mask();
if (bytes > input_block_size()) {
return false;
}
// Theoretical max number of commands is 1 per 2 bytes.
size_t newsize = num_commands_ + bytes / 2 + 1;
if (newsize > cmd_alloc_size_) {
// Reserve a bit more memory to allow merging with a next block
// without realloc: that would impact speed.
newsize += bytes / 4;
cmd_alloc_size_ = newsize;
commands_ =
static_cast<Command*>(realloc(commands_, sizeof(Command) * newsize));
}
CreateBackwardReferences(bytes, last_processed_pos_, data, mask,
max_backward_distance_,
params_.quality,
hashers_,
hash_type_,
dist_cache_,
&last_insert_len_,
&commands_[num_commands_],
&num_commands_,
&num_literals_);
size_t max_length = std::min<size_t>(mask + 1, 1u << kMaxInputBlockBits);
if (!is_last && !force_flush &&
(params_.quality >= kMinQualityForBlockSplit ||
(num_literals_ + num_commands_ < kMaxNumDelayedSymbols)) &&
input_pos_ + input_block_size() <= last_flush_pos_ + max_length) {
// Merge with next input block. Everything will happen later.
last_processed_pos_ = input_pos_;
*out_size = 0;
return true;
}
// Create the last insert-only command.
if (last_insert_len_ > 0) {
brotli::Command cmd(last_insert_len_);
commands_[num_commands_++] = cmd;
num_literals_ += last_insert_len_;
last_insert_len_ = 0;
}
return WriteMetaBlockInternal(is_last, out_size, output);
}
// Decide about the context map based on the ability of the prediction
// ability of the previous byte UTF8-prefix on the next byte. The
// prediction ability is calculated as shannon entropy. Here we need
// shannon entropy instead of 'BitsEntropy' since the prefix will be
// encoded with the remaining 6 bits of the following byte, and
// BitsEntropy will assume that symbol to be stored alone using Huffman
// coding.
void ChooseContextMap(int quality,
int* bigram_histo,
int* num_literal_contexts,
const int** literal_context_map) {
int monogram_histo[3] = { 0 };
int two_prefix_histo[6] = { 0 };
int total = 0;
for (int i = 0; i < 9; ++i) {
total += bigram_histo[i];
monogram_histo[i % 3] += bigram_histo[i];
int j = i;
if (j >= 6) {
j -= 6;
}
two_prefix_histo[j] += bigram_histo[i];
}
int dummy;
double entropy1 = ShannonEntropy(monogram_histo, 3, &dummy);
double entropy2 = (ShannonEntropy(two_prefix_histo, 3, &dummy) +
ShannonEntropy(two_prefix_histo + 3, 3, &dummy));
double entropy3 = 0;
for (int k = 0; k < 3; ++k) {
entropy3 += ShannonEntropy(bigram_histo + 3 * k, 3, &dummy);
}
assert(total != 0);
entropy1 *= (1.0 / total);
entropy2 *= (1.0 / total);
entropy3 *= (1.0 / total);
static const int kStaticContextMapContinuation[64] = {
1, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
static const int kStaticContextMapSimpleUTF8[64] = {
0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
if (quality < 7) {
// 3 context models is a bit slower, don't use it at lower qualities.
entropy3 = entropy1 * 10;
}
// If expected savings by symbol are less than 0.2 bits, skip the
// context modeling -- in exchange for faster decoding speed.
if (entropy1 - entropy2 < 0.2 &&
entropy1 - entropy3 < 0.2) {
*num_literal_contexts = 1;
} else if (entropy2 - entropy3 < 0.02) {
*num_literal_contexts = 2;
*literal_context_map = kStaticContextMapSimpleUTF8;
} else {
*num_literal_contexts = 3;
*literal_context_map = kStaticContextMapContinuation;
}
}
void DecideOverLiteralContextModeling(const uint8_t* input,
size_t start_pos,
size_t length,
size_t mask,
int quality,
int* literal_context_mode,
int* num_literal_contexts,
const int** literal_context_map) {
if (quality < kMinQualityForContextModeling || length < 64) {
return;
}
// Gather bigram data of the UTF8 byte prefixes. To make the analysis of
// UTF8 data faster we only examine 64 byte long strides at every 4kB
// intervals.
const size_t end_pos = start_pos + length;
int bigram_prefix_histo[9] = { 0 };
for (; start_pos + 64 <= end_pos; start_pos += 4096) {
static const int lut[4] = { 0, 0, 1, 2 };
const size_t stride_end_pos = start_pos + 64;
int prev = lut[input[start_pos & mask] >> 6] * 3;
for (size_t pos = start_pos + 1; pos < stride_end_pos; ++pos) {
const uint8_t literal = input[pos & mask];
++bigram_prefix_histo[prev + lut[literal >> 6]];
prev = lut[literal >> 6] * 3;
}
}
*literal_context_mode = CONTEXT_UTF8;
ChooseContextMap(quality, &bigram_prefix_histo[0], num_literal_contexts,
literal_context_map);
}
bool BrotliCompressor::WriteMetaBlockInternal(const bool is_last,
size_t* out_size,
uint8_t** output) {
const size_t bytes = input_pos_ - last_flush_pos_;
const uint8_t* data = ringbuffer_->start();
const size_t mask = ringbuffer_->mask();
const size_t max_out_size = 2 * bytes + 500;
uint8_t* storage = GetBrotliStorage(max_out_size);
storage[0] = last_byte_;
int storage_ix = last_byte_bits_;
bool uncompressed = false;
if (num_commands_ < (bytes >> 8) + 2) {
if (num_literals_ > 0.99 * static_cast<double>(bytes)) {
int literal_histo[256] = { 0 };
static const int kSampleRate = 13;
static const double kMinEntropy = 7.92;
const double bit_cost_threshold =
static_cast<double>(bytes) * kMinEntropy / kSampleRate;
for (size_t i = last_flush_pos_; i < input_pos_; i += kSampleRate) {
++literal_histo[data[i & mask]];
}
if (BitsEntropy(literal_histo, 256) > bit_cost_threshold) {
uncompressed = true;
}
}
}
if (bytes == 0) {
if (!StoreCompressedMetaBlockHeader(is_last, 0, &storage_ix, &storage[0])) {
return false;
}
storage_ix = (storage_ix + 7) & ~7;
} else if (uncompressed) {
// Restore the distance cache, as its last update by
// CreateBackwardReferences is now unused.
memcpy(dist_cache_, saved_dist_cache_, sizeof(dist_cache_));
if (!StoreUncompressedMetaBlock(is_last,
data, last_flush_pos_, mask, bytes,
&storage_ix,
&storage[0])) {
return false;
}
} else {
int num_direct_distance_codes = 0;
int distance_postfix_bits = 0;
if (params_.quality > 9 && params_.mode == BrotliParams::MODE_FONT) {
num_direct_distance_codes = 12;
distance_postfix_bits = 1;
RecomputeDistancePrefixes(commands_,
num_commands_,
num_direct_distance_codes,
distance_postfix_bits);
}
if (params_.quality < kMinQualityForBlockSplit) {
if (!StoreMetaBlockTrivial(data, last_flush_pos_, bytes, mask, is_last,
commands_, num_commands_,
&storage_ix,
&storage[0])) {
return false;
}
} else {
MetaBlockSplit mb;
int literal_context_mode = CONTEXT_UTF8;
if (params_.quality <= 9) {
int num_literal_contexts = 1;
const int* literal_context_map = NULL;
DecideOverLiteralContextModeling(data, last_flush_pos_, bytes, mask,
params_.quality,
&literal_context_mode,
&num_literal_contexts,
&literal_context_map);
if (literal_context_map == NULL) {
BuildMetaBlockGreedy(data, last_flush_pos_, mask,
commands_, num_commands_,
&mb);
} else {
BuildMetaBlockGreedyWithContexts(data, last_flush_pos_, mask,
prev_byte_, prev_byte2_,
literal_context_mode,
num_literal_contexts,
literal_context_map,
commands_, num_commands_,
&mb);
}
} else {
if (!IsMostlyUTF8(data, last_flush_pos_, mask, bytes, kMinUTF8Ratio)) {
literal_context_mode = CONTEXT_SIGNED;
}
BuildMetaBlock(data, last_flush_pos_, mask,
prev_byte_, prev_byte2_,
commands_, num_commands_,
literal_context_mode,
&mb);
}
if (params_.quality >= kMinQualityForOptimizeHistograms) {
OptimizeHistograms(num_direct_distance_codes,
distance_postfix_bits,
&mb);
}
if (!StoreMetaBlock(data, last_flush_pos_, bytes, mask,
prev_byte_, prev_byte2_,
is_last,
num_direct_distance_codes,
distance_postfix_bits,
literal_context_mode,
commands_, num_commands_,
mb,
&storage_ix,
&storage[0])) {
return false;
}
}
if (bytes + 4 < static_cast<size_t>(storage_ix >> 3)) {
// Restore the distance cache and last byte.
memcpy(dist_cache_, saved_dist_cache_, sizeof(dist_cache_));
storage[0] = last_byte_;
storage_ix = last_byte_bits_;
if (!StoreUncompressedMetaBlock(is_last, data, last_flush_pos_, mask,
bytes, &storage_ix, &storage[0])) {
return false;
}
}
}
last_byte_ = storage[storage_ix >> 3];
last_byte_bits_ = storage_ix & 7;
last_flush_pos_ = input_pos_;
last_processed_pos_ = input_pos_;
prev_byte_ = data[(last_flush_pos_ - 1) & mask];
prev_byte2_ = data[(last_flush_pos_ - 2) & mask];
num_commands_ = 0;
num_literals_ = 0;
// Save the state of the distance cache in case we need to restore it for
// emitting an uncompressed block.
memcpy(saved_dist_cache_, dist_cache_, sizeof(dist_cache_));
*output = &storage[0];
*out_size = storage_ix >> 3;
return true;
}
bool BrotliCompressor::WriteMetaBlock(const size_t input_size,
const uint8_t* input_buffer,
const bool is_last,
size_t* encoded_size,
uint8_t* encoded_buffer) {
CopyInputToRingBuffer(input_size, input_buffer);
size_t out_size = 0;
uint8_t* output;
if (!WriteBrotliData(is_last, /* force_flush = */ true, &out_size, &output) ||
out_size > *encoded_size) {
return false;
}
if (out_size > 0) {
memcpy(encoded_buffer, output, out_size);
}
*encoded_size = out_size;
return true;
}
bool BrotliCompressor::WriteMetadata(const size_t input_size,
const uint8_t* input_buffer,
const bool is_last,
size_t* encoded_size,
uint8_t* encoded_buffer) {
if (input_size > (1 << 24) || input_size + 6 > *encoded_size) {
return false;
}
uint64_t hdr_buffer_data[2];
uint8_t* hdr_buffer = reinterpret_cast<uint8_t*>(&hdr_buffer_data[0]);
int storage_ix = last_byte_bits_;
hdr_buffer[0] = last_byte_;
WriteBits(1, 0, &storage_ix, hdr_buffer);
WriteBits(2, 3, &storage_ix, hdr_buffer);
WriteBits(1, 0, &storage_ix, hdr_buffer);
if (input_size == 0) {
WriteBits(2, 0, &storage_ix, hdr_buffer);
*encoded_size = (storage_ix + 7) >> 3;
memcpy(encoded_buffer, hdr_buffer, *encoded_size);
} else {
int nbits = Log2Floor(static_cast<uint32_t>(input_size) - 1) + 1;
int nbytes = (nbits + 7) / 8;
WriteBits(2, nbytes, &storage_ix, hdr_buffer);
WriteBits(8 * nbytes, input_size - 1, &storage_ix, hdr_buffer);
size_t hdr_size = (storage_ix + 7) >> 3;
memcpy(encoded_buffer, hdr_buffer, hdr_size);
memcpy(&encoded_buffer[hdr_size], input_buffer, input_size);
*encoded_size = hdr_size + input_size;
}
if (is_last) {
encoded_buffer[(*encoded_size)++] = 3;
}
last_byte_ = 0;
last_byte_bits_ = 0;
return true;
}
bool BrotliCompressor::FinishStream(
size_t* encoded_size, uint8_t* encoded_buffer) {
return WriteMetaBlock(0, NULL, true, encoded_size, encoded_buffer);
}
int BrotliCompressBuffer(BrotliParams params,
size_t input_size,
const uint8_t* input_buffer,
size_t* encoded_size,
uint8_t* encoded_buffer) {
if (*encoded_size == 0) {
// Output buffer needs at least one byte.
return 0;
}
BrotliMemIn in(input_buffer, input_size);
BrotliMemOut out(encoded_buffer, *encoded_size);
if (!BrotliCompress(params, &in, &out)) {
return 0;
}
*encoded_size = out.position();
return 1;
}
size_t CopyOneBlockToRingBuffer(BrotliIn* r, BrotliCompressor* compressor) {
const size_t block_size = compressor->input_block_size();
size_t bytes_read = 0;
const uint8_t* data = reinterpret_cast<const uint8_t*>(
r->Read(block_size, &bytes_read));
if (data == NULL) {
return 0;
}
compressor->CopyInputToRingBuffer(bytes_read, data);
// Read more bytes until block_size is filled or an EOF (data == NULL) is
// received. This is useful to get deterministic compressed output for the
// same input no matter how r->Read splits the input to chunks.
for (size_t remaining = block_size - bytes_read; remaining > 0; ) {
size_t more_bytes_read = 0;
data = reinterpret_cast<const uint8_t*>(
r->Read(remaining, &more_bytes_read));
if (data == NULL) {
break;
}
compressor->CopyInputToRingBuffer(more_bytes_read, data);
bytes_read += more_bytes_read;
remaining -= more_bytes_read;
}
return bytes_read;
}
bool BrotliInIsFinished(BrotliIn* r) {
size_t read_bytes;
return r->Read(0, &read_bytes) == NULL;
}
int BrotliCompress(BrotliParams params, BrotliIn* in, BrotliOut* out) {
return BrotliCompressWithCustomDictionary(0, 0, params, in, out);
}
int BrotliCompressWithCustomDictionary(size_t dictsize, const uint8_t* dict,
BrotliParams params,
BrotliIn* in, BrotliOut* out) {
size_t in_bytes = 0;
size_t out_bytes = 0;
uint8_t* output;
bool final_block = false;
BrotliCompressor compressor(params);
if (dictsize != 0) compressor.BrotliSetCustomDictionary(dictsize, dict);
while (!final_block) {
in_bytes = CopyOneBlockToRingBuffer(in, &compressor);
final_block = in_bytes == 0 || BrotliInIsFinished(in);
out_bytes = 0;
if (!compressor.WriteBrotliData(final_block,
/* force_flush = */ false,
&out_bytes, &output)) {
return false;
}
if (out_bytes > 0 && !out->Write(output, out_bytes)) {
return false;
}
}
return true;
}
} // namespace brotli