| /* NOLINT(build/header_guard) */ |
| /* Copyright 2016 Google Inc. All Rights Reserved. |
| |
| Distributed under MIT license. |
| See file LICENSE for detail or copy at https://opensource.org/licenses/MIT |
| */ |
| |
| /* template parameters: FN, BUCKET_BITS, NUM_BANKS, BANK_BITS, |
| NUM_LAST_DISTANCES_TO_CHECK */ |
| |
| /* A (forgetful) hash table to the data seen by the compressor, to |
| help create backward references to previous data. |
| |
| Hashes are stored in chains which are bucketed to groups. Group of chains |
| share a storage "bank". When more than "bank size" chain nodes are added, |
| oldest nodes are replaced; this way several chains may share a tail. */ |
| |
| #define HashForgetfulChain HASHER() |
| |
| #define BANK_SIZE (1 << BANK_BITS) |
| |
| /* Number of hash buckets. */ |
| #define BUCKET_SIZE (1 << BUCKET_BITS) |
| |
| #define CAPPED_CHAINS 0 |
| |
| static BROTLI_INLINE size_t FN(HashTypeLength)(void) { return 4; } |
| static BROTLI_INLINE size_t FN(StoreLookahead)(void) { return 4; } |
| |
| /* HashBytes is the function that chooses the bucket to place the address in.*/ |
| static BROTLI_INLINE size_t FN(HashBytes)(const uint8_t* BROTLI_RESTRICT data) { |
| const uint32_t h = BROTLI_UNALIGNED_LOAD32LE(data) * kHashMul32; |
| /* The higher bits contain more mixture from the multiplication, |
| so we take our results from there. */ |
| return h >> (32 - BUCKET_BITS); |
| } |
| |
| typedef struct FN(Slot) { |
| uint16_t delta; |
| uint16_t next; |
| } FN(Slot); |
| |
| typedef struct FN(Bank) { |
| FN(Slot) slots[BANK_SIZE]; |
| } FN(Bank); |
| |
| typedef struct HashForgetfulChain { |
| uint16_t free_slot_idx[NUM_BANKS]; /* Up to 1KiB. Move to dynamic? */ |
| size_t max_hops; |
| |
| /* Shortcuts. */ |
| void* extra[2]; |
| HasherCommon* common; |
| |
| /* --- Dynamic size members --- */ |
| |
| /* uint32_t addr[BUCKET_SIZE]; */ |
| |
| /* uint16_t head[BUCKET_SIZE]; */ |
| |
| /* Truncated hash used for quick rejection of "distance cache" candidates. */ |
| /* uint8_t tiny_hash[65536];*/ |
| |
| /* FN(Bank) banks[NUM_BANKS]; */ |
| } HashForgetfulChain; |
| |
| static uint32_t* FN(Addr)(void* extra) { |
| return (uint32_t*)extra; |
| } |
| |
| static uint16_t* FN(Head)(void* extra) { |
| return (uint16_t*)(&FN(Addr)(extra)[BUCKET_SIZE]); |
| } |
| |
| static uint8_t* FN(TinyHash)(void* extra) { |
| return (uint8_t*)(&FN(Head)(extra)[BUCKET_SIZE]); |
| } |
| |
| static FN(Bank)* FN(Banks)(void* extra) { |
| return (FN(Bank)*)(extra); |
| } |
| |
| static void FN(Initialize)( |
| HasherCommon* common, HashForgetfulChain* BROTLI_RESTRICT self, |
| const BrotliEncoderParams* params) { |
| self->common = common; |
| self->extra[0] = common->extra[0]; |
| self->extra[1] = common->extra[1]; |
| |
| self->max_hops = (params->quality > 6 ? 7u : 8u) << (params->quality - 4); |
| } |
| |
| static void FN(Prepare)( |
| HashForgetfulChain* BROTLI_RESTRICT self, BROTLI_BOOL one_shot, |
| size_t input_size, const uint8_t* BROTLI_RESTRICT data) { |
| uint32_t* BROTLI_RESTRICT addr = FN(Addr)(self->extra[0]); |
| uint16_t* BROTLI_RESTRICT head = FN(Head)(self->extra[0]); |
| uint8_t* BROTLI_RESTRICT tiny_hash = FN(TinyHash)(self->extra[0]); |
| /* Partial preparation is 100 times slower (per socket). */ |
| size_t partial_prepare_threshold = BUCKET_SIZE >> 6; |
| if (one_shot && input_size <= partial_prepare_threshold) { |
| size_t i; |
| for (i = 0; i < input_size; ++i) { |
| size_t bucket = FN(HashBytes)(&data[i]); |
| /* See InitEmpty comment. */ |
| addr[bucket] = 0xCCCCCCCC; |
| head[bucket] = 0xCCCC; |
| } |
| } else { |
| /* Fill |addr| array with 0xCCCCCCCC value. Because of wrapping, position |
| processed by hasher never reaches 3GB + 64M; this makes all new chains |
| to be terminated after the first node. */ |
| memset(addr, 0xCC, sizeof(uint32_t) * BUCKET_SIZE); |
| memset(head, 0, sizeof(uint16_t) * BUCKET_SIZE); |
| } |
| memset(tiny_hash, 0, sizeof(uint8_t) * 65536); |
| memset(self->free_slot_idx, 0, sizeof(self->free_slot_idx)); |
| } |
| |
| static BROTLI_INLINE void FN(HashMemAllocInBytes)( |
| const BrotliEncoderParams* params, BROTLI_BOOL one_shot, |
| size_t input_size, size_t* alloc_size) { |
| BROTLI_UNUSED(params); |
| BROTLI_UNUSED(one_shot); |
| BROTLI_UNUSED(input_size); |
| alloc_size[0] = sizeof(uint32_t) * BUCKET_SIZE + |
| sizeof(uint16_t) * BUCKET_SIZE + sizeof(uint8_t) * 65536; |
| alloc_size[1] = sizeof(FN(Bank)) * NUM_BANKS; |
| } |
| |
| /* Look at 4 bytes at &data[ix & mask]. Compute a hash from these, and prepend |
| node to corresponding chain; also update tiny_hash for current position. */ |
| static BROTLI_INLINE void FN(Store)(HashForgetfulChain* BROTLI_RESTRICT self, |
| const uint8_t* BROTLI_RESTRICT data, const size_t mask, const size_t ix) { |
| uint32_t* BROTLI_RESTRICT addr = FN(Addr)(self->extra[0]); |
| uint16_t* BROTLI_RESTRICT head = FN(Head)(self->extra[0]); |
| uint8_t* BROTLI_RESTRICT tiny_hash = FN(TinyHash)(self->extra[0]); |
| FN(Bank)* BROTLI_RESTRICT banks = FN(Banks)(self->extra[1]); |
| const size_t key = FN(HashBytes)(&data[ix & mask]); |
| const size_t bank = key & (NUM_BANKS - 1); |
| const size_t idx = self->free_slot_idx[bank]++ & (BANK_SIZE - 1); |
| size_t delta = ix - addr[key]; |
| tiny_hash[(uint16_t)ix] = (uint8_t)key; |
| if (delta > 0xFFFF) delta = CAPPED_CHAINS ? 0 : 0xFFFF; |
| banks[bank].slots[idx].delta = (uint16_t)delta; |
| banks[bank].slots[idx].next = head[key]; |
| addr[key] = (uint32_t)ix; |
| head[key] = (uint16_t)idx; |
| } |
| |
| static BROTLI_INLINE void FN(StoreRange)( |
| HashForgetfulChain* BROTLI_RESTRICT self, |
| const uint8_t* BROTLI_RESTRICT data, const size_t mask, |
| const size_t ix_start, const size_t ix_end) { |
| size_t i; |
| for (i = ix_start; i < ix_end; ++i) { |
| FN(Store)(self, data, mask, i); |
| } |
| } |
| |
| static BROTLI_INLINE void FN(StitchToPreviousBlock)( |
| HashForgetfulChain* BROTLI_RESTRICT self, |
| size_t num_bytes, size_t position, const uint8_t* ringbuffer, |
| size_t ring_buffer_mask) { |
| if (num_bytes >= FN(HashTypeLength)() - 1 && position >= 3) { |
| /* Prepare the hashes for three last bytes of the last write. |
| These could not be calculated before, since they require knowledge |
| of both the previous and the current block. */ |
| FN(Store)(self, ringbuffer, ring_buffer_mask, position - 3); |
| FN(Store)(self, ringbuffer, ring_buffer_mask, position - 2); |
| FN(Store)(self, ringbuffer, ring_buffer_mask, position - 1); |
| } |
| } |
| |
| static BROTLI_INLINE void FN(PrepareDistanceCache)( |
| HashForgetfulChain* BROTLI_RESTRICT self, |
| int* BROTLI_RESTRICT distance_cache) { |
| BROTLI_UNUSED(self); |
| PrepareDistanceCache(distance_cache, NUM_LAST_DISTANCES_TO_CHECK); |
| } |
| |
| /* Find a longest backward match of &data[cur_ix] up to the length of |
| max_length and stores the position cur_ix in the hash table. |
| |
| REQUIRES: FN(PrepareDistanceCache) must be invoked for current distance cache |
| values; if this method is invoked repeatedly with the same distance |
| cache values, it is enough to invoke FN(PrepareDistanceCache) once. |
| |
| Does not look for matches longer than max_length. |
| Does not look for matches further away than max_backward. |
| Writes the best match into |out|. |
| |out|->score is updated only if a better match is found. */ |
| static BROTLI_INLINE void FN(FindLongestMatch)( |
| HashForgetfulChain* BROTLI_RESTRICT self, |
| const BrotliEncoderDictionary* dictionary, |
| const uint8_t* BROTLI_RESTRICT data, const size_t ring_buffer_mask, |
| const int* BROTLI_RESTRICT distance_cache, |
| const size_t cur_ix, const size_t max_length, const size_t max_backward, |
| const size_t dictionary_distance, const size_t max_distance, |
| HasherSearchResult* BROTLI_RESTRICT out) { |
| uint32_t* BROTLI_RESTRICT addr = FN(Addr)(self->extra[0]); |
| uint16_t* BROTLI_RESTRICT head = FN(Head)(self->extra[0]); |
| uint8_t* BROTLI_RESTRICT tiny_hashes = FN(TinyHash)(self->extra[0]); |
| FN(Bank)* BROTLI_RESTRICT banks = FN(Banks)(self->extra[1]); |
| const size_t cur_ix_masked = cur_ix & ring_buffer_mask; |
| /* Don't accept a short copy from far away. */ |
| score_t min_score = out->score; |
| score_t best_score = out->score; |
| size_t best_len = out->len; |
| size_t i; |
| BROTLI_DCHECK(cur_ix_masked + max_length <= ring_buffer_mask); |
| const size_t key = FN(HashBytes)(&data[cur_ix_masked]); |
| const uint8_t tiny_hash = (uint8_t)(key); |
| out->len = 0; |
| out->len_code_delta = 0; |
| /* Try last distance first. */ |
| for (i = 0; i < NUM_LAST_DISTANCES_TO_CHECK; ++i) { |
| const size_t backward = (size_t)distance_cache[i]; |
| size_t prev_ix = (cur_ix - backward); |
| /* For distance code 0 we want to consider 2-byte matches. */ |
| if (i > 0 && tiny_hashes[(uint16_t)prev_ix] != tiny_hash) continue; |
| if (prev_ix >= cur_ix || backward > max_backward) { |
| continue; |
| } |
| prev_ix &= ring_buffer_mask; |
| { |
| const size_t len = FindMatchLengthWithLimit(&data[prev_ix], |
| &data[cur_ix_masked], |
| max_length); |
| if (len >= 2) { |
| score_t score = BackwardReferenceScoreUsingLastDistance(len); |
| if (best_score < score) { |
| if (i != 0) score -= BackwardReferencePenaltyUsingLastDistance(i); |
| if (best_score < score) { |
| best_score = score; |
| best_len = len; |
| out->len = best_len; |
| out->distance = backward; |
| out->score = best_score; |
| } |
| } |
| } |
| } |
| } |
| /* we require matches of len >4, so increase best_len to 3, so we can compare |
| * 4 bytes all the time. */ |
| if (best_len < 3) { |
| best_len = 3; |
| } |
| { |
| const size_t bank = key & (NUM_BANKS - 1); |
| size_t backward = 0; |
| size_t hops = self->max_hops; |
| size_t delta = cur_ix - addr[key]; |
| size_t slot = head[key]; |
| while (hops--) { |
| size_t prev_ix; |
| size_t last = slot; |
| backward += delta; |
| if (backward > max_backward || (CAPPED_CHAINS && !delta)) break; |
| prev_ix = (cur_ix - backward) & ring_buffer_mask; |
| slot = banks[bank].slots[last].next; |
| delta = banks[bank].slots[last].delta; |
| if (prev_ix + best_len > ring_buffer_mask || |
| /* compare 4 bytes ending at best_len + 1 */ |
| BrotliUnalignedRead32(&data[cur_ix_masked + best_len - 3]) != |
| BrotliUnalignedRead32(&data[prev_ix + best_len - 3])) { |
| continue; |
| } |
| { |
| const size_t len = FindMatchLengthWithLimit(&data[prev_ix], |
| &data[cur_ix_masked], |
| max_length); |
| if (len >= 4) { |
| /* Comparing for >= 3 does not change the semantics, but just saves |
| for a few unnecessary binary logarithms in backward reference |
| score, since we are not interested in such short matches. */ |
| score_t score = BackwardReferenceScore(len, backward); |
| if (best_score < score) { |
| best_score = score; |
| best_len = len; |
| out->len = best_len; |
| out->distance = backward; |
| out->score = best_score; |
| } |
| } |
| } |
| } |
| FN(Store)(self, data, ring_buffer_mask, cur_ix); |
| } |
| if (out->score == min_score) { |
| SearchInStaticDictionary(dictionary, |
| self->common, &data[cur_ix_masked], max_length, dictionary_distance, |
| max_distance, out, BROTLI_FALSE); |
| } |
| } |
| |
| #undef BANK_SIZE |
| #undef BUCKET_SIZE |
| #undef CAPPED_CHAINS |
| |
| #undef HashForgetfulChain |