|  | // Copyright 2018 The Abseil Authors. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //      https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include "absl/strings/charconv.h" | 
|  |  | 
|  | #include <cstdlib> | 
|  | #include <string> | 
|  |  | 
|  | #include "gmock/gmock.h" | 
|  | #include "gtest/gtest.h" | 
|  | #include "absl/strings/internal/pow10_helper.h" | 
|  | #include "absl/strings/str_cat.h" | 
|  | #include "absl/strings/str_format.h" | 
|  |  | 
|  | #ifdef _MSC_FULL_VER | 
|  | #define ABSL_COMPILER_DOES_EXACT_ROUNDING 0 | 
|  | #define ABSL_STRTOD_HANDLES_NAN_CORRECTLY 0 | 
|  | #else | 
|  | #define ABSL_COMPILER_DOES_EXACT_ROUNDING 1 | 
|  | #define ABSL_STRTOD_HANDLES_NAN_CORRECTLY 1 | 
|  | #endif | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | using absl::strings_internal::Pow10; | 
|  |  | 
|  | #if ABSL_COMPILER_DOES_EXACT_ROUNDING | 
|  |  | 
|  | // Tests that the given string is accepted by absl::from_chars, and that it | 
|  | // converts exactly equal to the given number. | 
|  | void TestDoubleParse(absl::string_view str, double expected_number) { | 
|  | SCOPED_TRACE(str); | 
|  | double actual_number = 0.0; | 
|  | absl::from_chars_result result = | 
|  | absl::from_chars(str.data(), str.data() + str.length(), actual_number); | 
|  | EXPECT_EQ(result.ec, std::errc()); | 
|  | EXPECT_EQ(result.ptr, str.data() + str.length()); | 
|  | EXPECT_EQ(actual_number, expected_number); | 
|  | } | 
|  |  | 
|  | void TestFloatParse(absl::string_view str, float expected_number) { | 
|  | SCOPED_TRACE(str); | 
|  | float actual_number = 0.0; | 
|  | absl::from_chars_result result = | 
|  | absl::from_chars(str.data(), str.data() + str.length(), actual_number); | 
|  | EXPECT_EQ(result.ec, std::errc()); | 
|  | EXPECT_EQ(result.ptr, str.data() + str.length()); | 
|  | EXPECT_EQ(actual_number, expected_number); | 
|  | } | 
|  |  | 
|  | // Tests that the given double or single precision floating point literal is | 
|  | // parsed correctly by absl::from_chars. | 
|  | // | 
|  | // These convenience macros assume that the C++ compiler being used also does | 
|  | // fully correct decimal-to-binary conversions. | 
|  | #define FROM_CHARS_TEST_DOUBLE(number)     \ | 
|  | {                                        \ | 
|  | TestDoubleParse(#number, number);      \ | 
|  | TestDoubleParse("-" #number, -number); \ | 
|  | } | 
|  |  | 
|  | #define FROM_CHARS_TEST_FLOAT(number)        \ | 
|  | {                                          \ | 
|  | TestFloatParse(#number, number##f);      \ | 
|  | TestFloatParse("-" #number, -number##f); \ | 
|  | } | 
|  |  | 
|  | TEST(FromChars, NearRoundingCases) { | 
|  | // Cases from "A Program for Testing IEEE Decimal-Binary Conversion" | 
|  | // by Vern Paxson. | 
|  |  | 
|  | // Forms that should round towards zero.  (These are the hardest cases for | 
|  | // each decimal mantissa size.) | 
|  | FROM_CHARS_TEST_DOUBLE(5.e125); | 
|  | FROM_CHARS_TEST_DOUBLE(69.e267); | 
|  | FROM_CHARS_TEST_DOUBLE(999.e-026); | 
|  | FROM_CHARS_TEST_DOUBLE(7861.e-034); | 
|  | FROM_CHARS_TEST_DOUBLE(75569.e-254); | 
|  | FROM_CHARS_TEST_DOUBLE(928609.e-261); | 
|  | FROM_CHARS_TEST_DOUBLE(9210917.e080); | 
|  | FROM_CHARS_TEST_DOUBLE(84863171.e114); | 
|  | FROM_CHARS_TEST_DOUBLE(653777767.e273); | 
|  | FROM_CHARS_TEST_DOUBLE(5232604057.e-298); | 
|  | FROM_CHARS_TEST_DOUBLE(27235667517.e-109); | 
|  | FROM_CHARS_TEST_DOUBLE(653532977297.e-123); | 
|  | FROM_CHARS_TEST_DOUBLE(3142213164987.e-294); | 
|  | FROM_CHARS_TEST_DOUBLE(46202199371337.e-072); | 
|  | FROM_CHARS_TEST_DOUBLE(231010996856685.e-073); | 
|  | FROM_CHARS_TEST_DOUBLE(9324754620109615.e212); | 
|  | FROM_CHARS_TEST_DOUBLE(78459735791271921.e049); | 
|  | FROM_CHARS_TEST_DOUBLE(272104041512242479.e200); | 
|  | FROM_CHARS_TEST_DOUBLE(6802601037806061975.e198); | 
|  | FROM_CHARS_TEST_DOUBLE(20505426358836677347.e-221); | 
|  | FROM_CHARS_TEST_DOUBLE(836168422905420598437.e-234); | 
|  | FROM_CHARS_TEST_DOUBLE(4891559871276714924261.e222); | 
|  | FROM_CHARS_TEST_FLOAT(5.e-20); | 
|  | FROM_CHARS_TEST_FLOAT(67.e14); | 
|  | FROM_CHARS_TEST_FLOAT(985.e15); | 
|  | FROM_CHARS_TEST_FLOAT(7693.e-42); | 
|  | FROM_CHARS_TEST_FLOAT(55895.e-16); | 
|  | FROM_CHARS_TEST_FLOAT(996622.e-44); | 
|  | FROM_CHARS_TEST_FLOAT(7038531.e-32); | 
|  | FROM_CHARS_TEST_FLOAT(60419369.e-46); | 
|  | FROM_CHARS_TEST_FLOAT(702990899.e-20); | 
|  | FROM_CHARS_TEST_FLOAT(6930161142.e-48); | 
|  | FROM_CHARS_TEST_FLOAT(25933168707.e-13); | 
|  | FROM_CHARS_TEST_FLOAT(596428896559.e20); | 
|  |  | 
|  | // Similarly, forms that should round away from zero. | 
|  | FROM_CHARS_TEST_DOUBLE(9.e-265); | 
|  | FROM_CHARS_TEST_DOUBLE(85.e-037); | 
|  | FROM_CHARS_TEST_DOUBLE(623.e100); | 
|  | FROM_CHARS_TEST_DOUBLE(3571.e263); | 
|  | FROM_CHARS_TEST_DOUBLE(81661.e153); | 
|  | FROM_CHARS_TEST_DOUBLE(920657.e-023); | 
|  | FROM_CHARS_TEST_DOUBLE(4603285.e-024); | 
|  | FROM_CHARS_TEST_DOUBLE(87575437.e-309); | 
|  | FROM_CHARS_TEST_DOUBLE(245540327.e122); | 
|  | FROM_CHARS_TEST_DOUBLE(6138508175.e120); | 
|  | FROM_CHARS_TEST_DOUBLE(83356057653.e193); | 
|  | FROM_CHARS_TEST_DOUBLE(619534293513.e124); | 
|  | FROM_CHARS_TEST_DOUBLE(2335141086879.e218); | 
|  | FROM_CHARS_TEST_DOUBLE(36167929443327.e-159); | 
|  | FROM_CHARS_TEST_DOUBLE(609610927149051.e-255); | 
|  | FROM_CHARS_TEST_DOUBLE(3743626360493413.e-165); | 
|  | FROM_CHARS_TEST_DOUBLE(94080055902682397.e-242); | 
|  | FROM_CHARS_TEST_DOUBLE(899810892172646163.e283); | 
|  | FROM_CHARS_TEST_DOUBLE(7120190517612959703.e120); | 
|  | FROM_CHARS_TEST_DOUBLE(25188282901709339043.e-252); | 
|  | FROM_CHARS_TEST_DOUBLE(308984926168550152811.e-052); | 
|  | FROM_CHARS_TEST_DOUBLE(6372891218502368041059.e064); | 
|  | FROM_CHARS_TEST_FLOAT(3.e-23); | 
|  | FROM_CHARS_TEST_FLOAT(57.e18); | 
|  | FROM_CHARS_TEST_FLOAT(789.e-35); | 
|  | FROM_CHARS_TEST_FLOAT(2539.e-18); | 
|  | FROM_CHARS_TEST_FLOAT(76173.e28); | 
|  | FROM_CHARS_TEST_FLOAT(887745.e-11); | 
|  | FROM_CHARS_TEST_FLOAT(5382571.e-37); | 
|  | FROM_CHARS_TEST_FLOAT(82381273.e-35); | 
|  | FROM_CHARS_TEST_FLOAT(750486563.e-38); | 
|  | FROM_CHARS_TEST_FLOAT(3752432815.e-39); | 
|  | FROM_CHARS_TEST_FLOAT(75224575729.e-45); | 
|  | FROM_CHARS_TEST_FLOAT(459926601011.e15); | 
|  | } | 
|  |  | 
|  | #undef FROM_CHARS_TEST_DOUBLE | 
|  | #undef FROM_CHARS_TEST_FLOAT | 
|  | #endif | 
|  |  | 
|  | float ToFloat(absl::string_view s) { | 
|  | float f; | 
|  | absl::from_chars(s.data(), s.data() + s.size(), f); | 
|  | return f; | 
|  | } | 
|  |  | 
|  | double ToDouble(absl::string_view s) { | 
|  | double d; | 
|  | absl::from_chars(s.data(), s.data() + s.size(), d); | 
|  | return d; | 
|  | } | 
|  |  | 
|  | // A duplication of the test cases in "NearRoundingCases" above, but with | 
|  | // expected values expressed with integers, using ldexp/ldexpf.  These test | 
|  | // cases will work even on compilers that do not accurately round floating point | 
|  | // literals. | 
|  | TEST(FromChars, NearRoundingCasesExplicit) { | 
|  | EXPECT_EQ(ToDouble("5.e125"), ldexp(6653062250012735, 365)); | 
|  | EXPECT_EQ(ToDouble("69.e267"), ldexp(4705683757438170, 841)); | 
|  | EXPECT_EQ(ToDouble("999.e-026"), ldexp(6798841691080350, -129)); | 
|  | EXPECT_EQ(ToDouble("7861.e-034"), ldexp(8975675289889240, -153)); | 
|  | EXPECT_EQ(ToDouble("75569.e-254"), ldexp(6091718967192243, -880)); | 
|  | EXPECT_EQ(ToDouble("928609.e-261"), ldexp(7849264900213743, -900)); | 
|  | EXPECT_EQ(ToDouble("9210917.e080"), ldexp(8341110837370930, 236)); | 
|  | EXPECT_EQ(ToDouble("84863171.e114"), ldexp(4625202867375927, 353)); | 
|  | EXPECT_EQ(ToDouble("653777767.e273"), ldexp(5068902999763073, 884)); | 
|  | EXPECT_EQ(ToDouble("5232604057.e-298"), ldexp(5741343011915040, -1010)); | 
|  | EXPECT_EQ(ToDouble("27235667517.e-109"), ldexp(6707124626673586, -380)); | 
|  | EXPECT_EQ(ToDouble("653532977297.e-123"), ldexp(7078246407265384, -422)); | 
|  | EXPECT_EQ(ToDouble("3142213164987.e-294"), ldexp(8219991337640559, -988)); | 
|  | EXPECT_EQ(ToDouble("46202199371337.e-072"), ldexp(5224462102115359, -246)); | 
|  | EXPECT_EQ(ToDouble("231010996856685.e-073"), ldexp(5224462102115359, -247)); | 
|  | EXPECT_EQ(ToDouble("9324754620109615.e212"), ldexp(5539753864394442, 705)); | 
|  | EXPECT_EQ(ToDouble("78459735791271921.e049"), ldexp(8388176519442766, 166)); | 
|  | EXPECT_EQ(ToDouble("272104041512242479.e200"), ldexp(5554409530847367, 670)); | 
|  | EXPECT_EQ(ToDouble("6802601037806061975.e198"), ldexp(5554409530847367, 668)); | 
|  | EXPECT_EQ(ToDouble("20505426358836677347.e-221"), | 
|  | ldexp(4524032052079546, -722)); | 
|  | EXPECT_EQ(ToDouble("836168422905420598437.e-234"), | 
|  | ldexp(5070963299887562, -760)); | 
|  | EXPECT_EQ(ToDouble("4891559871276714924261.e222"), | 
|  | ldexp(6452687840519111, 757)); | 
|  | EXPECT_EQ(ToFloat("5.e-20"), ldexpf(15474250, -88)); | 
|  | EXPECT_EQ(ToFloat("67.e14"), ldexpf(12479722, 29)); | 
|  | EXPECT_EQ(ToFloat("985.e15"), ldexpf(14333636, 36)); | 
|  | EXPECT_EQ(ToFloat("7693.e-42"), ldexpf(10979816, -150)); | 
|  | EXPECT_EQ(ToFloat("55895.e-16"), ldexpf(12888509, -61)); | 
|  | EXPECT_EQ(ToFloat("996622.e-44"), ldexpf(14224264, -150)); | 
|  | EXPECT_EQ(ToFloat("7038531.e-32"), ldexpf(11420669, -107)); | 
|  | EXPECT_EQ(ToFloat("60419369.e-46"), ldexpf(8623340, -150)); | 
|  | EXPECT_EQ(ToFloat("702990899.e-20"), ldexpf(16209866, -61)); | 
|  | EXPECT_EQ(ToFloat("6930161142.e-48"), ldexpf(9891056, -150)); | 
|  | EXPECT_EQ(ToFloat("25933168707.e-13"), ldexpf(11138211, -32)); | 
|  | EXPECT_EQ(ToFloat("596428896559.e20"), ldexpf(12333860, 82)); | 
|  |  | 
|  |  | 
|  | EXPECT_EQ(ToDouble("9.e-265"), ldexp(8168427841980010, -930)); | 
|  | EXPECT_EQ(ToDouble("85.e-037"), ldexp(6360455125664090, -169)); | 
|  | EXPECT_EQ(ToDouble("623.e100"), ldexp(6263531988747231, 289)); | 
|  | EXPECT_EQ(ToDouble("3571.e263"), ldexp(6234526311072170, 833)); | 
|  | EXPECT_EQ(ToDouble("81661.e153"), ldexp(6696636728760206, 472)); | 
|  | EXPECT_EQ(ToDouble("920657.e-023"), ldexp(5975405561110124, -109)); | 
|  | EXPECT_EQ(ToDouble("4603285.e-024"), ldexp(5975405561110124, -110)); | 
|  | EXPECT_EQ(ToDouble("87575437.e-309"), ldexp(8452160731874668, -1053)); | 
|  | EXPECT_EQ(ToDouble("245540327.e122"), ldexp(4985336549131723, 381)); | 
|  | EXPECT_EQ(ToDouble("6138508175.e120"), ldexp(4985336549131723, 379)); | 
|  | EXPECT_EQ(ToDouble("83356057653.e193"), ldexp(5986732817132056, 625)); | 
|  | EXPECT_EQ(ToDouble("619534293513.e124"), ldexp(4798406992060657, 399)); | 
|  | EXPECT_EQ(ToDouble("2335141086879.e218"), ldexp(5419088166961646, 713)); | 
|  | EXPECT_EQ(ToDouble("36167929443327.e-159"), ldexp(8135819834632444, -536)); | 
|  | EXPECT_EQ(ToDouble("609610927149051.e-255"), ldexp(4576664294594737, -850)); | 
|  | EXPECT_EQ(ToDouble("3743626360493413.e-165"), ldexp(6898586531774201, -549)); | 
|  | EXPECT_EQ(ToDouble("94080055902682397.e-242"), ldexp(6273271706052298, -800)); | 
|  | EXPECT_EQ(ToDouble("899810892172646163.e283"), ldexp(7563892574477827, 947)); | 
|  | EXPECT_EQ(ToDouble("7120190517612959703.e120"), ldexp(5385467232557565, 409)); | 
|  | EXPECT_EQ(ToDouble("25188282901709339043.e-252"), | 
|  | ldexp(5635662608542340, -825)); | 
|  | EXPECT_EQ(ToDouble("308984926168550152811.e-052"), | 
|  | ldexp(5644774693823803, -157)); | 
|  | EXPECT_EQ(ToDouble("6372891218502368041059.e064"), | 
|  | ldexp(4616868614322430, 233)); | 
|  |  | 
|  | EXPECT_EQ(ToFloat("3.e-23"), ldexpf(9507380, -98)); | 
|  | EXPECT_EQ(ToFloat("57.e18"), ldexpf(12960300, 42)); | 
|  | EXPECT_EQ(ToFloat("789.e-35"), ldexpf(10739312, -130)); | 
|  | EXPECT_EQ(ToFloat("2539.e-18"), ldexpf(11990089, -72)); | 
|  | EXPECT_EQ(ToFloat("76173.e28"), ldexpf(9845130, 86)); | 
|  | EXPECT_EQ(ToFloat("887745.e-11"), ldexpf(9760860, -40)); | 
|  | EXPECT_EQ(ToFloat("5382571.e-37"), ldexpf(11447463, -124)); | 
|  | EXPECT_EQ(ToFloat("82381273.e-35"), ldexpf(8554961, -113)); | 
|  | EXPECT_EQ(ToFloat("750486563.e-38"), ldexpf(9975678, -120)); | 
|  | EXPECT_EQ(ToFloat("3752432815.e-39"), ldexpf(9975678, -121)); | 
|  | EXPECT_EQ(ToFloat("75224575729.e-45"), ldexpf(13105970, -137)); | 
|  | EXPECT_EQ(ToFloat("459926601011.e15"), ldexpf(12466336, 65)); | 
|  | } | 
|  |  | 
|  | // Common test logic for converting a string which lies exactly halfway between | 
|  | // two target floats. | 
|  | // | 
|  | // mantissa and exponent represent the precise value between two floating point | 
|  | // numbers, `expected_low` and `expected_high`.  The floating point | 
|  | // representation to parse in `StrCat(mantissa, "e", exponent)`. | 
|  | // | 
|  | // This function checks that an input just slightly less than the exact value | 
|  | // is rounded down to `expected_low`, and an input just slightly greater than | 
|  | // the exact value is rounded up to `expected_high`. | 
|  | // | 
|  | // The exact value should round to `expected_half`, which must be either | 
|  | // `expected_low` or `expected_high`. | 
|  | template <typename FloatType> | 
|  | void TestHalfwayValue(const std::string& mantissa, int exponent, | 
|  | FloatType expected_low, FloatType expected_high, | 
|  | FloatType expected_half) { | 
|  | std::string low_rep = mantissa; | 
|  | low_rep[low_rep.size() - 1] -= 1; | 
|  | absl::StrAppend(&low_rep, std::string(1000, '9'), "e", exponent); | 
|  |  | 
|  | FloatType actual_low = 0; | 
|  | absl::from_chars(low_rep.data(), low_rep.data() + low_rep.size(), actual_low); | 
|  | EXPECT_EQ(expected_low, actual_low); | 
|  |  | 
|  | std::string high_rep = | 
|  | absl::StrCat(mantissa, std::string(1000, '0'), "1e", exponent); | 
|  | FloatType actual_high = 0; | 
|  | absl::from_chars(high_rep.data(), high_rep.data() + high_rep.size(), | 
|  | actual_high); | 
|  | EXPECT_EQ(expected_high, actual_high); | 
|  |  | 
|  | std::string halfway_rep = absl::StrCat(mantissa, "e", exponent); | 
|  | FloatType actual_half = 0; | 
|  | absl::from_chars(halfway_rep.data(), halfway_rep.data() + halfway_rep.size(), | 
|  | actual_half); | 
|  | EXPECT_EQ(expected_half, actual_half); | 
|  | } | 
|  |  | 
|  | TEST(FromChars, DoubleRounding) { | 
|  | const double zero = 0.0; | 
|  | const double first_subnormal = nextafter(zero, 1.0); | 
|  | const double second_subnormal = nextafter(first_subnormal, 1.0); | 
|  |  | 
|  | const double first_normal = DBL_MIN; | 
|  | const double last_subnormal = nextafter(first_normal, 0.0); | 
|  | const double second_normal = nextafter(first_normal, 1.0); | 
|  |  | 
|  | const double last_normal = DBL_MAX; | 
|  | const double penultimate_normal = nextafter(last_normal, 0.0); | 
|  |  | 
|  | // Various test cases for numbers between two representable floats.  Each | 
|  | // call to TestHalfwayValue tests a number just below and just above the | 
|  | // halfway point, as well as the number exactly between them. | 
|  |  | 
|  | // Test between zero and first_subnormal.  Round-to-even tie rounds down. | 
|  | TestHalfwayValue( | 
|  | "2." | 
|  | "470328229206232720882843964341106861825299013071623822127928412503377536" | 
|  | "351043759326499181808179961898982823477228588654633283551779698981993873" | 
|  | "980053909390631503565951557022639229085839244910518443593180284993653615" | 
|  | "250031937045767824921936562366986365848075700158576926990370631192827955" | 
|  | "855133292783433840935197801553124659726357957462276646527282722005637400" | 
|  | "648549997709659947045402082816622623785739345073633900796776193057750674" | 
|  | "017632467360096895134053553745851666113422376667860416215968046191446729" | 
|  | "184030053005753084904876539171138659164623952491262365388187963623937328" | 
|  | "042389101867234849766823508986338858792562830275599565752445550725518931" | 
|  | "369083625477918694866799496832404970582102851318545139621383772282614543" | 
|  | "7693412532098591327667236328125", | 
|  | -324, zero, first_subnormal, zero); | 
|  |  | 
|  | // first_subnormal and second_subnormal.  Round-to-even tie rounds up. | 
|  | TestHalfwayValue( | 
|  | "7." | 
|  | "410984687618698162648531893023320585475897039214871466383785237510132609" | 
|  | "053131277979497545424539885696948470431685765963899850655339096945981621" | 
|  | "940161728171894510697854671067917687257517734731555330779540854980960845" | 
|  | "750095811137303474765809687100959097544227100475730780971111893578483867" | 
|  | "565399878350301522805593404659373979179073872386829939581848166016912201" | 
|  | "945649993128979841136206248449867871357218035220901702390328579173252022" | 
|  | "052897402080290685402160661237554998340267130003581248647904138574340187" | 
|  | "552090159017259254714629617513415977493871857473787096164563890871811984" | 
|  | "127167305601704549300470526959016576377688490826798697257336652176556794" | 
|  | "107250876433756084600398490497214911746308553955635418864151316847843631" | 
|  | "3080237596295773983001708984375", | 
|  | -324, first_subnormal, second_subnormal, second_subnormal); | 
|  |  | 
|  | // last_subnormal and first_normal.  Round-to-even tie rounds up. | 
|  | TestHalfwayValue( | 
|  | "2." | 
|  | "225073858507201136057409796709131975934819546351645648023426109724822222" | 
|  | "021076945516529523908135087914149158913039621106870086438694594645527657" | 
|  | "207407820621743379988141063267329253552286881372149012981122451451889849" | 
|  | "057222307285255133155755015914397476397983411801999323962548289017107081" | 
|  | "850690630666655994938275772572015763062690663332647565300009245888316433" | 
|  | "037779791869612049497390377829704905051080609940730262937128958950003583" | 
|  | "799967207254304360284078895771796150945516748243471030702609144621572289" | 
|  | "880258182545180325707018860872113128079512233426288368622321503775666622" | 
|  | "503982534335974568884423900265498198385487948292206894721689831099698365" | 
|  | "846814022854243330660339850886445804001034933970427567186443383770486037" | 
|  | "86162277173854562306587467901408672332763671875", | 
|  | -308, last_subnormal, first_normal, first_normal); | 
|  |  | 
|  | // first_normal and second_normal.  Round-to-even tie rounds down. | 
|  | TestHalfwayValue( | 
|  | "2." | 
|  | "225073858507201630123055637955676152503612414573018013083228724049586647" | 
|  | "606759446192036794116886953213985520549032000903434781884412325572184367" | 
|  | "563347617020518175998922941393629966742598285899994830148971433555578567" | 
|  | "693279306015978183162142425067962460785295885199272493577688320732492479" | 
|  | "924816869232247165964934329258783950102250973957579510571600738343645738" | 
|  | "494324192997092179207389919761694314131497173265255020084997973676783743" | 
|  | "155205818804439163810572367791175177756227497413804253387084478193655533" | 
|  | "073867420834526162513029462022730109054820067654020201547112002028139700" | 
|  | "141575259123440177362244273712468151750189745559978653234255886219611516" | 
|  | "335924167958029604477064946470184777360934300451421683607013647479513962" | 
|  | "13837722826145437693412532098591327667236328125", | 
|  | -308, first_normal, second_normal, first_normal); | 
|  |  | 
|  | // penultimate_normal and last_normal.  Round-to-even rounds down. | 
|  | TestHalfwayValue( | 
|  | "1." | 
|  | "797693134862315608353258760581052985162070023416521662616611746258695532" | 
|  | "672923265745300992879465492467506314903358770175220871059269879629062776" | 
|  | "047355692132901909191523941804762171253349609463563872612866401980290377" | 
|  | "995141836029815117562837277714038305214839639239356331336428021390916694" | 
|  | "57927874464075218944", | 
|  | 308, penultimate_normal, last_normal, penultimate_normal); | 
|  | } | 
|  |  | 
|  | // Same test cases as DoubleRounding, now with new and improved Much Smaller | 
|  | // Precision! | 
|  | TEST(FromChars, FloatRounding) { | 
|  | const float zero = 0.0; | 
|  | const float first_subnormal = nextafterf(zero, 1.0); | 
|  | const float second_subnormal = nextafterf(first_subnormal, 1.0); | 
|  |  | 
|  | const float first_normal = FLT_MIN; | 
|  | const float last_subnormal = nextafterf(first_normal, 0.0); | 
|  | const float second_normal = nextafterf(first_normal, 1.0); | 
|  |  | 
|  | const float last_normal = FLT_MAX; | 
|  | const float penultimate_normal = nextafterf(last_normal, 0.0); | 
|  |  | 
|  | // Test between zero and first_subnormal.  Round-to-even tie rounds down. | 
|  | TestHalfwayValue( | 
|  | "7." | 
|  | "006492321624085354618647916449580656401309709382578858785341419448955413" | 
|  | "42930300743319094181060791015625", | 
|  | -46, zero, first_subnormal, zero); | 
|  |  | 
|  | // first_subnormal and second_subnormal.  Round-to-even tie rounds up. | 
|  | TestHalfwayValue( | 
|  | "2." | 
|  | "101947696487225606385594374934874196920392912814773657635602425834686624" | 
|  | "028790902229957282543182373046875", | 
|  | -45, first_subnormal, second_subnormal, second_subnormal); | 
|  |  | 
|  | // last_subnormal and first_normal.  Round-to-even tie rounds up. | 
|  | TestHalfwayValue( | 
|  | "1." | 
|  | "175494280757364291727882991035766513322858992758990427682963118425003064" | 
|  | "9651730385585324256680905818939208984375", | 
|  | -38, last_subnormal, first_normal, first_normal); | 
|  |  | 
|  | // first_normal and second_normal.  Round-to-even tie rounds down. | 
|  | TestHalfwayValue( | 
|  | "1." | 
|  | "175494420887210724209590083408724842314472120785184615334540294131831453" | 
|  | "9442813071445925743319094181060791015625", | 
|  | -38, first_normal, second_normal, first_normal); | 
|  |  | 
|  | // penultimate_normal and last_normal.  Round-to-even rounds down. | 
|  | TestHalfwayValue("3.40282336497324057985868971510891282432", 38, | 
|  | penultimate_normal, last_normal, penultimate_normal); | 
|  | } | 
|  |  | 
|  | TEST(FromChars, Underflow) { | 
|  | // Check that underflow is handled correctly, according to the specification | 
|  | // in DR 3081. | 
|  | double d; | 
|  | float f; | 
|  | absl::from_chars_result result; | 
|  |  | 
|  | std::string negative_underflow = "-1e-1000"; | 
|  | const char* begin = negative_underflow.data(); | 
|  | const char* end = begin + negative_underflow.size(); | 
|  | d = 100.0; | 
|  | result = absl::from_chars(begin, end, d); | 
|  | EXPECT_EQ(result.ptr, end); | 
|  | EXPECT_EQ(result.ec, std::errc::result_out_of_range); | 
|  | EXPECT_TRUE(std::signbit(d));  // negative | 
|  | EXPECT_GE(d, -std::numeric_limits<double>::min()); | 
|  | f = 100.0; | 
|  | result = absl::from_chars(begin, end, f); | 
|  | EXPECT_EQ(result.ptr, end); | 
|  | EXPECT_EQ(result.ec, std::errc::result_out_of_range); | 
|  | EXPECT_TRUE(std::signbit(f));  // negative | 
|  | EXPECT_GE(f, -std::numeric_limits<float>::min()); | 
|  |  | 
|  | std::string positive_underflow = "1e-1000"; | 
|  | begin = positive_underflow.data(); | 
|  | end = begin + positive_underflow.size(); | 
|  | d = -100.0; | 
|  | result = absl::from_chars(begin, end, d); | 
|  | EXPECT_EQ(result.ptr, end); | 
|  | EXPECT_EQ(result.ec, std::errc::result_out_of_range); | 
|  | EXPECT_FALSE(std::signbit(d));  // positive | 
|  | EXPECT_LE(d, std::numeric_limits<double>::min()); | 
|  | f = -100.0; | 
|  | result = absl::from_chars(begin, end, f); | 
|  | EXPECT_EQ(result.ptr, end); | 
|  | EXPECT_EQ(result.ec, std::errc::result_out_of_range); | 
|  | EXPECT_FALSE(std::signbit(f));  // positive | 
|  | EXPECT_LE(f, std::numeric_limits<float>::min()); | 
|  | } | 
|  |  | 
|  | TEST(FromChars, Overflow) { | 
|  | // Check that overflow is handled correctly, according to the specification | 
|  | // in DR 3081. | 
|  | double d; | 
|  | float f; | 
|  | absl::from_chars_result result; | 
|  |  | 
|  | std::string negative_overflow = "-1e1000"; | 
|  | const char* begin = negative_overflow.data(); | 
|  | const char* end = begin + negative_overflow.size(); | 
|  | d = 100.0; | 
|  | result = absl::from_chars(begin, end, d); | 
|  | EXPECT_EQ(result.ptr, end); | 
|  | EXPECT_EQ(result.ec, std::errc::result_out_of_range); | 
|  | EXPECT_TRUE(std::signbit(d));  // negative | 
|  | EXPECT_EQ(d, -std::numeric_limits<double>::max()); | 
|  | f = 100.0; | 
|  | result = absl::from_chars(begin, end, f); | 
|  | EXPECT_EQ(result.ptr, end); | 
|  | EXPECT_EQ(result.ec, std::errc::result_out_of_range); | 
|  | EXPECT_TRUE(std::signbit(f));  // negative | 
|  | EXPECT_EQ(f, -std::numeric_limits<float>::max()); | 
|  |  | 
|  | std::string positive_overflow = "1e1000"; | 
|  | begin = positive_overflow.data(); | 
|  | end = begin + positive_overflow.size(); | 
|  | d = -100.0; | 
|  | result = absl::from_chars(begin, end, d); | 
|  | EXPECT_EQ(result.ptr, end); | 
|  | EXPECT_EQ(result.ec, std::errc::result_out_of_range); | 
|  | EXPECT_FALSE(std::signbit(d));  // positive | 
|  | EXPECT_EQ(d, std::numeric_limits<double>::max()); | 
|  | f = -100.0; | 
|  | result = absl::from_chars(begin, end, f); | 
|  | EXPECT_EQ(result.ptr, end); | 
|  | EXPECT_EQ(result.ec, std::errc::result_out_of_range); | 
|  | EXPECT_FALSE(std::signbit(f));  // positive | 
|  | EXPECT_EQ(f, std::numeric_limits<float>::max()); | 
|  | } | 
|  |  | 
|  | TEST(FromChars, RegressionTestsFromFuzzer) { | 
|  | absl::string_view src = "0x21900000p00000000099"; | 
|  | float f; | 
|  | auto result = absl::from_chars(src.data(), src.data() + src.size(), f); | 
|  | EXPECT_EQ(result.ec, std::errc::result_out_of_range); | 
|  | } | 
|  |  | 
|  | TEST(FromChars, ReturnValuePtr) { | 
|  | // Check that `ptr` points one past the number scanned, even if that number | 
|  | // is not representable. | 
|  | double d; | 
|  | absl::from_chars_result result; | 
|  |  | 
|  | std::string normal = "3.14@#$%@#$%"; | 
|  | result = absl::from_chars(normal.data(), normal.data() + normal.size(), d); | 
|  | EXPECT_EQ(result.ec, std::errc()); | 
|  | EXPECT_EQ(result.ptr - normal.data(), 4); | 
|  |  | 
|  | std::string overflow = "1e1000@#$%@#$%"; | 
|  | result = absl::from_chars(overflow.data(), | 
|  | overflow.data() + overflow.size(), d); | 
|  | EXPECT_EQ(result.ec, std::errc::result_out_of_range); | 
|  | EXPECT_EQ(result.ptr - overflow.data(), 6); | 
|  |  | 
|  | std::string garbage = "#$%@#$%"; | 
|  | result = absl::from_chars(garbage.data(), | 
|  | garbage.data() + garbage.size(), d); | 
|  | EXPECT_EQ(result.ec, std::errc::invalid_argument); | 
|  | EXPECT_EQ(result.ptr - garbage.data(), 0); | 
|  | } | 
|  |  | 
|  | // Check for a wide range of inputs that strtod() and absl::from_chars() exactly | 
|  | // agree on the conversion amount. | 
|  | // | 
|  | // This test assumes the platform's strtod() uses perfect round_to_nearest | 
|  | // rounding. | 
|  | TEST(FromChars, TestVersusStrtod) { | 
|  | for (int mantissa = 1000000; mantissa <= 9999999; mantissa += 501) { | 
|  | for (int exponent = -300; exponent < 300; ++exponent) { | 
|  | std::string candidate = absl::StrCat(mantissa, "e", exponent); | 
|  | double strtod_value = strtod(candidate.c_str(), nullptr); | 
|  | double absl_value = 0; | 
|  | absl::from_chars(candidate.data(), candidate.data() + candidate.size(), | 
|  | absl_value); | 
|  | ASSERT_EQ(strtod_value, absl_value) << candidate; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for a wide range of inputs that strtof() and absl::from_chars() exactly | 
|  | // agree on the conversion amount. | 
|  | // | 
|  | // This test assumes the platform's strtof() uses perfect round_to_nearest | 
|  | // rounding. | 
|  | TEST(FromChars, TestVersusStrtof) { | 
|  | for (int mantissa = 1000000; mantissa <= 9999999; mantissa += 501) { | 
|  | for (int exponent = -43; exponent < 32; ++exponent) { | 
|  | std::string candidate = absl::StrCat(mantissa, "e", exponent); | 
|  | float strtod_value = strtof(candidate.c_str(), nullptr); | 
|  | float absl_value = 0; | 
|  | absl::from_chars(candidate.data(), candidate.data() + candidate.size(), | 
|  | absl_value); | 
|  | ASSERT_EQ(strtod_value, absl_value) << candidate; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Tests if two floating point values have identical bit layouts.  (EXPECT_EQ | 
|  | // is not suitable for NaN testing, since NaNs are never equal.) | 
|  | template <typename Float> | 
|  | bool Identical(Float a, Float b) { | 
|  | return 0 == memcmp(&a, &b, sizeof(Float)); | 
|  | } | 
|  |  | 
|  | // Check that NaNs are parsed correctly.  The spec requires that | 
|  | // std::from_chars on "NaN(123abc)" return the same value as std::nan("123abc"). | 
|  | // How such an n-char-sequence affects the generated NaN is unspecified, so we | 
|  | // just test for symmetry with std::nan and strtod here. | 
|  | // | 
|  | // (In Linux, this parses the value as a number and stuffs that number into the | 
|  | // free bits of a quiet NaN.) | 
|  | TEST(FromChars, NaNDoubles) { | 
|  | for (std::string n_char_sequence : | 
|  | {"", "1", "2", "3", "fff", "FFF", "200000", "400000", "4000000000000", | 
|  | "8000000000000", "abc123", "legal_but_unexpected", | 
|  | "99999999999999999999999", "_"}) { | 
|  | std::string input = absl::StrCat("nan(", n_char_sequence, ")"); | 
|  | SCOPED_TRACE(input); | 
|  | double from_chars_double; | 
|  | absl::from_chars(input.data(), input.data() + input.size(), | 
|  | from_chars_double); | 
|  | double std_nan_double = std::nan(n_char_sequence.c_str()); | 
|  | EXPECT_TRUE(Identical(from_chars_double, std_nan_double)); | 
|  |  | 
|  | // Also check that we match strtod()'s behavior.  This test assumes that the | 
|  | // platform has a compliant strtod(). | 
|  | #if ABSL_STRTOD_HANDLES_NAN_CORRECTLY | 
|  | double strtod_double = strtod(input.c_str(), nullptr); | 
|  | EXPECT_TRUE(Identical(from_chars_double, strtod_double)); | 
|  | #endif  // ABSL_STRTOD_HANDLES_NAN_CORRECTLY | 
|  |  | 
|  | // Check that we can parse a negative NaN | 
|  | std::string negative_input = "-" + input; | 
|  | double negative_from_chars_double; | 
|  | absl::from_chars(negative_input.data(), | 
|  | negative_input.data() + negative_input.size(), | 
|  | negative_from_chars_double); | 
|  | EXPECT_TRUE(std::signbit(negative_from_chars_double)); | 
|  | EXPECT_FALSE(Identical(negative_from_chars_double, from_chars_double)); | 
|  | from_chars_double = std::copysign(from_chars_double, -1.0); | 
|  | EXPECT_TRUE(Identical(negative_from_chars_double, from_chars_double)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(FromChars, NaNFloats) { | 
|  | for (std::string n_char_sequence : | 
|  | {"", "1", "2", "3", "fff", "FFF", "200000", "400000", "4000000000000", | 
|  | "8000000000000", "abc123", "legal_but_unexpected", | 
|  | "99999999999999999999999", "_"}) { | 
|  | std::string input = absl::StrCat("nan(", n_char_sequence, ")"); | 
|  | SCOPED_TRACE(input); | 
|  | float from_chars_float; | 
|  | absl::from_chars(input.data(), input.data() + input.size(), | 
|  | from_chars_float); | 
|  | float std_nan_float = std::nanf(n_char_sequence.c_str()); | 
|  | EXPECT_TRUE(Identical(from_chars_float, std_nan_float)); | 
|  |  | 
|  | // Also check that we match strtof()'s behavior.  This test assumes that the | 
|  | // platform has a compliant strtof(). | 
|  | #if ABSL_STRTOD_HANDLES_NAN_CORRECTLY | 
|  | float strtof_float = strtof(input.c_str(), nullptr); | 
|  | EXPECT_TRUE(Identical(from_chars_float, strtof_float)); | 
|  | #endif  // ABSL_STRTOD_HANDLES_NAN_CORRECTLY | 
|  |  | 
|  | // Check that we can parse a negative NaN | 
|  | std::string negative_input = "-" + input; | 
|  | float negative_from_chars_float; | 
|  | absl::from_chars(negative_input.data(), | 
|  | negative_input.data() + negative_input.size(), | 
|  | negative_from_chars_float); | 
|  | EXPECT_TRUE(std::signbit(negative_from_chars_float)); | 
|  | EXPECT_FALSE(Identical(negative_from_chars_float, from_chars_float)); | 
|  | // Use the (float, float) overload of std::copysign to prevent narrowing; | 
|  | // see https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98251. | 
|  | from_chars_float = std::copysign(from_chars_float, -1.0f); | 
|  | EXPECT_TRUE(Identical(negative_from_chars_float, from_chars_float)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns an integer larger than step.  The values grow exponentially. | 
|  | int NextStep(int step) { | 
|  | return step + (step >> 2) + 1; | 
|  | } | 
|  |  | 
|  | // Test a conversion on a family of input strings, checking that the calculation | 
|  | // is correct for in-bounds values, and that overflow and underflow are done | 
|  | // correctly for out-of-bounds values. | 
|  | // | 
|  | // input_generator maps from an integer index to a string to test. | 
|  | // expected_generator maps from an integer index to an expected Float value. | 
|  | // from_chars conversion of input_generator(i) should result in | 
|  | // expected_generator(i). | 
|  | // | 
|  | // lower_bound and upper_bound denote the smallest and largest values for which | 
|  | // the conversion is expected to succeed. | 
|  | template <typename Float> | 
|  | void TestOverflowAndUnderflow( | 
|  | const std::function<std::string(int)>& input_generator, | 
|  | const std::function<Float(int)>& expected_generator, int lower_bound, | 
|  | int upper_bound) { | 
|  | // test legal values near lower_bound | 
|  | int index, step; | 
|  | for (index = lower_bound, step = 1; index < upper_bound; | 
|  | index += step, step = NextStep(step)) { | 
|  | std::string input = input_generator(index); | 
|  | SCOPED_TRACE(input); | 
|  | Float expected = expected_generator(index); | 
|  | Float actual; | 
|  | auto result = | 
|  | absl::from_chars(input.data(), input.data() + input.size(), actual); | 
|  | EXPECT_EQ(result.ec, std::errc()); | 
|  | EXPECT_EQ(expected, actual) | 
|  | << absl::StrFormat("%a vs %a", expected, actual); | 
|  | } | 
|  | // test legal values near upper_bound | 
|  | for (index = upper_bound, step = 1; index > lower_bound; | 
|  | index -= step, step = NextStep(step)) { | 
|  | std::string input = input_generator(index); | 
|  | SCOPED_TRACE(input); | 
|  | Float expected = expected_generator(index); | 
|  | Float actual; | 
|  | auto result = | 
|  | absl::from_chars(input.data(), input.data() + input.size(), actual); | 
|  | EXPECT_EQ(result.ec, std::errc()); | 
|  | EXPECT_EQ(expected, actual) | 
|  | << absl::StrFormat("%a vs %a", expected, actual); | 
|  | } | 
|  | // Test underflow values below lower_bound | 
|  | for (index = lower_bound - 1, step = 1; index > -1000000; | 
|  | index -= step, step = NextStep(step)) { | 
|  | std::string input = input_generator(index); | 
|  | SCOPED_TRACE(input); | 
|  | Float actual; | 
|  | auto result = | 
|  | absl::from_chars(input.data(), input.data() + input.size(), actual); | 
|  | EXPECT_EQ(result.ec, std::errc::result_out_of_range); | 
|  | EXPECT_LT(actual, 1.0);  // check for underflow | 
|  | } | 
|  | // Test overflow values above upper_bound | 
|  | for (index = upper_bound + 1, step = 1; index < 1000000; | 
|  | index += step, step = NextStep(step)) { | 
|  | std::string input = input_generator(index); | 
|  | SCOPED_TRACE(input); | 
|  | Float actual; | 
|  | auto result = | 
|  | absl::from_chars(input.data(), input.data() + input.size(), actual); | 
|  | EXPECT_EQ(result.ec, std::errc::result_out_of_range); | 
|  | EXPECT_GT(actual, 1.0);  // check for overflow | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that overflow and underflow are caught correctly for hex doubles. | 
|  | // | 
|  | // The largest representable double is 0x1.fffffffffffffp+1023, and the | 
|  | // smallest representable subnormal is 0x0.0000000000001p-1022, which equals | 
|  | // 0x1p-1074.  Therefore 1023 and -1074 are the limits of acceptable exponents | 
|  | // in this test. | 
|  | TEST(FromChars, HexdecimalDoubleLimits) { | 
|  | auto input_gen = [](int index) { return absl::StrCat("0x1.0p", index); }; | 
|  | auto expected_gen = [](int index) { return std::ldexp(1.0, index); }; | 
|  | TestOverflowAndUnderflow<double>(input_gen, expected_gen, -1074, 1023); | 
|  | } | 
|  |  | 
|  | // Check that overflow and underflow are caught correctly for hex floats. | 
|  | // | 
|  | // The largest representable float is 0x1.fffffep+127, and the smallest | 
|  | // representable subnormal is 0x0.000002p-126, which equals 0x1p-149. | 
|  | // Therefore 127 and -149 are the limits of acceptable exponents in this test. | 
|  | TEST(FromChars, HexdecimalFloatLimits) { | 
|  | auto input_gen = [](int index) { return absl::StrCat("0x1.0p", index); }; | 
|  | auto expected_gen = [](int index) { return std::ldexp(1.0f, index); }; | 
|  | TestOverflowAndUnderflow<float>(input_gen, expected_gen, -149, 127); | 
|  | } | 
|  |  | 
|  | // Check that overflow and underflow are caught correctly for decimal doubles. | 
|  | // | 
|  | // The largest representable double is about 1.8e308, and the smallest | 
|  | // representable subnormal is about 5e-324.  '1e-324' therefore rounds away from | 
|  | // the smallest representable positive value.  -323 and 308 are the limits of | 
|  | // acceptable exponents in this test. | 
|  | TEST(FromChars, DecimalDoubleLimits) { | 
|  | auto input_gen = [](int index) { return absl::StrCat("1.0e", index); }; | 
|  | auto expected_gen = [](int index) { return Pow10(index); }; | 
|  | TestOverflowAndUnderflow<double>(input_gen, expected_gen, -323, 308); | 
|  | } | 
|  |  | 
|  | // Check that overflow and underflow are caught correctly for decimal floats. | 
|  | // | 
|  | // The largest representable float is about 3.4e38, and the smallest | 
|  | // representable subnormal is about 1.45e-45.  '1e-45' therefore rounds towards | 
|  | // the smallest representable positive value.  -45 and 38 are the limits of | 
|  | // acceptable exponents in this test. | 
|  | TEST(FromChars, DecimalFloatLimits) { | 
|  | auto input_gen = [](int index) { return absl::StrCat("1.0e", index); }; | 
|  | auto expected_gen = [](int index) { return Pow10(index); }; | 
|  | TestOverflowAndUnderflow<float>(input_gen, expected_gen, -45, 38); | 
|  | } | 
|  |  | 
|  | }  // namespace |