|  | // Copyright 2017 The Abseil Authors. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //      https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #ifndef ABSL_RANDOM_INTERNAL_CHI_SQUARE_H_ | 
|  | #define ABSL_RANDOM_INTERNAL_CHI_SQUARE_H_ | 
|  |  | 
|  | // The chi-square statistic. | 
|  | // | 
|  | // Useful for evaluating if `D` independent random variables are behaving as | 
|  | // expected, or if two distributions are similar.  (`D` is the degrees of | 
|  | // freedom). | 
|  | // | 
|  | // Each bucket should have an expected count of 10 or more for the chi square to | 
|  | // be meaningful. | 
|  |  | 
|  | #include <cassert> | 
|  |  | 
|  | #include "absl/base/config.h" | 
|  |  | 
|  | namespace absl { | 
|  | ABSL_NAMESPACE_BEGIN | 
|  | namespace random_internal { | 
|  |  | 
|  | constexpr const char kChiSquared[] = "chi-squared"; | 
|  |  | 
|  | // Returns the measured chi square value, using a single expected value.  This | 
|  | // assumes that the values in [begin, end) are uniformly distributed. | 
|  | template <typename Iterator> | 
|  | double ChiSquareWithExpected(Iterator begin, Iterator end, double expected) { | 
|  | // Compute the sum and the number of buckets. | 
|  | assert(expected >= 10);  // require at least 10 samples per bucket. | 
|  | double chi_square = 0; | 
|  | for (auto it = begin; it != end; it++) { | 
|  | double d = static_cast<double>(*it) - expected; | 
|  | chi_square += d * d; | 
|  | } | 
|  | chi_square = chi_square / expected; | 
|  | return chi_square; | 
|  | } | 
|  |  | 
|  | // Returns the measured chi square value, taking the actual value of each bucket | 
|  | // from the first set of iterators, and the expected value of each bucket from | 
|  | // the second set of iterators. | 
|  | template <typename Iterator, typename Expected> | 
|  | double ChiSquare(Iterator it, Iterator end, Expected eit, Expected eend) { | 
|  | double chi_square = 0; | 
|  | for (; it != end && eit != eend; ++it, ++eit) { | 
|  | if (*it > 0) { | 
|  | assert(*eit > 0); | 
|  | } | 
|  | double e = static_cast<double>(*eit); | 
|  | double d = static_cast<double>(*it - *eit); | 
|  | if (d != 0) { | 
|  | assert(e > 0); | 
|  | chi_square += (d * d) / e; | 
|  | } | 
|  | } | 
|  | assert(it == end && eit == eend); | 
|  | return chi_square; | 
|  | } | 
|  |  | 
|  | // ====================================================================== | 
|  | // The following methods can be used for an arbitrary significance level. | 
|  | // | 
|  |  | 
|  | // Calculates critical chi-square values to produce the given p-value using a | 
|  | // bisection search for a value within epsilon, relying on the monotonicity of | 
|  | // ChiSquarePValue(). | 
|  | double ChiSquareValue(int dof, double p); | 
|  |  | 
|  | // Calculates the p-value (probability) of a given chi-square value. | 
|  | double ChiSquarePValue(double chi_square, int dof); | 
|  |  | 
|  | }  // namespace random_internal | 
|  | ABSL_NAMESPACE_END | 
|  | }  // namespace absl | 
|  |  | 
|  | #endif  // ABSL_RANDOM_INTERNAL_CHI_SQUARE_H_ |