blob: 4cd5b7a35832bd1ddb77307f4b21d808304720af [file] [log] [blame]
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Unit tests for the variant template. The 'is' and 'IsEmpty' methods
// of variant are not explicitly tested because they are used repeatedly
// in building other tests. All other public variant methods should have
// explicit tests.
#include "absl/types/variant.h"
// This test is a no-op when absl::variant is an alias for std::variant.
#if !defined(ABSL_USES_STD_VARIANT)
#include <algorithm>
#include <cstddef>
#include <functional>
#include <initializer_list>
#include <memory>
#include <ostream>
#include <queue>
#include <type_traits>
#include <unordered_set>
#include <utility>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/config.h"
#include "absl/base/port.h"
#include "absl/memory/memory.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/string_view.h"
#ifdef ABSL_HAVE_EXCEPTIONS
#define ABSL_VARIANT_TEST_EXPECT_FAIL(expr, exception_t, text) \
EXPECT_THROW(expr, exception_t)
#else
#define ABSL_VARIANT_TEST_EXPECT_FAIL(expr, exception_t, text) \
EXPECT_DEATH_IF_SUPPORTED(expr, text)
#endif // ABSL_HAVE_EXCEPTIONS
#define ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(...) \
ABSL_VARIANT_TEST_EXPECT_FAIL((void)(__VA_ARGS__), absl::bad_variant_access, \
"Bad variant access")
struct Hashable {};
namespace std {
template <>
struct hash<Hashable> {
size_t operator()(const Hashable&);
};
} // namespace std
struct NonHashable {};
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace {
using ::testing::DoubleEq;
using ::testing::Pointee;
using ::testing::VariantWith;
struct MoveCanThrow {
MoveCanThrow() : v(0) {}
MoveCanThrow(int v) : v(v) {} // NOLINT(runtime/explicit)
MoveCanThrow(const MoveCanThrow& other) : v(other.v) {}
MoveCanThrow& operator=(const MoveCanThrow& /*other*/) { return *this; }
int v;
};
bool operator==(MoveCanThrow lhs, MoveCanThrow rhs) { return lhs.v == rhs.v; }
bool operator!=(MoveCanThrow lhs, MoveCanThrow rhs) { return lhs.v != rhs.v; }
bool operator<(MoveCanThrow lhs, MoveCanThrow rhs) { return lhs.v < rhs.v; }
bool operator<=(MoveCanThrow lhs, MoveCanThrow rhs) { return lhs.v <= rhs.v; }
bool operator>=(MoveCanThrow lhs, MoveCanThrow rhs) { return lhs.v >= rhs.v; }
bool operator>(MoveCanThrow lhs, MoveCanThrow rhs) { return lhs.v > rhs.v; }
// This helper class allows us to determine if it was swapped with std::swap()
// or with its friend swap() function.
struct SpecialSwap {
explicit SpecialSwap(int i) : i(i) {}
friend void swap(SpecialSwap& a, SpecialSwap& b) {
a.special_swap = b.special_swap = true;
std::swap(a.i, b.i);
}
bool operator==(SpecialSwap other) const { return i == other.i; }
int i;
bool special_swap = false;
};
struct MoveOnlyWithListConstructor {
MoveOnlyWithListConstructor() = default;
explicit MoveOnlyWithListConstructor(std::initializer_list<int> /*ilist*/,
int value)
: value(value) {}
MoveOnlyWithListConstructor(MoveOnlyWithListConstructor&&) = default;
MoveOnlyWithListConstructor& operator=(MoveOnlyWithListConstructor&&) =
default;
int value = 0;
};
#ifdef ABSL_HAVE_EXCEPTIONS
struct ConversionException {};
template <class T>
struct ExceptionOnConversion {
operator T() const { // NOLINT(runtime/explicit)
throw ConversionException();
}
};
// Forces a variant into the valueless by exception state.
template <class H, class... T>
void ToValuelessByException(absl::variant<H, T...>& v) { // NOLINT
try {
v.template emplace<0>(ExceptionOnConversion<H>());
} catch (ConversionException& /*e*/) {
// This space intentionally left blank.
}
}
#endif // ABSL_HAVE_EXCEPTIONS
// An indexed sequence of distinct structures holding a single
// value of type T
template<typename T, size_t N>
struct ValueHolder {
explicit ValueHolder(const T& x) : value(x) {}
typedef T value_type;
value_type value;
static const size_t kIndex = N;
};
template<typename T, size_t N>
const size_t ValueHolder<T, N>::kIndex;
// The following three functions make ValueHolder compatible with
// EXPECT_EQ and EXPECT_NE
template<typename T, size_t N>
inline bool operator==(const ValueHolder<T, N>& left,
const ValueHolder<T, N>& right) {
return left.value == right.value;
}
template<typename T, size_t N>
inline bool operator!=(const ValueHolder<T, N>& left,
const ValueHolder<T, N>& right) {
return left.value != right.value;
}
template<typename T, size_t N>
inline std::ostream& operator<<(
std::ostream& stream, const ValueHolder<T, N>& object) {
return stream << object.value;
}
// Makes a variant holding twelve uniquely typed T wrappers.
template<typename T>
struct VariantFactory {
typedef variant<ValueHolder<T, 1>, ValueHolder<T, 2>, ValueHolder<T, 3>,
ValueHolder<T, 4>>
Type;
};
// A typelist in 1:1 with VariantFactory, to use type driven unit tests.
typedef ::testing::Types<ValueHolder<size_t, 1>, ValueHolder<size_t, 2>,
ValueHolder<size_t, 3>,
ValueHolder<size_t, 4>> VariantTypes;
// Increments the provided counter pointer in the destructor
struct IncrementInDtor {
explicit IncrementInDtor(int* counter) : counter(counter) {}
~IncrementInDtor() { *counter += 1; }
int* counter;
};
struct IncrementInDtorCopyCanThrow {
explicit IncrementInDtorCopyCanThrow(int* counter) : counter(counter) {}
IncrementInDtorCopyCanThrow(IncrementInDtorCopyCanThrow&& other) noexcept =
default;
IncrementInDtorCopyCanThrow(const IncrementInDtorCopyCanThrow& other)
: counter(other.counter) {}
IncrementInDtorCopyCanThrow& operator=(
IncrementInDtorCopyCanThrow&&) noexcept = default;
IncrementInDtorCopyCanThrow& operator=(
IncrementInDtorCopyCanThrow const& other) {
counter = other.counter;
return *this;
}
~IncrementInDtorCopyCanThrow() { *counter += 1; }
int* counter;
};
// This is defined so operator== for ValueHolder<IncrementInDtor> will
// return true if two IncrementInDtor objects increment the same
// counter
inline bool operator==(const IncrementInDtor& left,
const IncrementInDtor& right) {
return left.counter == right.counter;
}
// This is defined so EXPECT_EQ can work with IncrementInDtor
inline std::ostream& operator<<(
std::ostream& stream, const IncrementInDtor& object) {
return stream << object.counter;
}
// A class that can be copied, but not assigned.
class CopyNoAssign {
public:
explicit CopyNoAssign(int value) : foo(value) {}
CopyNoAssign(const CopyNoAssign& other) : foo(other.foo) {}
int foo;
private:
const CopyNoAssign& operator=(const CopyNoAssign&);
};
// A class that can neither be copied nor assigned. We provide
// overloads for the constructor with up to four parameters so we can
// test the overloads of variant::emplace.
class NonCopyable {
public:
NonCopyable()
: value(0) {}
explicit NonCopyable(int value1)
: value(value1) {}
NonCopyable(int value1, int value2)
: value(value1 + value2) {}
NonCopyable(int value1, int value2, int value3)
: value(value1 + value2 + value3) {}
NonCopyable(int value1, int value2, int value3, int value4)
: value(value1 + value2 + value3 + value4) {}
NonCopyable(const NonCopyable&) = delete;
NonCopyable& operator=(const NonCopyable&) = delete;
int value;
};
// A typed test and typed test case over the VariantTypes typelist,
// from which we derive a number of tests that will execute for one of
// each type.
template <typename T>
class VariantTypesTest : public ::testing::Test {};
TYPED_TEST_SUITE(VariantTypesTest, VariantTypes);
////////////////////
// [variant.ctor] //
////////////////////
struct NonNoexceptDefaultConstructible {
NonNoexceptDefaultConstructible() {}
int value = 5;
};
struct NonDefaultConstructible {
NonDefaultConstructible() = delete;
};
TEST(VariantTest, TestDefaultConstructor) {
{
using X = variant<int>;
constexpr variant<int> x{};
ASSERT_FALSE(x.valueless_by_exception());
ASSERT_EQ(0u, x.index());
EXPECT_EQ(0, absl::get<0>(x));
EXPECT_TRUE(std::is_nothrow_default_constructible<X>::value);
}
{
using X = variant<NonNoexceptDefaultConstructible>;
X x{};
ASSERT_FALSE(x.valueless_by_exception());
ASSERT_EQ(0u, x.index());
EXPECT_EQ(5, absl::get<0>(x).value);
EXPECT_FALSE(std::is_nothrow_default_constructible<X>::value);
}
{
using X = variant<int, NonNoexceptDefaultConstructible>;
X x{};
ASSERT_FALSE(x.valueless_by_exception());
ASSERT_EQ(0u, x.index());
EXPECT_EQ(0, absl::get<0>(x));
EXPECT_TRUE(std::is_nothrow_default_constructible<X>::value);
}
{
using X = variant<NonNoexceptDefaultConstructible, int>;
X x{};
ASSERT_FALSE(x.valueless_by_exception());
ASSERT_EQ(0u, x.index());
EXPECT_EQ(5, absl::get<0>(x).value);
EXPECT_FALSE(std::is_nothrow_default_constructible<X>::value);
}
EXPECT_FALSE(
std::is_default_constructible<variant<NonDefaultConstructible>>::value);
EXPECT_FALSE((std::is_default_constructible<
variant<NonDefaultConstructible, int>>::value));
EXPECT_TRUE((std::is_default_constructible<
variant<int, NonDefaultConstructible>>::value));
}
// Test that for each slot, copy constructing a variant with that type
// produces a sensible object that correctly reports its type, and
// that copies the provided value.
TYPED_TEST(VariantTypesTest, TestCopyCtor) {
typedef typename VariantFactory<typename TypeParam::value_type>::Type Variant;
using value_type1 = absl::variant_alternative_t<0, Variant>;
using value_type2 = absl::variant_alternative_t<1, Variant>;
using value_type3 = absl::variant_alternative_t<2, Variant>;
using value_type4 = absl::variant_alternative_t<3, Variant>;
const TypeParam value(TypeParam::kIndex);
Variant original(value);
Variant copied(original);
EXPECT_TRUE(absl::holds_alternative<value_type1>(copied) ||
TypeParam::kIndex != 1);
EXPECT_TRUE(absl::holds_alternative<value_type2>(copied) ||
TypeParam::kIndex != 2);
EXPECT_TRUE(absl::holds_alternative<value_type3>(copied) ||
TypeParam::kIndex != 3);
EXPECT_TRUE(absl::holds_alternative<value_type4>(copied) ||
TypeParam::kIndex != 4);
EXPECT_TRUE((absl::get_if<value_type1>(&original) ==
absl::get_if<value_type1>(&copied)) ||
TypeParam::kIndex == 1);
EXPECT_TRUE((absl::get_if<value_type2>(&original) ==
absl::get_if<value_type2>(&copied)) ||
TypeParam::kIndex == 2);
EXPECT_TRUE((absl::get_if<value_type3>(&original) ==
absl::get_if<value_type3>(&copied)) ||
TypeParam::kIndex == 3);
EXPECT_TRUE((absl::get_if<value_type4>(&original) ==
absl::get_if<value_type4>(&copied)) ||
TypeParam::kIndex == 4);
EXPECT_TRUE((absl::get_if<value_type1>(&original) ==
absl::get_if<value_type1>(&copied)) ||
TypeParam::kIndex == 1);
EXPECT_TRUE((absl::get_if<value_type2>(&original) ==
absl::get_if<value_type2>(&copied)) ||
TypeParam::kIndex == 2);
EXPECT_TRUE((absl::get_if<value_type3>(&original) ==
absl::get_if<value_type3>(&copied)) ||
TypeParam::kIndex == 3);
EXPECT_TRUE((absl::get_if<value_type4>(&original) ==
absl::get_if<value_type4>(&copied)) ||
TypeParam::kIndex == 4);
const TypeParam* ovalptr = absl::get_if<TypeParam>(&original);
const TypeParam* cvalptr = absl::get_if<TypeParam>(&copied);
ASSERT_TRUE(ovalptr != nullptr);
ASSERT_TRUE(cvalptr != nullptr);
EXPECT_EQ(*ovalptr, *cvalptr);
TypeParam* mutable_ovalptr = absl::get_if<TypeParam>(&original);
TypeParam* mutable_cvalptr = absl::get_if<TypeParam>(&copied);
ASSERT_TRUE(mutable_ovalptr != nullptr);
ASSERT_TRUE(mutable_cvalptr != nullptr);
EXPECT_EQ(*mutable_ovalptr, *mutable_cvalptr);
}
template <class>
struct MoveOnly {
MoveOnly() = default;
explicit MoveOnly(int value) : value(value) {}
MoveOnly(MoveOnly&&) = default;
MoveOnly& operator=(MoveOnly&&) = default;
int value = 5;
};
TEST(VariantTest, TestMoveConstruct) {
using V = variant<MoveOnly<class A>, MoveOnly<class B>, MoveOnly<class C>>;
V v(in_place_index<1>, 10);
V v2 = absl::move(v);
EXPECT_EQ(10, absl::get<1>(v2).value);
}
// Used internally to emulate missing triviality traits for tests.
template <class T>
union SingleUnion {
T member;
};
// NOTE: These don't work with types that can't be union members.
// They are just for testing.
template <class T>
struct is_trivially_move_constructible
: std::is_move_constructible<SingleUnion<T>>::type {};
template <class T>
struct is_trivially_move_assignable
: absl::is_move_assignable<SingleUnion<T>>::type {};
TEST(VariantTest, NothrowMoveConstructible) {
// Verify that variant is nothrow move constructible iff its template
// arguments are.
using U = std::unique_ptr<int>;
struct E {
E(E&&) {}
};
static_assert(std::is_nothrow_move_constructible<variant<U>>::value, "");
static_assert(std::is_nothrow_move_constructible<variant<U, int>>::value, "");
static_assert(!std::is_nothrow_move_constructible<variant<U, E>>::value, "");
}
// Test that for each slot, constructing a variant with that type
// produces a sensible object that correctly reports its type, and
// that copies the provided value.
TYPED_TEST(VariantTypesTest, TestValueCtor) {
typedef typename VariantFactory<typename TypeParam::value_type>::Type Variant;
using value_type1 = absl::variant_alternative_t<0, Variant>;
using value_type2 = absl::variant_alternative_t<1, Variant>;
using value_type3 = absl::variant_alternative_t<2, Variant>;
using value_type4 = absl::variant_alternative_t<3, Variant>;
const TypeParam value(TypeParam::kIndex);
Variant v(value);
EXPECT_TRUE(absl::holds_alternative<value_type1>(v) ||
TypeParam::kIndex != 1);
EXPECT_TRUE(absl::holds_alternative<value_type2>(v) ||
TypeParam::kIndex != 2);
EXPECT_TRUE(absl::holds_alternative<value_type3>(v) ||
TypeParam::kIndex != 3);
EXPECT_TRUE(absl::holds_alternative<value_type4>(v) ||
TypeParam::kIndex != 4);
EXPECT_TRUE(nullptr != absl::get_if<value_type1>(&v) ||
TypeParam::kIndex != 1);
EXPECT_TRUE(nullptr != absl::get_if<value_type2>(&v) ||
TypeParam::kIndex != 2);
EXPECT_TRUE(nullptr != absl::get_if<value_type3>(&v) ||
TypeParam::kIndex != 3);
EXPECT_TRUE(nullptr != absl::get_if<value_type4>(&v) ||
TypeParam::kIndex != 4);
EXPECT_TRUE(nullptr != absl::get_if<value_type1>(&v) ||
TypeParam::kIndex != 1);
EXPECT_TRUE(nullptr != absl::get_if<value_type2>(&v) ||
TypeParam::kIndex != 2);
EXPECT_TRUE(nullptr != absl::get_if<value_type3>(&v) ||
TypeParam::kIndex != 3);
EXPECT_TRUE(nullptr != absl::get_if<value_type4>(&v) ||
TypeParam::kIndex != 4);
const TypeParam* valptr = absl::get_if<TypeParam>(&v);
ASSERT_TRUE(nullptr != valptr);
EXPECT_EQ(value.value, valptr->value);
const TypeParam* mutable_valptr = absl::get_if<TypeParam>(&v);
ASSERT_TRUE(nullptr != mutable_valptr);
EXPECT_EQ(value.value, mutable_valptr->value);
}
TEST(VariantTest, AmbiguousValueConstructor) {
EXPECT_FALSE((std::is_convertible<int, absl::variant<int, int>>::value));
EXPECT_FALSE((std::is_constructible<absl::variant<int, int>, int>::value));
}
TEST(VariantTest, InPlaceType) {
using Var = variant<int, std::string, NonCopyable, std::vector<int>>;
Var v1(in_place_type_t<int>(), 7);
ASSERT_TRUE(absl::holds_alternative<int>(v1));
EXPECT_EQ(7, absl::get<int>(v1));
Var v2(in_place_type_t<std::string>(), "ABC");
ASSERT_TRUE(absl::holds_alternative<std::string>(v2));
EXPECT_EQ("ABC", absl::get<std::string>(v2));
Var v3(in_place_type_t<std::string>(), "ABC", 2u);
ASSERT_TRUE(absl::holds_alternative<std::string>(v3));
EXPECT_EQ("AB", absl::get<std::string>(v3));
Var v4(in_place_type_t<NonCopyable>{});
ASSERT_TRUE(absl::holds_alternative<NonCopyable>(v4));
Var v5(in_place_type_t<std::vector<int>>(), {1, 2, 3});
ASSERT_TRUE(absl::holds_alternative<std::vector<int>>(v5));
EXPECT_THAT(absl::get<std::vector<int>>(v5), ::testing::ElementsAre(1, 2, 3));
}
TEST(VariantTest, InPlaceTypeVariableTemplate) {
using Var = variant<int, std::string, NonCopyable, std::vector<int>>;
Var v1(in_place_type<int>, 7);
ASSERT_TRUE(absl::holds_alternative<int>(v1));
EXPECT_EQ(7, absl::get<int>(v1));
Var v2(in_place_type<std::string>, "ABC");
ASSERT_TRUE(absl::holds_alternative<std::string>(v2));
EXPECT_EQ("ABC", absl::get<std::string>(v2));
Var v3(in_place_type<std::string>, "ABC", 2u);
ASSERT_TRUE(absl::holds_alternative<std::string>(v3));
EXPECT_EQ("AB", absl::get<std::string>(v3));
Var v4(in_place_type<NonCopyable>);
ASSERT_TRUE(absl::holds_alternative<NonCopyable>(v4));
Var v5(in_place_type<std::vector<int>>, {1, 2, 3});
ASSERT_TRUE(absl::holds_alternative<std::vector<int>>(v5));
EXPECT_THAT(absl::get<std::vector<int>>(v5), ::testing::ElementsAre(1, 2, 3));
}
TEST(VariantTest, InPlaceTypeInitializerList) {
using Var =
variant<int, std::string, NonCopyable, MoveOnlyWithListConstructor>;
Var v1(in_place_type_t<MoveOnlyWithListConstructor>(), {1, 2, 3, 4, 5}, 6);
ASSERT_TRUE(absl::holds_alternative<MoveOnlyWithListConstructor>(v1));
EXPECT_EQ(6, absl::get<MoveOnlyWithListConstructor>(v1).value);
}
TEST(VariantTest, InPlaceTypeInitializerListVariabletemplate) {
using Var =
variant<int, std::string, NonCopyable, MoveOnlyWithListConstructor>;
Var v1(in_place_type<MoveOnlyWithListConstructor>, {1, 2, 3, 4, 5}, 6);
ASSERT_TRUE(absl::holds_alternative<MoveOnlyWithListConstructor>(v1));
EXPECT_EQ(6, absl::get<MoveOnlyWithListConstructor>(v1).value);
}
TEST(VariantTest, InPlaceIndex) {
using Var = variant<int, std::string, NonCopyable, std::vector<int>>;
Var v1(in_place_index_t<0>(), 7);
ASSERT_TRUE(absl::holds_alternative<int>(v1));
EXPECT_EQ(7, absl::get<int>(v1));
Var v2(in_place_index_t<1>(), "ABC");
ASSERT_TRUE(absl::holds_alternative<std::string>(v2));
EXPECT_EQ("ABC", absl::get<std::string>(v2));
Var v3(in_place_index_t<1>(), "ABC", 2u);
ASSERT_TRUE(absl::holds_alternative<std::string>(v3));
EXPECT_EQ("AB", absl::get<std::string>(v3));
Var v4(in_place_index_t<2>{});
EXPECT_TRUE(absl::holds_alternative<NonCopyable>(v4));
// Verify that a variant with only non-copyables can still be constructed.
EXPECT_TRUE(absl::holds_alternative<NonCopyable>(
variant<NonCopyable>(in_place_index_t<0>{})));
Var v5(in_place_index_t<3>(), {1, 2, 3});
ASSERT_TRUE(absl::holds_alternative<std::vector<int>>(v5));
EXPECT_THAT(absl::get<std::vector<int>>(v5), ::testing::ElementsAre(1, 2, 3));
}
TEST(VariantTest, InPlaceIndexVariableTemplate) {
using Var = variant<int, std::string, NonCopyable, std::vector<int>>;
Var v1(in_place_index<0>, 7);
ASSERT_TRUE(absl::holds_alternative<int>(v1));
EXPECT_EQ(7, absl::get<int>(v1));
Var v2(in_place_index<1>, "ABC");
ASSERT_TRUE(absl::holds_alternative<std::string>(v2));
EXPECT_EQ("ABC", absl::get<std::string>(v2));
Var v3(in_place_index<1>, "ABC", 2u);
ASSERT_TRUE(absl::holds_alternative<std::string>(v3));
EXPECT_EQ("AB", absl::get<std::string>(v3));
Var v4(in_place_index<2>);
EXPECT_TRUE(absl::holds_alternative<NonCopyable>(v4));
// Verify that a variant with only non-copyables can still be constructed.
EXPECT_TRUE(absl::holds_alternative<NonCopyable>(
variant<NonCopyable>(in_place_index<0>)));
Var v5(in_place_index<3>, {1, 2, 3});
ASSERT_TRUE(absl::holds_alternative<std::vector<int>>(v5));
EXPECT_THAT(absl::get<std::vector<int>>(v5), ::testing::ElementsAre(1, 2, 3));
}
TEST(VariantTest, InPlaceIndexInitializerList) {
using Var =
variant<int, std::string, NonCopyable, MoveOnlyWithListConstructor>;
Var v1(in_place_index_t<3>(), {1, 2, 3, 4, 5}, 6);
ASSERT_TRUE(absl::holds_alternative<MoveOnlyWithListConstructor>(v1));
EXPECT_EQ(6, absl::get<MoveOnlyWithListConstructor>(v1).value);
}
TEST(VariantTest, InPlaceIndexInitializerListVariableTemplate) {
using Var =
variant<int, std::string, NonCopyable, MoveOnlyWithListConstructor>;
Var v1(in_place_index<3>, {1, 2, 3, 4, 5}, 6);
ASSERT_TRUE(absl::holds_alternative<MoveOnlyWithListConstructor>(v1));
EXPECT_EQ(6, absl::get<MoveOnlyWithListConstructor>(v1).value);
}
////////////////////
// [variant.dtor] //
////////////////////
// Make sure that the destructor destroys the contained value
TEST(VariantTest, TestDtor) {
typedef VariantFactory<IncrementInDtor>::Type Variant;
using value_type1 = absl::variant_alternative_t<0, Variant>;
using value_type2 = absl::variant_alternative_t<1, Variant>;
using value_type3 = absl::variant_alternative_t<2, Variant>;
using value_type4 = absl::variant_alternative_t<3, Variant>;
int counter = 0;
IncrementInDtor counter_adjuster(&counter);
EXPECT_EQ(0, counter);
value_type1 value1(counter_adjuster);
{ Variant object(value1); }
EXPECT_EQ(1, counter);
value_type2 value2(counter_adjuster);
{ Variant object(value2); }
EXPECT_EQ(2, counter);
value_type3 value3(counter_adjuster);
{ Variant object(value3); }
EXPECT_EQ(3, counter);
value_type4 value4(counter_adjuster);
{ Variant object(value4); }
EXPECT_EQ(4, counter);
}
#ifdef ABSL_HAVE_EXCEPTIONS
// See comment in absl/base/config.h
#if defined(ABSL_INTERNAL_MSVC_2017_DBG_MODE)
TEST(VariantTest, DISABLED_TestDtorValuelessByException)
#else
// Test destruction when in the valueless_by_exception state.
TEST(VariantTest, TestDtorValuelessByException)
#endif
{
int counter = 0;
IncrementInDtor counter_adjuster(&counter);
{
using Variant = VariantFactory<IncrementInDtor>::Type;
Variant v(in_place_index<0>, counter_adjuster);
EXPECT_EQ(0, counter);
ToValuelessByException(v);
ASSERT_TRUE(v.valueless_by_exception());
EXPECT_EQ(1, counter);
}
EXPECT_EQ(1, counter);
}
#endif // ABSL_HAVE_EXCEPTIONS
//////////////////////
// [variant.assign] //
//////////////////////
// Test that self-assignment doesn't destroy the current value
TEST(VariantTest, TestSelfAssignment) {
typedef VariantFactory<IncrementInDtor>::Type Variant;
int counter = 0;
IncrementInDtor counter_adjuster(&counter);
absl::variant_alternative_t<0, Variant> value(counter_adjuster);
Variant object(value);
object.operator=(object);
EXPECT_EQ(0, counter);
// A string long enough that it's likely to defeat any inline representation
// optimization.
const std::string long_str(128, 'a');
std::string foo = long_str;
foo = *&foo;
EXPECT_EQ(long_str, foo);
variant<int, std::string> so = long_str;
ASSERT_EQ(1u, so.index());
EXPECT_EQ(long_str, absl::get<1>(so));
so = *&so;
ASSERT_EQ(1u, so.index());
EXPECT_EQ(long_str, absl::get<1>(so));
}
// Test that assigning a variant<..., T, ...> to a variant<..., T, ...> produces
// a variant<..., T, ...> with the correct value.
TYPED_TEST(VariantTypesTest, TestAssignmentCopiesValueSameTypes) {
typedef typename VariantFactory<typename TypeParam::value_type>::Type Variant;
const TypeParam value(TypeParam::kIndex);
const Variant source(value);
Variant target(TypeParam(value.value + 1));
ASSERT_TRUE(absl::holds_alternative<TypeParam>(source));
ASSERT_TRUE(absl::holds_alternative<TypeParam>(target));
ASSERT_NE(absl::get<TypeParam>(source), absl::get<TypeParam>(target));
target = source;
ASSERT_TRUE(absl::holds_alternative<TypeParam>(source));
ASSERT_TRUE(absl::holds_alternative<TypeParam>(target));
EXPECT_EQ(absl::get<TypeParam>(source), absl::get<TypeParam>(target));
}
// Test that assisnging a variant<..., T, ...> to a variant<1, ...>
// produces a variant<..., T, ...> with the correct value.
TYPED_TEST(VariantTypesTest, TestAssignmentCopiesValuesVaryingSourceType) {
typedef typename VariantFactory<typename TypeParam::value_type>::Type Variant;
using value_type1 = absl::variant_alternative_t<0, Variant>;
const TypeParam value(TypeParam::kIndex);
const Variant source(value);
ASSERT_TRUE(absl::holds_alternative<TypeParam>(source));
Variant target(value_type1(1));
ASSERT_TRUE(absl::holds_alternative<value_type1>(target));
target = source;
EXPECT_TRUE(absl::holds_alternative<TypeParam>(source));
EXPECT_TRUE(absl::holds_alternative<TypeParam>(target));
EXPECT_EQ(absl::get<TypeParam>(source), absl::get<TypeParam>(target));
}
// Test that assigning a variant<1, ...> to a variant<..., T, ...>
// produces a variant<1, ...> with the correct value.
TYPED_TEST(VariantTypesTest, TestAssignmentCopiesValuesVaryingTargetType) {
typedef typename VariantFactory<typename TypeParam::value_type>::Type Variant;
using value_type1 = absl::variant_alternative_t<0, Variant>;
const Variant source(value_type1(1));
ASSERT_TRUE(absl::holds_alternative<value_type1>(source));
const TypeParam value(TypeParam::kIndex);
Variant target(value);
ASSERT_TRUE(absl::holds_alternative<TypeParam>(target));
target = source;
EXPECT_TRUE(absl::holds_alternative<value_type1>(target));
EXPECT_TRUE(absl::holds_alternative<value_type1>(source));
EXPECT_EQ(absl::get<value_type1>(source), absl::get<value_type1>(target));
}
// Test that operator=<T> works, that assigning a new value destroys
// the old and that assigning the new value again does not redestroy
// the old
TEST(VariantTest, TestAssign) {
typedef VariantFactory<IncrementInDtor>::Type Variant;
using value_type1 = absl::variant_alternative_t<0, Variant>;
using value_type2 = absl::variant_alternative_t<1, Variant>;
using value_type3 = absl::variant_alternative_t<2, Variant>;
using value_type4 = absl::variant_alternative_t<3, Variant>;
const int kSize = 4;
int counter[kSize];
std::unique_ptr<IncrementInDtor> counter_adjustor[kSize];
for (int i = 0; i != kSize; i++) {
counter[i] = 0;
counter_adjustor[i] = absl::make_unique<IncrementInDtor>(&counter[i]);
}
value_type1 v1(*counter_adjustor[0]);
value_type2 v2(*counter_adjustor[1]);
value_type3 v3(*counter_adjustor[2]);
value_type4 v4(*counter_adjustor[3]);
// Test that reassignment causes destruction of old value
{
Variant object(v1);
object = v2;
object = v3;
object = v4;
object = v1;
}
EXPECT_EQ(2, counter[0]);
EXPECT_EQ(1, counter[1]);
EXPECT_EQ(1, counter[2]);
EXPECT_EQ(1, counter[3]);
std::fill(std::begin(counter), std::end(counter), 0);
// Test that self-assignment does not cause destruction of old value
{
Variant object(v1);
object.operator=(object);
EXPECT_EQ(0, counter[0]);
}
{
Variant object(v2);
object.operator=(object);
EXPECT_EQ(0, counter[1]);
}
{
Variant object(v3);
object.operator=(object);
EXPECT_EQ(0, counter[2]);
}
{
Variant object(v4);
object.operator=(object);
EXPECT_EQ(0, counter[3]);
}
EXPECT_EQ(1, counter[0]);
EXPECT_EQ(1, counter[1]);
EXPECT_EQ(1, counter[2]);
EXPECT_EQ(1, counter[3]);
}
// This tests that we perform a backup if the copy-assign can throw but the move
// cannot throw.
TEST(VariantTest, TestBackupAssign) {
typedef VariantFactory<IncrementInDtorCopyCanThrow>::Type Variant;
using value_type1 = absl::variant_alternative_t<0, Variant>;
using value_type2 = absl::variant_alternative_t<1, Variant>;
using value_type3 = absl::variant_alternative_t<2, Variant>;
using value_type4 = absl::variant_alternative_t<3, Variant>;
const int kSize = 4;
int counter[kSize];
std::unique_ptr<IncrementInDtorCopyCanThrow> counter_adjustor[kSize];
for (int i = 0; i != kSize; i++) {
counter[i] = 0;
counter_adjustor[i].reset(new IncrementInDtorCopyCanThrow(&counter[i]));
}
value_type1 v1(*counter_adjustor[0]);
value_type2 v2(*counter_adjustor[1]);
value_type3 v3(*counter_adjustor[2]);
value_type4 v4(*counter_adjustor[3]);
// Test that reassignment causes destruction of old value
{
Variant object(v1);
object = v2;
object = v3;
object = v4;
object = v1;
}
// libstdc++ doesn't pass this test
#if !(defined(ABSL_USES_STD_VARIANT) && defined(__GLIBCXX__))
EXPECT_EQ(3, counter[0]);
EXPECT_EQ(2, counter[1]);
EXPECT_EQ(2, counter[2]);
EXPECT_EQ(2, counter[3]);
#endif
std::fill(std::begin(counter), std::end(counter), 0);
// Test that self-assignment does not cause destruction of old value
{
Variant object(v1);
object.operator=(object);
EXPECT_EQ(0, counter[0]);
}
{
Variant object(v2);
object.operator=(object);
EXPECT_EQ(0, counter[1]);
}
{
Variant object(v3);
object.operator=(object);
EXPECT_EQ(0, counter[2]);
}
{
Variant object(v4);
object.operator=(object);
EXPECT_EQ(0, counter[3]);
}
EXPECT_EQ(1, counter[0]);
EXPECT_EQ(1, counter[1]);
EXPECT_EQ(1, counter[2]);
EXPECT_EQ(1, counter[3]);
}
///////////////////
// [variant.mod] //
///////////////////
TEST(VariantTest, TestEmplaceBasic) {
using Variant = variant<int, char>;
Variant v(absl::in_place_index<0>, 0);
{
char& emplace_result = v.emplace<char>();
ASSERT_TRUE(absl::holds_alternative<char>(v));
EXPECT_EQ(absl::get<char>(v), 0);
EXPECT_EQ(&emplace_result, &absl::get<char>(v));
}
// Make sure that another emplace does zero-initialization
absl::get<char>(v) = 'a';
v.emplace<char>('b');
ASSERT_TRUE(absl::holds_alternative<char>(v));
EXPECT_EQ(absl::get<char>(v), 'b');
{
int& emplace_result = v.emplace<int>();
EXPECT_TRUE(absl::holds_alternative<int>(v));
EXPECT_EQ(absl::get<int>(v), 0);
EXPECT_EQ(&emplace_result, &absl::get<int>(v));
}
}
TEST(VariantTest, TestEmplaceInitializerList) {
using Var =
variant<int, std::string, NonCopyable, MoveOnlyWithListConstructor>;
Var v1(absl::in_place_index<0>, 555);
MoveOnlyWithListConstructor& emplace_result =
v1.emplace<MoveOnlyWithListConstructor>({1, 2, 3, 4, 5}, 6);
ASSERT_TRUE(absl::holds_alternative<MoveOnlyWithListConstructor>(v1));
EXPECT_EQ(6, absl::get<MoveOnlyWithListConstructor>(v1).value);
EXPECT_EQ(&emplace_result, &absl::get<MoveOnlyWithListConstructor>(v1));
}
TEST(VariantTest, TestEmplaceIndex) {
using Variant = variant<int, char>;
Variant v(absl::in_place_index<0>, 555);
{
char& emplace_result = v.emplace<1>();
ASSERT_TRUE(absl::holds_alternative<char>(v));
EXPECT_EQ(absl::get<char>(v), 0);
EXPECT_EQ(&emplace_result, &absl::get<char>(v));
}
// Make sure that another emplace does zero-initialization
absl::get<char>(v) = 'a';
v.emplace<1>('b');
ASSERT_TRUE(absl::holds_alternative<char>(v));
EXPECT_EQ(absl::get<char>(v), 'b');
{
int& emplace_result = v.emplace<0>();
EXPECT_TRUE(absl::holds_alternative<int>(v));
EXPECT_EQ(absl::get<int>(v), 0);
EXPECT_EQ(&emplace_result, &absl::get<int>(v));
}
}
TEST(VariantTest, TestEmplaceIndexInitializerList) {
using Var =
variant<int, std::string, NonCopyable, MoveOnlyWithListConstructor>;
Var v1(absl::in_place_index<0>, 555);
MoveOnlyWithListConstructor& emplace_result =
v1.emplace<3>({1, 2, 3, 4, 5}, 6);
ASSERT_TRUE(absl::holds_alternative<MoveOnlyWithListConstructor>(v1));
EXPECT_EQ(6, absl::get<MoveOnlyWithListConstructor>(v1).value);
EXPECT_EQ(&emplace_result, &absl::get<MoveOnlyWithListConstructor>(v1));
}
//////////////////////
// [variant.status] //
//////////////////////
TEST(VariantTest, Index) {
using Var = variant<int, std::string, double>;
Var v = 1;
EXPECT_EQ(0u, v.index());
v = "str";
EXPECT_EQ(1u, v.index());
v = 0.;
EXPECT_EQ(2u, v.index());
Var v2 = v;
EXPECT_EQ(2u, v2.index());
v2.emplace<int>(3);
EXPECT_EQ(0u, v2.index());
}
TEST(VariantTest, NotValuelessByException) {
using Var = variant<int, std::string, double>;
Var v = 1;
EXPECT_FALSE(v.valueless_by_exception());
v = "str";
EXPECT_FALSE(v.valueless_by_exception());
v = 0.;
EXPECT_FALSE(v.valueless_by_exception());
Var v2 = v;
EXPECT_FALSE(v.valueless_by_exception());
v2.emplace<int>(3);
EXPECT_FALSE(v.valueless_by_exception());
}
#ifdef ABSL_HAVE_EXCEPTIONS
TEST(VariantTest, IndexValuelessByException) {
using Var = variant<MoveCanThrow, std::string, double>;
Var v(absl::in_place_index<0>);
EXPECT_EQ(0u, v.index());
ToValuelessByException(v);
EXPECT_EQ(absl::variant_npos, v.index());
v = "str";
EXPECT_EQ(1u, v.index());
}
TEST(VariantTest, ValuelessByException) {
using Var = variant<MoveCanThrow, std::string, double>;
Var v(absl::in_place_index<0>);
EXPECT_FALSE(v.valueless_by_exception());
ToValuelessByException(v);
EXPECT_TRUE(v.valueless_by_exception());
v = "str";
EXPECT_FALSE(v.valueless_by_exception());
}
#endif // ABSL_HAVE_EXCEPTIONS
////////////////////
// [variant.swap] //
////////////////////
TEST(VariantTest, MemberSwap) {
SpecialSwap v1(3);
SpecialSwap v2(7);
variant<SpecialSwap> a = v1, b = v2;
EXPECT_THAT(a, VariantWith<SpecialSwap>(v1));
EXPECT_THAT(b, VariantWith<SpecialSwap>(v2));
a.swap(b);
EXPECT_THAT(a, VariantWith<SpecialSwap>(v2));
EXPECT_THAT(b, VariantWith<SpecialSwap>(v1));
EXPECT_TRUE(absl::get<SpecialSwap>(a).special_swap);
using V = variant<MoveCanThrow, std::string, int>;
int i = 33;
std::string s = "abc";
{
// lhs and rhs holds different alternative
V lhs(i), rhs(s);
lhs.swap(rhs);
EXPECT_THAT(lhs, VariantWith<std::string>(s));
EXPECT_THAT(rhs, VariantWith<int>(i));
}
#ifdef ABSL_HAVE_EXCEPTIONS
V valueless(in_place_index<0>);
ToValuelessByException(valueless);
{
// lhs is valueless
V lhs(valueless), rhs(i);
lhs.swap(rhs);
EXPECT_THAT(lhs, VariantWith<int>(i));
EXPECT_TRUE(rhs.valueless_by_exception());
}
{
// rhs is valueless
V lhs(s), rhs(valueless);
lhs.swap(rhs);
EXPECT_THAT(rhs, VariantWith<std::string>(s));
EXPECT_TRUE(lhs.valueless_by_exception());
}
{
// both are valueless
V lhs(valueless), rhs(valueless);
lhs.swap(rhs);
EXPECT_TRUE(lhs.valueless_by_exception());
EXPECT_TRUE(rhs.valueless_by_exception());
}
#endif // ABSL_HAVE_EXCEPTIONS
}
//////////////////////
// [variant.helper] //
//////////////////////
TEST(VariantTest, VariantSize) {
{
using Size1Variant = absl::variant<int>;
EXPECT_EQ(1u, absl::variant_size<Size1Variant>::value);
EXPECT_EQ(1u, absl::variant_size<const Size1Variant>::value);
EXPECT_EQ(1u, absl::variant_size<volatile Size1Variant>::value);
EXPECT_EQ(1u, absl::variant_size<const volatile Size1Variant>::value);
}
{
using Size3Variant = absl::variant<int, float, int>;
EXPECT_EQ(3u, absl::variant_size<Size3Variant>::value);
EXPECT_EQ(3u, absl::variant_size<const Size3Variant>::value);
EXPECT_EQ(3u, absl::variant_size<volatile Size3Variant>::value);
EXPECT_EQ(3u, absl::variant_size<const volatile Size3Variant>::value);
}
}
TEST(VariantTest, VariantAlternative) {
{
using V = absl::variant<float, int, const char*>;
EXPECT_TRUE(
(std::is_same<float, absl::variant_alternative_t<0, V>>::value));
EXPECT_TRUE((std::is_same<const float,
absl::variant_alternative_t<0, const V>>::value));
EXPECT_TRUE(
(std::is_same<volatile float,
absl::variant_alternative_t<0, volatile V>>::value));
EXPECT_TRUE((
std::is_same<const volatile float,
absl::variant_alternative_t<0, const volatile V>>::value));
EXPECT_TRUE((std::is_same<int, absl::variant_alternative_t<1, V>>::value));
EXPECT_TRUE((std::is_same<const int,
absl::variant_alternative_t<1, const V>>::value));
EXPECT_TRUE(
(std::is_same<volatile int,
absl::variant_alternative_t<1, volatile V>>::value));
EXPECT_TRUE((
std::is_same<const volatile int,
absl::variant_alternative_t<1, const volatile V>>::value));
EXPECT_TRUE(
(std::is_same<const char*, absl::variant_alternative_t<2, V>>::value));
EXPECT_TRUE((std::is_same<const char* const,
absl::variant_alternative_t<2, const V>>::value));
EXPECT_TRUE(
(std::is_same<const char* volatile,
absl::variant_alternative_t<2, volatile V>>::value));
EXPECT_TRUE((
std::is_same<const char* const volatile,
absl::variant_alternative_t<2, const volatile V>>::value));
}
{
using V = absl::variant<float, volatile int, const char*>;
EXPECT_TRUE(
(std::is_same<float, absl::variant_alternative_t<0, V>>::value));
EXPECT_TRUE((std::is_same<const float,
absl::variant_alternative_t<0, const V>>::value));
EXPECT_TRUE(
(std::is_same<volatile float,
absl::variant_alternative_t<0, volatile V>>::value));
EXPECT_TRUE((
std::is_same<const volatile float,
absl::variant_alternative_t<0, const volatile V>>::value));
EXPECT_TRUE(
(std::is_same<volatile int, absl::variant_alternative_t<1, V>>::value));
EXPECT_TRUE((std::is_same<const volatile int,
absl::variant_alternative_t<1, const V>>::value));
EXPECT_TRUE(
(std::is_same<volatile int,
absl::variant_alternative_t<1, volatile V>>::value));
EXPECT_TRUE((
std::is_same<const volatile int,
absl::variant_alternative_t<1, const volatile V>>::value));
EXPECT_TRUE(
(std::is_same<const char*, absl::variant_alternative_t<2, V>>::value));
EXPECT_TRUE((std::is_same<const char* const,
absl::variant_alternative_t<2, const V>>::value));
EXPECT_TRUE(
(std::is_same<const char* volatile,
absl::variant_alternative_t<2, volatile V>>::value));
EXPECT_TRUE((
std::is_same<const char* const volatile,
absl::variant_alternative_t<2, const volatile V>>::value));
}
}
///////////////////
// [variant.get] //
///////////////////
TEST(VariantTest, HoldsAlternative) {
using Var = variant<int, std::string, double>;
Var v = 1;
EXPECT_TRUE(absl::holds_alternative<int>(v));
EXPECT_FALSE(absl::holds_alternative<std::string>(v));
EXPECT_FALSE(absl::holds_alternative<double>(v));
v = "str";
EXPECT_FALSE(absl::holds_alternative<int>(v));
EXPECT_TRUE(absl::holds_alternative<std::string>(v));
EXPECT_FALSE(absl::holds_alternative<double>(v));
v = 0.;
EXPECT_FALSE(absl::holds_alternative<int>(v));
EXPECT_FALSE(absl::holds_alternative<std::string>(v));
EXPECT_TRUE(absl::holds_alternative<double>(v));
Var v2 = v;
EXPECT_FALSE(absl::holds_alternative<int>(v2));
EXPECT_FALSE(absl::holds_alternative<std::string>(v2));
EXPECT_TRUE(absl::holds_alternative<double>(v2));
v2.emplace<int>(3);
EXPECT_TRUE(absl::holds_alternative<int>(v2));
EXPECT_FALSE(absl::holds_alternative<std::string>(v2));
EXPECT_FALSE(absl::holds_alternative<double>(v2));
}
TEST(VariantTest, GetIndex) {
using Var = variant<int, std::string, double, int>;
{
Var v(absl::in_place_index<0>, 0);
using LValueGetType = decltype(absl::get<0>(v));
using RValueGetType = decltype(absl::get<0>(absl::move(v)));
EXPECT_TRUE((std::is_same<LValueGetType, int&>::value));
EXPECT_TRUE((std::is_same<RValueGetType, int&&>::value));
EXPECT_EQ(absl::get<0>(v), 0);
EXPECT_EQ(absl::get<0>(absl::move(v)), 0);
const Var& const_v = v;
using ConstLValueGetType = decltype(absl::get<0>(const_v));
using ConstRValueGetType = decltype(absl::get<0>(absl::move(const_v)));
EXPECT_TRUE((std::is_same<ConstLValueGetType, const int&>::value));
EXPECT_TRUE((std::is_same<ConstRValueGetType, const int&&>::value));
EXPECT_EQ(absl::get<0>(const_v), 0);
EXPECT_EQ(absl::get<0>(absl::move(const_v)), 0);
}
{
Var v = std::string("Hello");
using LValueGetType = decltype(absl::get<1>(v));
using RValueGetType = decltype(absl::get<1>(absl::move(v)));
EXPECT_TRUE((std::is_same<LValueGetType, std::string&>::value));
EXPECT_TRUE((std::is_same<RValueGetType, std::string&&>::value));
EXPECT_EQ(absl::get<1>(v), "Hello");
EXPECT_EQ(absl::get<1>(absl::move(v)), "Hello");
const Var& const_v = v;
using ConstLValueGetType = decltype(absl::get<1>(const_v));
using ConstRValueGetType = decltype(absl::get<1>(absl::move(const_v)));
EXPECT_TRUE((std::is_same<ConstLValueGetType, const std::string&>::value));
EXPECT_TRUE((std::is_same<ConstRValueGetType, const std::string&&>::value));
EXPECT_EQ(absl::get<1>(const_v), "Hello");
EXPECT_EQ(absl::get<1>(absl::move(const_v)), "Hello");
}
{
Var v = 2.0;
using LValueGetType = decltype(absl::get<2>(v));
using RValueGetType = decltype(absl::get<2>(absl::move(v)));
EXPECT_TRUE((std::is_same<LValueGetType, double&>::value));
EXPECT_TRUE((std::is_same<RValueGetType, double&&>::value));
EXPECT_EQ(absl::get<2>(v), 2.);
EXPECT_EQ(absl::get<2>(absl::move(v)), 2.);
const Var& const_v = v;
using ConstLValueGetType = decltype(absl::get<2>(const_v));
using ConstRValueGetType = decltype(absl::get<2>(absl::move(const_v)));
EXPECT_TRUE((std::is_same<ConstLValueGetType, const double&>::value));
EXPECT_TRUE((std::is_same<ConstRValueGetType, const double&&>::value));
EXPECT_EQ(absl::get<2>(const_v), 2.);
EXPECT_EQ(absl::get<2>(absl::move(const_v)), 2.);
}
{
Var v(absl::in_place_index<0>, 0);
v.emplace<3>(1);
using LValueGetType = decltype(absl::get<3>(v));
using RValueGetType = decltype(absl::get<3>(absl::move(v)));
EXPECT_TRUE((std::is_same<LValueGetType, int&>::value));
EXPECT_TRUE((std::is_same<RValueGetType, int&&>::value));
EXPECT_EQ(absl::get<3>(v), 1);
EXPECT_EQ(absl::get<3>(absl::move(v)), 1);
const Var& const_v = v;
using ConstLValueGetType = decltype(absl::get<3>(const_v));
using ConstRValueGetType = decltype(absl::get<3>(absl::move(const_v)));
EXPECT_TRUE((std::is_same<ConstLValueGetType, const int&>::value));
EXPECT_TRUE((std::is_same<ConstRValueGetType, const int&&>::value));
EXPECT_EQ(absl::get<3>(const_v), 1);
EXPECT_EQ(absl::get<3>(absl::move(const_v)), 1); // NOLINT
}
}
TEST(VariantTest, BadGetIndex) {
using Var = variant<int, std::string, double>;
{
Var v = 1;
ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<1>(v));
ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<1>(std::move(v)));
const Var& const_v = v;
ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<1>(const_v));
ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(
absl::get<1>(std::move(const_v))); // NOLINT
}
{
Var v = std::string("Hello");
ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<0>(v));
ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<0>(std::move(v)));
const Var& const_v = v;
ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<0>(const_v));
ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(
absl::get<0>(std::move(const_v))); // NOLINT
}
}
TEST(VariantTest, GetType) {
using Var = variant<int, std::string, double>;
{
Var v = 1;
using LValueGetType = decltype(absl::get<int>(v));
using RValueGetType = decltype(absl::get<int>(absl::move(v)));
EXPECT_TRUE((std::is_same<LValueGetType, int&>::value));
EXPECT_TRUE((std::is_same<RValueGetType, int&&>::value));
EXPECT_EQ(absl::get<int>(v), 1);
EXPECT_EQ(absl::get<int>(absl::move(v)), 1);
const Var& const_v = v;
using ConstLValueGetType = decltype(absl::get<int>(const_v));
using ConstRValueGetType = decltype(absl::get<int>(absl::move(const_v)));
EXPECT_TRUE((std::is_same<ConstLValueGetType, const int&>::value));
EXPECT_TRUE((std::is_same<ConstRValueGetType, const int&&>::value));
EXPECT_EQ(absl::get<int>(const_v), 1);
EXPECT_EQ(absl::get<int>(absl::move(const_v)), 1);
}
{
Var v = std::string("Hello");
using LValueGetType = decltype(absl::get<1>(v));
using RValueGetType = decltype(absl::get<1>(absl::move(v)));
EXPECT_TRUE((std::is_same<LValueGetType, std::string&>::value));
EXPECT_TRUE((std::is_same<RValueGetType, std::string&&>::value));
EXPECT_EQ(absl::get<std::string>(v), "Hello");
EXPECT_EQ(absl::get<std::string>(absl::move(v)), "Hello");
const Var& const_v = v;
using ConstLValueGetType = decltype(absl::get<1>(const_v));
using ConstRValueGetType = decltype(absl::get<1>(absl::move(const_v)));
EXPECT_TRUE((std::is_same<ConstLValueGetType, const std::string&>::value));
EXPECT_TRUE((std::is_same<ConstRValueGetType, const std::string&&>::value));
EXPECT_EQ(absl::get<std::string>(const_v), "Hello");
EXPECT_EQ(absl::get<std::string>(absl::move(const_v)), "Hello");
}
{
Var v = 2.0;
using LValueGetType = decltype(absl::get<2>(v));
using RValueGetType = decltype(absl::get<2>(absl::move(v)));
EXPECT_TRUE((std::is_same<LValueGetType, double&>::value));
EXPECT_TRUE((std::is_same<RValueGetType, double&&>::value));
EXPECT_EQ(absl::get<double>(v), 2.);
EXPECT_EQ(absl::get<double>(absl::move(v)), 2.);
const Var& const_v = v;
using ConstLValueGetType = decltype(absl::get<2>(const_v));
using ConstRValueGetType = decltype(absl::get<2>(absl::move(const_v)));
EXPECT_TRUE((std::is_same<ConstLValueGetType, const double&>::value));
EXPECT_TRUE((std::is_same<ConstRValueGetType, const double&&>::value));
EXPECT_EQ(absl::get<double>(const_v), 2.);
EXPECT_EQ(absl::get<double>(absl::move(const_v)), 2.);
}
}
TEST(VariantTest, BadGetType) {
using Var = variant<int, std::string, double>;
{
Var v = 1;
ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<std::string>(v));
ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(
absl::get<std::string>(std::move(v)));
const Var& const_v = v;
ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(
absl::get<std::string>(const_v));
ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(
absl::get<std::string>(std::move(const_v))); // NOLINT
}
{
Var v = std::string("Hello");
ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<int>(v));
ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<int>(std::move(v)));
const Var& const_v = v;
ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(absl::get<int>(const_v));
ABSL_VARIANT_TEST_EXPECT_BAD_VARIANT_ACCESS(
absl::get<int>(std::move(const_v))); // NOLINT
}
}
TEST(VariantTest, GetIfIndex) {
using Var = variant<int, std::string, double, int>;
{
Var v(absl::in_place_index<0>, 0);
EXPECT_TRUE(noexcept(absl::get_if<0>(&v)));
{
auto* elem = absl::get_if<0>(&v);
EXPECT_TRUE((std::is_same<decltype(elem), int*>::value));
ASSERT_NE(elem, nullptr);
EXPECT_EQ(*elem, 0);
{
auto* bad_elem = absl::get_if<1>(&v);
EXPECT_TRUE((std::is_same<decltype(bad_elem), std::string*>::value));
EXPECT_EQ(bad_elem, nullptr);
}
{
auto* bad_elem = absl::get_if<2>(&v);
EXPECT_TRUE((std::is_same<decltype(bad_elem), double*>::value));
EXPECT_EQ(bad_elem, nullptr);
}
{
auto* bad_elem = absl::get_if<3>(&v);
EXPECT_TRUE((std::is_same<decltype(bad_elem), int*>::value));
EXPECT_EQ(bad_elem, nullptr);
}
}
const Var& const_v = v;
EXPECT_TRUE(noexcept(absl::get_if<0>(&const_v)));
{
auto* elem = absl::get_if<0>(&const_v);
EXPECT_TRUE((std::is_same<decltype(elem), const int*>::value));
ASSERT_NE(elem, nullptr);
EXPECT_EQ(*elem, 0);
{
auto* bad_elem = absl::get_if<1>(&const_v);
EXPECT_TRUE(
(std::is_same<decltype(bad_elem), const std::string*>::value));
EXPECT_EQ(bad_elem, nullptr);
}
{
auto* bad_elem = absl::get_if<2>(&const_v);
EXPECT_TRUE((std::is_same<decltype(bad_elem), const double*>::value));
EXPECT_EQ(bad_elem, nullptr);
}
{
auto* bad_elem = absl::get_if<3>(&const_v);
EXPECT_EQ(bad_elem, nullptr);
EXPECT_TRUE((std::is_same<decltype(bad_elem), const int*>::value));
}
}
}
{
Var v = std::string("Hello");
EXPECT_TRUE(noexcept(absl::get_if<1>(&v)));
{
auto* elem = absl::get_if<1>(&v);
EXPECT_TRUE((std::is_same<decltype(elem), std::string*>::value));
ASSERT_NE(elem, nullptr);
EXPECT_EQ(*elem, "Hello");
{
auto* bad_elem = absl::get_if<0>(&v);
EXPECT_TRUE((std::is_same<decltype(bad_elem), int*>::value));
EXPECT_EQ(bad_elem, nullptr);
}
{
auto* bad_elem = absl::get_if<2>(&v);
EXPECT_TRUE((std::is_same<decltype(bad_elem), double*>::value));
EXPECT_EQ(bad_elem, nullptr);
}
{
auto* bad_elem = absl::get_if<3>(&v);
EXPECT_TRUE((std::is_same<decltype(bad_elem), int*>::value));
EXPECT_EQ(bad_elem, nullptr);
}
}
const Var& const_v = v;
EXPECT_TRUE(noexcept(absl::get_if<1>(&const_v)));
{
auto* elem = absl::get_if<1>(&const_v);
EXPECT_TRUE((std::is_same<decltype(elem), const std::string*>::value));
ASSERT_NE(elem, nullptr);
EXPECT_EQ(*elem, "Hello");
{
auto* bad_elem = absl::get_if<0>(&const_v);
EXPECT_TRUE((std::is_same<decltype(bad_elem), const int*>::value));
EXPECT_EQ(bad_elem, nullptr);
}
{
auto* bad_elem = absl::get_if<2>(&const_v);
EXPECT_TRUE((std::is_same<decltype(bad_elem), const double*>::value));
EXPECT_EQ(bad_elem, nullptr);
}
{
auto* bad_elem = absl::get_if<3>(&const_v);
EXPECT_EQ(bad_elem, nullptr);
EXPECT_TRUE((std::is_same<decltype(bad_elem), const int*>::value));
}
}
}
{
Var v = 2.0;
EXPECT_TRUE(noexcept(absl::get_if<2>(&v)));
{
auto* elem = absl::get_if<2>(&v);
EXPECT_TRUE((std::is_same<decltype(elem), double*>::value));
ASSERT_NE(elem, nullptr);
EXPECT_EQ(*elem, 2.0);
{
auto* bad_elem = absl::get_if<0>(&v);
EXPECT_TRUE((std::is_same<decltype(bad_elem), int*>::value));
EXPECT_EQ(bad_elem, nullptr);
}
{
auto* bad_elem = absl::get_if<1>(&v);
EXPECT_TRUE((std::is_same<decltype(bad_elem), std::string*>::value));
EXPECT_EQ(bad_elem, nullptr);
}
{
auto* bad_elem = absl::get_if<3>(&v);
EXPECT_TRUE((std::is_same<decltype(bad_elem), int*>::value));
EXPECT_EQ(bad_elem, nullptr);
}
}
const Var& const_v = v;
EXPECT_TRUE(noexcept(absl::get_if<2>(&const_v)));
{
auto* elem = absl::get_if<2>(&const_v);
EXPECT_TRUE((std::is_same<decltype(elem), const double*>::value));
ASSERT_NE(elem, nullptr);
EXPECT_EQ(*elem, 2.0);
{
auto* bad_elem = absl::get_if<0>(&const_v);
EXPECT_TRUE((std::is_same<decltype(bad_elem), const int*>::value));
EXPECT_EQ(bad_elem, nullptr);
}
{
auto* bad_elem = absl::get_if<1>(&const_v);
EXPECT_TRUE(
(std::is_same<decltype(bad_elem), const std::string*>::value));
EXPECT_EQ(bad_elem, nullptr);
}
{
auto* bad_elem = absl::get_if<3>(&const_v);
EXPECT_EQ(bad_elem, nullptr);
EXPECT_TRUE((std::is_same<decltype(bad_elem), const int*>::value));
}
}
}
{
Var v(absl::in_place_index<0>, 0);
v.emplace<3>(1);
EXPECT_TRUE(noexcept(absl::get_if<3>(&v)));
{
auto* elem = absl::get_if<3>(&v);
EXPECT_TRUE((std::is_same<decltype(elem), int*>::value));
ASSERT_NE(elem, nullptr);
EXPECT_EQ(*elem, 1);
{
auto* bad_elem = absl::get_if<0>(&v);
EXPECT_TRUE((std::is_same<decltype(bad_elem), int*>::value));
EXPECT_EQ(bad_elem, nullptr);
}
{
auto* bad_elem = absl::get_if<1>(&v);
EXPECT_TRUE((std::is_same<decltype(bad_elem), std::string*>::value));
EXPECT_EQ(bad_elem, nullptr);
}
{
auto* bad_elem = absl::get_if<2>(&v);
EXPECT_TRUE((std::is_same<decltype(bad_elem), double*>::value));
EXPECT_EQ(bad_elem, nullptr);
}
}
const Var& const_v = v;
EXPECT_TRUE(noexcept(absl::get_if<3>(&const_v)));
{
auto* elem = absl::get_if<3>(&const_v);
EXPECT_TRUE((std::is_same<decltype(elem), const int*>::value));
ASSERT_NE(elem, nullptr);
EXPECT_EQ(*elem, 1);
{
auto* bad_elem = absl::get_if<0>(&const_v);
EXPECT_TRUE((std::is_same<decltype(bad_elem), const int*>::value));
EXPECT_EQ(bad_elem, nullptr);
}
{
auto* bad_elem = absl::get_if<1>(&const_v);
EXPECT_TRUE(
(std::is_same<decltype(bad_elem), const std::string*>::value));
EXPECT_EQ(bad_elem, nullptr);
}
{
auto* bad_elem = absl::get_if<2>(&const_v);
EXPECT_EQ(bad_elem, nullptr);
EXPECT_TRUE((std::is_same<decltype(bad_elem), const double*>::value));
}
}
}
}
//////////////////////
// [variant.relops] //
//////////////////////
TEST(VariantTest, OperatorEquals) {
variant<int, std::string> a(1), b(1);
EXPECT_TRUE(a == b);
EXPECT_TRUE(b == a);
EXPECT_FALSE(a != b);
EXPECT_FALSE(b != a);
b = "str";
EXPECT_FALSE(a == b);
EXPECT_FALSE(b == a);
EXPECT_TRUE(a != b);
EXPECT_TRUE(b != a);
b = 0;
EXPECT_FALSE(a == b);
EXPECT_FALSE(b == a);
EXPECT_TRUE(a != b);
EXPECT_TRUE(b != a);
a = b = "foo";
EXPECT_TRUE(a == b);
EXPECT_TRUE(b == a);
EXPECT_FALSE(a != b);
EXPECT_FALSE(b != a);
a = "bar";
EXPECT_FALSE(a == b);
EXPECT_FALSE(b == a);
EXPECT_TRUE(a != b);
EXPECT_TRUE(b != a);
}
TEST(VariantTest, OperatorRelational) {
variant<int, std::string> a(1), b(1);
EXPECT_FALSE(a < b);
EXPECT_FALSE(b < a);
EXPECT_FALSE(a > b);
EXPECT_FALSE(b > a);
EXPECT_TRUE(a <= b);
EXPECT_TRUE(b <= a);
EXPECT_TRUE(a >= b);
EXPECT_TRUE(b >= a);
b = "str";
EXPECT_TRUE(a < b);
EXPECT_FALSE(b < a);
EXPECT_FALSE(a > b);
EXPECT_TRUE(b > a);
EXPECT_TRUE(a <= b);
EXPECT_FALSE(b <= a);
EXPECT_FALSE(a >= b);
EXPECT_TRUE(b >= a);
b = 0;
EXPECT_FALSE(a < b);
EXPECT_TRUE(b < a);
EXPECT_TRUE(a > b);
EXPECT_FALSE(b > a);
EXPECT_FALSE(a <= b);
EXPECT_TRUE(b <= a);
EXPECT_TRUE(a >= b);
EXPECT_FALSE(b >= a);
a = b = "foo";
EXPECT_FALSE(a < b);
EXPECT_FALSE(b < a);
EXPECT_FALSE(a > b);
EXPECT_FALSE(b > a);
EXPECT_TRUE(a <= b);
EXPECT_TRUE(b <= a);
EXPECT_TRUE(a >= b);
EXPECT_TRUE(b >= a);
a = "bar";
EXPECT_TRUE(a < b);
EXPECT_FALSE(b < a);
EXPECT_FALSE(a > b);
EXPECT_TRUE(b > a);
EXPECT_TRUE(a <= b);
EXPECT_FALSE(b <= a);
EXPECT_FALSE(a >= b);
EXPECT_TRUE(b >= a);
}
#ifdef ABSL_HAVE_EXCEPTIONS
TEST(VariantTest, ValuelessOperatorEquals) {
variant<MoveCanThrow, std::string> int_v(1), string_v("Hello"),
valueless(absl::in_place_index<0>),
other_valueless(absl::in_place_index<0>);
ToValuelessByException(valueless);
ToValuelessByException(other_valueless);
EXPECT_TRUE(valueless == other_valueless);
EXPECT_TRUE(other_valueless == valueless);
EXPECT_FALSE(valueless == int_v);
EXPECT_FALSE(valueless == string_v);
EXPECT_FALSE(int_v == valueless);
EXPECT_FALSE(string_v == valueless);
EXPECT_FALSE(valueless != other_valueless);
EXPECT_FALSE(other_valueless != valueless);
EXPECT_TRUE(valueless != int_v);
EXPECT_TRUE(valueless != string_v);
EXPECT_TRUE(int_v != valueless);
EXPECT_TRUE(string_v != valueless);
}
TEST(VariantTest, ValuelessOperatorRelational) {
variant<MoveCanThrow, std::string> int_v(1), string_v("Hello"),
valueless(absl::in_place_index<0>),
other_valueless(absl::in_place_index<0>);
ToValuelessByException(valueless);
ToValuelessByException(other_valueless);
EXPECT_FALSE(valueless < other_valueless);
EXPECT_FALSE(other_valueless < valueless);
EXPECT_TRUE(valueless < int_v);
EXPECT_TRUE(valueless < string_v);
EXPECT_FALSE(int_v < valueless);
EXPECT_FALSE(string_v < valueless);
EXPECT_TRUE(valueless <= other_valueless);
EXPECT_TRUE(other_valueless <= valueless);
EXPECT_TRUE(valueless <= int_v);
EXPECT_TRUE(valueless <= string_v);
EXPECT_FALSE(int_v <= valueless);
EXPECT_FALSE(string_v <= valueless);
EXPECT_TRUE(valueless >= other_valueless);
EXPECT_TRUE(other_valueless >= valueless);
EXPECT_FALSE(valueless >= int_v);
EXPECT_FALSE(valueless >= string_v);
EXPECT_TRUE(int_v >= valueless);
EXPECT_TRUE(string_v >= valueless);
EXPECT_FALSE(valueless > other_valueless);
EXPECT_FALSE(other_valueless > valueless);
EXPECT_FALSE(valueless > int_v);
EXPECT_FALSE(valueless > string_v);
EXPECT_TRUE(int_v > valueless);
EXPECT_TRUE(string_v > valueless);
}
#endif
/////////////////////
// [variant.visit] //
/////////////////////
template <typename T>
struct ConvertTo {
template <typename U>
T operator()(const U& u) const {
return u;
}
};
TEST(VariantTest, VisitSimple) {
variant<std::string, const char*> v = "A";
std::string str = absl::visit(ConvertTo<std::string>{}, v);
EXPECT_EQ("A", str);
v = std::string("B");
absl::string_view piece = absl::visit(ConvertTo<absl::string_view>{}, v);
EXPECT_EQ("B", piece);
struct StrLen {
size_t operator()(const char* s) const { return strlen(s); }
size_t operator()(const std::string& s) const { return s.size(); }
};
v = "SomeStr";
EXPECT_EQ(7u, absl::visit(StrLen{}, v));
v = std::string("VeryLargeThisTime");
EXPECT_EQ(17u, absl::visit(StrLen{}, v));
}
TEST(VariantTest, VisitRValue) {
variant<std::string> v = std::string("X");
struct Visitor {
bool operator()(const std::string&) const { return false; }
bool operator()(std::string&&) const { return true; } // NOLINT
int operator()(const std::string&, const std::string&) const { return 0; }
int operator()(const std::string&, std::string&&) const {
return 1;
} // NOLINT
int operator()(std::string&&, const std::string&) const {
return 2;
} // NOLINT
int operator()(std::string&&, std::string&&) const { return 3; } // NOLINT
};
EXPECT_FALSE(absl::visit(Visitor{}, v));
EXPECT_TRUE(absl::visit(Visitor{}, absl::move(v)));
// Also test the variadic overload.
EXPECT_EQ(0, absl::visit(Visitor{}, v, v));
EXPECT_EQ(1, absl::visit(Visitor{}, v, absl::move(v)));
EXPECT_EQ(2, absl::visit(Visitor{}, absl::move(v), v));
EXPECT_EQ(3, absl::visit(Visitor{}, absl::move(v), absl::move(v)));
}
TEST(VariantTest, VisitRValueVisitor) {
variant<std::string> v = std::string("X");
struct Visitor {
bool operator()(const std::string&) const& { return false; }
bool operator()(const std::string&) && { return true; }
};
Visitor visitor;
EXPECT_FALSE(absl::visit(visitor, v));
EXPECT_TRUE(absl::visit(Visitor{}, v));
}
TEST(VariantTest, VisitResultTypeDifferent) {
variant<std::string> v = std::string("X");
struct LValue_LValue {};
struct RValue_LValue {};
struct LValue_RValue {};
struct RValue_RValue {};
struct Visitor {
LValue_LValue operator()(const std::string&) const& { return {}; }
RValue_LValue operator()(std::string&&) const& { return {}; } // NOLINT
LValue_RValue operator()(const std::string&) && { return {}; }
RValue_RValue operator()(std::string&&) && { return {}; } // NOLINT
} visitor;
EXPECT_TRUE(
(std::is_same<LValue_LValue, decltype(absl::visit(visitor, v))>::value));
EXPECT_TRUE(
(std::is_same<RValue_LValue,
decltype(absl::visit(visitor, absl::move(v)))>::value));
EXPECT_TRUE((
std::is_same<LValue_RValue, decltype(absl::visit(Visitor{}, v))>::value));
EXPECT_TRUE(
(std::is_same<RValue_RValue,
decltype(absl::visit(Visitor{}, absl::move(v)))>::value));
}
TEST(VariantTest, VisitVariadic) {
using A = variant<int, std::string>;
using B = variant<std::unique_ptr<int>, absl::string_view>;
struct Visitor {
std::pair<int, int> operator()(int a, std::unique_ptr<int> b) const {
return {a, *b};
}
std::pair<int, int> operator()(absl::string_view a,
std::unique_ptr<int> b) const {
return {static_cast<int>(a.size()), static_cast<int>(*b)};
}
std::pair<int, int> operator()(int a, absl::string_view b) const {
return {a, static_cast<int>(b.size())};
}
std::pair<int, int> operator()(absl::string_view a,
absl::string_view b) const {
return {static_cast<int>(a.size()), static_cast<int>(b.size())};
}
};
EXPECT_THAT(absl::visit(Visitor(), A(1), B(std::unique_ptr<int>(new int(7)))),
::testing::Pair(1, 7));
EXPECT_THAT(absl::visit(Visitor(), A(1), B(absl::string_view("ABC"))),
::testing::Pair(1, 3));
EXPECT_THAT(absl::visit(Visitor(), A(std::string("BBBBB")),
B(std::unique_ptr<int>(new int(7)))),
::testing::Pair(5, 7));
EXPECT_THAT(absl::visit(Visitor(), A(std::string("BBBBB")),
B(absl::string_view("ABC"))),
::testing::Pair(5, 3));
}
TEST(VariantTest, VisitNoArgs) {
EXPECT_EQ(5, absl::visit([] { return 5; }));
}
struct ConstFunctor {
int operator()(int a, int b) const { return a - b; }
};
struct MutableFunctor {
int operator()(int a, int b) { return a - b; }
};
struct Class {
int Method(int a, int b) { return a - b; }
int ConstMethod(int a, int b) const { return a - b; }
int member;
};
TEST(VariantTest, VisitReferenceWrapper) {
ConstFunctor cf;
MutableFunctor mf;
absl::variant<int> three = 3;
absl::variant<int> two = 2;
EXPECT_EQ(1, absl::visit(std::cref(cf), three, two));
EXPECT_EQ(1, absl::visit(std::ref(cf), three, two));
EXPECT_EQ(1, absl::visit(std::ref(mf), three, two));
}
// libstdc++ std::variant doesn't support the INVOKE semantics.
#if !(defined(ABSL_USES_STD_VARIANT) && defined(__GLIBCXX__))
TEST(VariantTest, VisitMemberFunction) {
absl::variant<std::unique_ptr<Class>> p(absl::make_unique<Class>());
absl::variant<std::unique_ptr<const Class>> cp(
absl::make_unique<const Class>());
absl::variant<int> three = 3;
absl::variant<int> two = 2;
EXPECT_EQ(1, absl::visit(&Class::Method, p, three, two));
EXPECT_EQ(1, absl::visit(&Class::ConstMethod, p, three, two));
EXPECT_EQ(1, absl::visit(&Class::ConstMethod, cp, three, two));
}
TEST(VariantTest, VisitDataMember) {
absl::variant<std::unique_ptr<Class>> p(absl::make_unique<Class>(Class{42}));
absl::variant<std::unique_ptr<const Class>> cp(
absl::make_unique<const Class>(Class{42}));
EXPECT_EQ(42, absl::visit(&Class::member, p));
absl::visit(&Class::member, p) = 5;
EXPECT_EQ(5, absl::visit(&Class::member, p));
EXPECT_EQ(42, absl::visit(&Class::member, cp));
}
#endif // !(defined(ABSL_USES_STD_VARIANT) && defined(__GLIBCXX__))
/////////////////////////
// [variant.monostate] //
/////////////////////////
TEST(VariantTest, MonostateBasic) {
absl::monostate mono;
(void)mono;
// TODO(mattcalabrese) Expose move triviality metafunctions in absl.
EXPECT_TRUE(absl::is_trivially_default_constructible<absl::monostate>::value);
EXPECT_TRUE(is_trivially_move_constructible<absl::monostate>::value);
EXPECT_TRUE(absl::is_trivially_copy_constructible<absl::monostate>::value);
EXPECT_TRUE(is_trivially_move_assignable<absl::monostate>::value);
EXPECT_TRUE(absl::is_trivially_copy_assignable<absl::monostate>::value);
EXPECT_TRUE(absl::is_trivially_destructible<absl::monostate>::value);
}
TEST(VariantTest, VariantMonostateDefaultConstruction) {
absl::variant<absl::monostate, NonDefaultConstructible> var;
EXPECT_EQ(var.index(), 0u);
}
////////////////////////////////
// [variant.monostate.relops] //
////////////////////////////////
TEST(VariantTest, MonostateComparisons) {
absl::monostate lhs, rhs;
EXPECT_EQ(lhs, lhs);
EXPECT_EQ(lhs, rhs);
EXPECT_FALSE(lhs != lhs);
EXPECT_FALSE(lhs != rhs);
EXPECT_FALSE(lhs < lhs);
EXPECT_FALSE(lhs < rhs);
EXPECT_FALSE(lhs > lhs);
EXPECT_FALSE(lhs > rhs);
EXPECT_LE(lhs, lhs);
EXPECT_LE(lhs, rhs);
EXPECT_GE(lhs, lhs);
EXPECT_GE(lhs, rhs);
EXPECT_TRUE(noexcept(std::declval<absl::monostate>() ==
std::declval<absl::monostate>()));
EXPECT_TRUE(noexcept(std::declval<absl::monostate>() !=
std::declval<absl::monostate>()));
EXPECT_TRUE(noexcept(std::declval<absl::monostate>() <
std::declval<absl::monostate>()));
EXPECT_TRUE(noexcept(std::declval<absl::monostate>() >
std::declval<absl::monostate>()));
EXPECT_TRUE(noexcept(std::declval<absl::monostate>() <=
std::declval<absl::monostate>()));
EXPECT_TRUE(noexcept(std::declval<absl::monostate>() >=
std::declval<absl::monostate>()));
}
///////////////////////
// [variant.specalg] //
///////////////////////
TEST(VariantTest, NonmemberSwap) {
using std::swap;
SpecialSwap v1(3);
SpecialSwap v2(7);
variant<SpecialSwap> a = v1, b = v2;
EXPECT_THAT(a, VariantWith<SpecialSwap>(v1));
EXPECT_THAT(b, VariantWith<SpecialSwap>(v2));
std::swap(a, b);
EXPECT_THAT(a, VariantWith<SpecialSwap>(v2));
EXPECT_THAT(b, VariantWith<SpecialSwap>(v1));
#ifndef ABSL_USES_STD_VARIANT
EXPECT_FALSE(absl::get<SpecialSwap>(a).special_swap);
#endif
swap(a, b);
EXPECT_THAT(a, VariantWith<SpecialSwap>(v1));
EXPECT_THAT(b, VariantWith<SpecialSwap>(v2));
EXPECT_TRUE(absl::get<SpecialSwap>(b).special_swap);
}
//////////////////////////
// [variant.bad.access] //
//////////////////////////
TEST(VariantTest, BadAccess) {
EXPECT_TRUE(noexcept(absl::bad_variant_access()));
absl::bad_variant_access exception_obj;
std::exception* base = &exception_obj;
(void)base;
}
////////////////////
// [variant.hash] //
////////////////////
TEST(VariantTest, MonostateHash) {
absl::monostate mono, other_mono;
std::hash<absl::monostate> const hasher{};
static_assert(std::is_same<decltype(hasher(mono)), std::size_t>::value, "");
EXPECT_EQ(hasher(mono), hasher(other_mono));
}
TEST(VariantTest, Hash) {
static_assert(type_traits_internal::IsHashable<variant<int>>::value, "");
static_assert(type_traits_internal::IsHashable<variant<Hashable>>::value, "");
static_assert(type_traits_internal::IsHashable<variant<int, Hashable>>::value,
"");
#if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
static_assert(!type_traits_internal::IsHashable<variant<NonHashable>>::value,
"");
static_assert(
!type_traits_internal::IsHashable<variant<Hashable, NonHashable>>::value,
"");
#endif
// MSVC std::hash<std::variant> does not use the index, thus produce the same
// result on the same value as different alternative.
#if !(defined(_MSC_VER) && defined(ABSL_USES_STD_VARIANT))
{
// same value as different alternative
variant<int, int> v0(in_place_index<0>, 42);
variant<int, int> v1(in_place_index<1>, 42);
std::hash<variant<int, int>> hash;
EXPECT_NE(hash(v0), hash(v1));
}
#endif // !(defined(_MSC_VER) && defined(ABSL_USES_STD_VARIANT))
{
std::hash<variant<int>> hash;
std::set<size_t> hashcodes;
for (int i = 0; i < 100; ++i) {
hashcodes.insert(hash(i));
}
EXPECT_GT(hashcodes.size(), 90u);
// test const-qualified
static_assert(type_traits_internal::IsHashable<variant<const int>>::value,
"");
static_assert(
type_traits_internal::IsHashable<variant<const Hashable>>::value, "");
std::hash<absl::variant<const int>> c_hash;
for (int i = 0; i < 100; ++i) {
EXPECT_EQ(hash(i), c_hash(i));
}
}
}
////////////////////////////////////////
// Miscellaneous and deprecated tests //
////////////////////////////////////////
// Test that a set requiring a basic type conversion works correctly
#if !defined(ABSL_USES_STD_VARIANT)
TEST(VariantTest, TestConvertingSet) {
typedef variant<double> Variant;
Variant v(1.0);
const int two = 2;
v = two;
EXPECT_TRUE(absl::holds_alternative<double>(v));
ASSERT_TRUE(nullptr != absl::get_if<double>(&v));
EXPECT_DOUBLE_EQ(2, absl::get<double>(v));
}
#endif // ABSL_USES_STD_VARIANT
// Test that a vector of variants behaves reasonably.
TEST(VariantTest, Container) {
typedef variant<int, float> Variant;
// Creation of vector should work
std::vector<Variant> vec;
vec.push_back(Variant(10));
vec.push_back(Variant(20.0f));
// Vector resizing should work if we supply a value for new slots
vec.resize(10, Variant(0));
}
// Test that a variant with a non-copyable type can be constructed and
// manipulated to some degree.
TEST(VariantTest, TestVariantWithNonCopyableType) {
typedef variant<int, NonCopyable> Variant;
const int kValue = 1;
Variant v(kValue);
ASSERT_TRUE(absl::holds_alternative<int>(v));
EXPECT_EQ(kValue, absl::get<int>(v));
}
// Test that a variant with a non-copyable type can be transformed to
// the non-copyable type with a call to `emplace` for different numbers
// of arguments. We do not need to test this for each of T1 ... T8
// because `emplace` does not overload on T1 ... to T8, so if this
// works for any one of T1 ... T8, then it works for all of them. We
// do need to test that it works with varying numbers of parameters
// though.
TEST(VariantTest, TestEmplace) {
typedef variant<int, NonCopyable> Variant;
const int kValue = 1;
Variant v(kValue);
ASSERT_TRUE(absl::holds_alternative<int>(v));
EXPECT_EQ(kValue, absl::get<int>(v));
// emplace with zero arguments, then back to 'int'
v.emplace<NonCopyable>();
ASSERT_TRUE(absl::holds_alternative<NonCopyable>(v));
EXPECT_EQ(0, absl::get<NonCopyable>(v).value);
v = kValue;
ASSERT_TRUE(absl::holds_alternative<int>(v));
// emplace with one argument:
v.emplace<NonCopyable>(1);
ASSERT_TRUE(absl::holds_alternative<NonCopyable>(v));
EXPECT_EQ(1, absl::get<NonCopyable>(v).value);
v = kValue;
ASSERT_TRUE(absl::holds_alternative<int>(v));
// emplace with two arguments:
v.emplace<NonCopyable>(1, 2);
ASSERT_TRUE(absl::holds_alternative<NonCopyable>(v));
EXPECT_EQ(3, absl::get<NonCopyable>(v).value);
v = kValue;
ASSERT_TRUE(absl::holds_alternative<int>(v));
// emplace with three arguments
v.emplace<NonCopyable>(1, 2, 3);
ASSERT_TRUE(absl::holds_alternative<NonCopyable>(v));
EXPECT_EQ(6, absl::get<NonCopyable>(v).value);
v = kValue;
ASSERT_TRUE(absl::holds_alternative<int>(v));
// emplace with four arguments
v.emplace<NonCopyable>(1, 2, 3, 4);
ASSERT_TRUE(absl::holds_alternative<NonCopyable>(v));
EXPECT_EQ(10, absl::get<NonCopyable>(v).value);
v = kValue;
ASSERT_TRUE(absl::holds_alternative<int>(v));
}
TEST(VariantTest, TestEmplaceDestroysCurrentValue) {
typedef variant<int, IncrementInDtor, NonCopyable> Variant;
int counter = 0;
Variant v(0);
ASSERT_TRUE(absl::holds_alternative<int>(v));
v.emplace<IncrementInDtor>(&counter);
ASSERT_TRUE(absl::holds_alternative<IncrementInDtor>(v));
ASSERT_EQ(0, counter);
v.emplace<NonCopyable>();
ASSERT_TRUE(absl::holds_alternative<NonCopyable>(v));
EXPECT_EQ(1, counter);
}
TEST(VariantTest, TestMoveSemantics) {
typedef variant<std::unique_ptr<int>, std::unique_ptr<std::string>> Variant;
// Construct a variant by moving from an element value.
Variant v(absl::WrapUnique(new int(10)));
EXPECT_TRUE(absl::holds_alternative<std::unique_ptr<int>>(v));
// Construct a variant by moving from another variant.
Variant v2(absl::move(v));
ASSERT_TRUE(absl::holds_alternative<std::unique_ptr<int>>(v2));
ASSERT_NE(nullptr, absl::get<std::unique_ptr<int>>(v2));
EXPECT_EQ(10, *absl::get<std::unique_ptr<int>>(v2));
// Moving from a variant object leaves it holding moved-from value of the
// same element type.
EXPECT_TRUE(absl::holds_alternative<std::unique_ptr<int>>(v));
ASSERT_NE(nullptr, absl::get_if<std::unique_ptr<int>>(&v));
EXPECT_EQ(nullptr, absl::get<std::unique_ptr<int>>(v));
// Assign a variant from an element value by move.
v = absl::make_unique<std::string>("foo");
ASSERT_TRUE(absl::holds_alternative<std::unique_ptr<std::string>>(v));
EXPECT_EQ("foo", *absl::get<std::unique_ptr<std::string>>(v));
// Move-assign a variant.
v2 = absl::move(v);
ASSERT_TRUE(absl::holds_alternative<std::unique_ptr<std::string>>(v2));
EXPECT_EQ("foo", *absl::get<std::unique_ptr<std::string>>(v2));
EXPECT_TRUE(absl::holds_alternative<std::unique_ptr<std::string>>(v));
}
variant<int, std::string> PassThrough(const variant<int, std::string>& arg) {
return arg;
}
TEST(VariantTest, TestImplicitConversion) {
EXPECT_TRUE(absl::holds_alternative<int>(PassThrough(0)));
// We still need the explicit cast for std::string, because C++ won't apply
// two user-defined implicit conversions in a row.
EXPECT_TRUE(
absl::holds_alternative<std::string>(PassThrough(std::string("foo"))));
}
struct Convertible2;
struct Convertible1 {
Convertible1() {}
Convertible1(const Convertible1&) {}
Convertible1& operator=(const Convertible1&) { return *this; }
// implicit conversion from Convertible2
Convertible1(const Convertible2&) {} // NOLINT(runtime/explicit)
};
struct Convertible2 {
Convertible2() {}
Convertible2(const Convertible2&) {}
Convertible2& operator=(const Convertible2&) { return *this; }
// implicit conversion from Convertible1
Convertible2(const Convertible1&) {} // NOLINT(runtime/explicit)
};
TEST(VariantTest, TestRvalueConversion) {
#if !defined(ABSL_USES_STD_VARIANT)
variant<double, std::string> var(
ConvertVariantTo<variant<double, std::string>>(
variant<std::string, int>(0)));
ASSERT_TRUE(absl::holds_alternative<double>(var));
EXPECT_EQ(0.0, absl::get<double>(var));
var = ConvertVariantTo<variant<double, std::string>>(
variant<const char*, float>("foo"));
ASSERT_TRUE(absl::holds_alternative<std::string>(var));
EXPECT_EQ("foo", absl::get<std::string>(var));
variant<double> singleton(
ConvertVariantTo<variant<double>>(variant<int, float>(42)));
ASSERT_TRUE(absl::holds_alternative<double>(singleton));
EXPECT_EQ(42.0, absl::get<double>(singleton));
singleton = ConvertVariantTo<variant<double>>(variant<int, float>(3.14f));
ASSERT_TRUE(absl::holds_alternative<double>(singleton));
EXPECT_FLOAT_EQ(3.14f, static_cast<float>(absl::get<double>(singleton)));
singleton = ConvertVariantTo<variant<double>>(variant<int>(0));
ASSERT_TRUE(absl::holds_alternative<double>(singleton));
EXPECT_EQ(0.0, absl::get<double>(singleton));
variant<int32_t, uint32_t> variant2(
ConvertVariantTo<variant<int32_t, uint32_t>>(variant<int32_t>(42)));
ASSERT_TRUE(absl::holds_alternative<int32_t>(variant2));
EXPECT_EQ(42, absl::get<int32_t>(variant2));
variant2 =
ConvertVariantTo<variant<int32_t, uint32_t>>(variant<uint32_t>(42u));
ASSERT_TRUE(absl::holds_alternative<uint32_t>(variant2));
EXPECT_EQ(42u, absl::get<uint32_t>(variant2));
#endif // !ABSL_USES_STD_VARIANT
variant<Convertible1, Convertible2> variant3(
ConvertVariantTo<variant<Convertible1, Convertible2>>(
(variant<Convertible2, Convertible1>(Convertible1()))));
ASSERT_TRUE(absl::holds_alternative<Convertible1>(variant3));
variant3 = ConvertVariantTo<variant<Convertible1, Convertible2>>(
variant<Convertible2, Convertible1>(Convertible2()));
ASSERT_TRUE(absl::holds_alternative<Convertible2>(variant3));
}
TEST(VariantTest, TestLvalueConversion) {
#if !defined(ABSL_USES_STD_VARIANT)
variant<std::string, int> source1 = 0;
variant<double, std::string> destination(
ConvertVariantTo<variant<double, std::string>>(source1));
ASSERT_TRUE(absl::holds_alternative<double>(destination));
EXPECT_EQ(0.0, absl::get<double>(destination));
variant<const char*, float> source2 = "foo";
destination = ConvertVariantTo<variant<double, std::string>>(source2);
ASSERT_TRUE(absl::holds_alternative<std::string>(destination));
EXPECT_EQ("foo", absl::get<std::string>(destination));
variant<int, float> source3(42);
variant<double> singleton(ConvertVariantTo<variant<double>>(source3));
ASSERT_TRUE(absl::holds_alternative<double>(singleton));
EXPECT_EQ(42.0, absl::get<double>(singleton));
source3 = 3.14f;
singleton = ConvertVariantTo<variant<double>>(source3);
ASSERT_TRUE(absl::holds_alternative<double>(singleton));
EXPECT_FLOAT_EQ(3.14f, static_cast<float>(absl::get<double>(singleton)));
variant<int> source4(0);
singleton = ConvertVariantTo<variant<double>>(source4);
ASSERT_TRUE(absl::holds_alternative<double>(singleton));
EXPECT_EQ(0.0, absl::get<double>(singleton));
variant<int32_t> source5(42);
variant<int32_t, uint32_t> variant2(
ConvertVariantTo<variant<int32_t, uint32_t>>(source5));
ASSERT_TRUE(absl::holds_alternative<int32_t>(variant2));
EXPECT_EQ(42, absl::get<int32_t>(variant2));
variant<uint32_t> source6(42u);
variant2 = ConvertVariantTo<variant<int32_t, uint32_t>>(source6);
ASSERT_TRUE(absl::holds_alternative<uint32_t>(variant2));
EXPECT_EQ(42u, absl::get<uint32_t>(variant2));
#endif
variant<Convertible2, Convertible1> source7((Convertible1()));
variant<Convertible1, Convertible2> variant3(
ConvertVariantTo<variant<Convertible1, Convertible2>>(source7));
ASSERT_TRUE(absl::holds_alternative<Convertible1>(variant3));
source7 = Convertible2();
variant3 = ConvertVariantTo<variant<Convertible1, Convertible2>>(source7);
ASSERT_TRUE(absl::holds_alternative<Convertible2>(variant3));
}
TEST(VariantTest, TestMoveConversion) {
using Variant =
variant<std::unique_ptr<const int>, std::unique_ptr<const std::string>>;
using OtherVariant =
variant<std::unique_ptr<int>, std::unique_ptr<std::string>>;
Variant var(
ConvertVariantTo<Variant>(OtherVariant{absl::make_unique<int>(0)}));
ASSERT_TRUE(absl::holds_alternative<std::unique_ptr<const int>>(var));
ASSERT_NE(absl::get<std::unique_ptr<const int>>(var), nullptr);
EXPECT_EQ(0, *absl::get<std::unique_ptr<const int>>(var));
var = ConvertVariantTo<Variant>(
OtherVariant(absl::make_unique<std::string>("foo")));
ASSERT_TRUE(absl::holds_alternative<std::unique_ptr<const std::string>>(var));
EXPECT_EQ("foo", *absl::get<std::unique_ptr<const std::string>>(var));
}
TEST(VariantTest, DoesNotMoveFromLvalues) {
// We use shared_ptr here because it's both copyable and movable, and
// a moved-from shared_ptr is guaranteed to be null, so we can detect
// whether moving or copying has occurred.
using Variant =
variant<std::shared_ptr<const int>, std::shared_ptr<const std::string>>;
using OtherVariant =
variant<std::shared_ptr<int>, std::shared_ptr<std::string>>;
Variant v1(std::make_shared<const int>(0));
// Test copy constructor
Variant v2(v1);
EXPECT_EQ(absl::get<std::shared_ptr<const int>>(v1),
absl::get<std::shared_ptr<const int>>(v2));
// Test copy-assignment operator
v1 = std::make_shared<const std::string>("foo");
v2 = v1;
EXPECT_EQ(absl::get<std::shared_ptr<const std::string>>(v1),
absl::get<std::shared_ptr<const std::string>>(v2));
// Test converting copy constructor
OtherVariant other(std::make_shared<int>(0));
Variant v3(ConvertVariantTo<Variant>(other));
EXPECT_EQ(absl::get<std::shared_ptr<int>>(other),
absl::get<std::shared_ptr<const int>>(v3));
other = std::make_shared<std::string>("foo");
v3 = ConvertVariantTo<Variant>(other);
EXPECT_EQ(absl::get<std::shared_ptr<std::string>>(other),
absl::get<std::shared_ptr<const std::string>>(v3));
}
TEST(VariantTest, TestRvalueConversionViaConvertVariantTo) {
#if !defined(ABSL_USES_STD_VARIANT)
variant<double, std::string> var(
ConvertVariantTo<variant<double, std::string>>(
variant<std::string, int>(3)));
EXPECT_THAT(absl::get_if<double>(&var), Pointee(3.0));
var = ConvertVariantTo<variant<double, std::string>>(
variant<const char*, float>("foo"));
EXPECT_THAT(absl::get_if<std::string>(&var), Pointee(std::string("foo")));
variant<double> singleton(
ConvertVariantTo<variant<double>>(variant<int, float>(42)));
EXPECT_THAT(absl::get_if<double>(&singleton), Pointee(42.0));
singleton = ConvertVariantTo<variant<double>>(variant<int, float>(3.14f));
EXPECT_THAT(absl::get_if<double>(&singleton), Pointee(DoubleEq(3.14f)));
singleton = ConvertVariantTo<variant<double>>(variant<int>(3));
EXPECT_THAT(absl::get_if<double>(&singleton), Pointee(3.0));
variant<int32_t, uint32_t> variant2(
ConvertVariantTo<variant<int32_t, uint32_t>>(variant<int32_t>(42)));
EXPECT_THAT(absl::get_if<int32_t>(&variant2), Pointee(42));
variant2 =
ConvertVariantTo<variant<int32_t, uint32_t>>(variant<uint32_t>(42u));
EXPECT_THAT(absl::get_if<uint32_t>(&variant2), Pointee(42u));
#endif
variant<Convertible1, Convertible2> variant3(
ConvertVariantTo<variant<Convertible1, Convertible2>>(
(variant<Convertible2, Convertible1>(Convertible1()))));
ASSERT_TRUE(absl::holds_alternative<Convertible1>(variant3));
variant3 = ConvertVariantTo<variant<Convertible1, Convertible2>>(
variant<Convertible2, Convertible1>(Convertible2()));
ASSERT_TRUE(absl::holds_alternative<Convertible2>(variant3));
}
TEST(VariantTest, TestLvalueConversionViaConvertVariantTo) {
#if !defined(ABSL_USES_STD_VARIANT)
variant<std::string, int> source1 = 3;
variant<double, std::string> destination(
ConvertVariantTo<variant<double, std::string>>(source1));
EXPECT_THAT(absl::get_if<double>(&destination), Pointee(3.0));
variant<const char*, float> source2 = "foo";
destination = ConvertVariantTo<variant<double, std::string>>(source2);
EXPECT_THAT(absl::get_if<std::string>(&destination),
Pointee(std::string("foo")));
variant<int, float> source3(42);
variant<double> singleton(ConvertVariantTo<variant<double>>(source3));
EXPECT_THAT(absl::get_if<double>(&singleton), Pointee(42.0));
source3 = 3.14f;
singleton = ConvertVariantTo<variant<double>>(source3);
EXPECT_FLOAT_EQ(3.14f, static_cast<float>(absl::get<double>(singleton)));
EXPECT_THAT(absl::get_if<double>(&singleton), Pointee(DoubleEq(3.14f)));
variant<int> source4(3);
singleton = ConvertVariantTo<variant<double>>(source4);
EXPECT_THAT(absl::get_if<double>(&singleton), Pointee(3.0));
variant<int32_t> source5(42);
variant<int32_t, uint32_t> variant2(
ConvertVariantTo<variant<int32_t, uint32_t>>(source5));
EXPECT_THAT(absl::get_if<int32_t>(&variant2), Pointee(42));
variant<uint32_t> source6(42u);
variant2 = ConvertVariantTo<variant<int32_t, uint32_t>>(source6);
EXPECT_THAT(absl::get_if<uint32_t>(&variant2), Pointee(42u));
#endif // !ABSL_USES_STD_VARIANT
variant<Convertible2, Convertible1> source7((Convertible1()));
variant<Convertible1, Convertible2> variant3(
ConvertVariantTo<variant<Convertible1, Convertible2>>(source7));
ASSERT_TRUE(absl::holds_alternative<Convertible1>(variant3));
source7 = Convertible2();
variant3 = ConvertVariantTo<variant<Convertible1, Convertible2>>(source7);
ASSERT_TRUE(absl::holds_alternative<Convertible2>(variant3));
}
TEST(VariantTest, TestMoveConversionViaConvertVariantTo) {
using Variant =
variant<std::unique_ptr<const int>, std::unique_ptr<const std::string>>;
using OtherVariant =
variant<std::unique_ptr<int>, std::unique_ptr<std::string>>;
Variant var(
ConvertVariantTo<Variant>(OtherVariant{absl::make_unique<int>(3)}));
EXPECT_THAT(absl::get_if<std::unique_ptr<const int>>(&var),
Pointee(Pointee(3)));
var = ConvertVariantTo<Variant>(
OtherVariant(absl::make_unique<std::string>("foo")));
EXPECT_THAT(absl::get_if<std::unique_ptr<const std::string>>(&var),
Pointee(Pointee(std::string("foo"))));
}
// If all alternatives are trivially copy/move constructible, variant should
// also be trivially copy/move constructible. This is not required by the
// standard and we know that libstdc++ variant doesn't have this feature.
// For more details see the paper:
// http://open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0602r0.html
#if !(defined(ABSL_USES_STD_VARIANT) && defined(__GLIBCXX__))
#define ABSL_VARIANT_PROPAGATE_COPY_MOVE_TRIVIALITY 1
#endif
TEST(VariantTest, TestCopyAndMoveTypeTraits) {
EXPECT_TRUE(std::is_copy_constructible<variant<std::string>>::value);
EXPECT_TRUE(absl::is_copy_assignable<variant<std::string>>::value);
EXPECT_TRUE(std::is_move_constructible<variant<std::string>>::value);
EXPECT_TRUE(absl::is_move_assignable<variant<std::string>>::value);
EXPECT_TRUE(std::is_move_constructible<variant<std::unique_ptr<int>>>::value);
EXPECT_TRUE(absl::is_move_assignable<variant<std::unique_ptr<int>>>::value);
EXPECT_FALSE(
std::is_copy_constructible<variant<std::unique_ptr<int>>>::value);
EXPECT_FALSE(absl::is_copy_assignable<variant<std::unique_ptr<int>>>::value);
EXPECT_FALSE(
absl::is_trivially_copy_constructible<variant<std::string>>::value);
EXPECT_FALSE(absl::is_trivially_copy_assignable<variant<std::string>>::value);
#if ABSL_VARIANT_PROPAGATE_COPY_MOVE_TRIVIALITY
EXPECT_TRUE(absl::is_trivially_copy_constructible<variant<int>>::value);
EXPECT_TRUE(absl::is_trivially_copy_assignable<variant<int>>::value);
EXPECT_TRUE(is_trivially_move_constructible<variant<int>>::value);
EXPECT_TRUE(is_trivially_move_assignable<variant<int>>::value);
#endif // ABSL_VARIANT_PROPAGATE_COPY_MOVE_TRIVIALITY
}
TEST(VariantTest, TestVectorOfMoveonlyVariant) {
// Verify that variant<MoveonlyType> works correctly as a std::vector element.
std::vector<variant<std::unique_ptr<int>, std::string>> vec;
vec.push_back(absl::make_unique<int>(42));
vec.emplace_back("Hello");
vec.reserve(3);
auto another_vec = absl::move(vec);
// As a sanity check, verify vector contents.
ASSERT_EQ(2u, another_vec.size());
EXPECT_EQ(42, *absl::get<std::unique_ptr<int>>(another_vec[0]));
EXPECT_EQ("Hello", absl::get<std::string>(another_vec[1]));
}
TEST(VariantTest, NestedVariant) {
#if ABSL_VARIANT_PROPAGATE_COPY_MOVE_TRIVIALITY
static_assert(absl::is_trivially_copy_constructible<variant<int>>(), "");
static_assert(absl::is_trivially_copy_assignable<variant<int>>(), "");
static_assert(is_trivially_move_constructible<variant<int>>(), "");
static_assert(is_trivially_move_assignable<variant<int>>(), "");
static_assert(absl::is_trivially_copy_constructible<variant<variant<int>>>(),
"");
static_assert(absl::is_trivially_copy_assignable<variant<variant<int>>>(),
"");
static_assert(is_trivially_move_constructible<variant<variant<int>>>(), "");
static_assert(is_trivially_move_assignable<variant<variant<int>>>(), "");
#endif // ABSL_VARIANT_PROPAGATE_COPY_MOVE_TRIVIALITY
variant<int> x(42);
variant<variant<int>> y(x);
variant<variant<int>> z(y);
EXPECT_TRUE(absl::holds_alternative<variant<int>>(z));
EXPECT_EQ(x, absl::get<variant<int>>(z));
}
struct TriviallyDestructible {
TriviallyDestructible(TriviallyDestructible&&) {}
TriviallyDestructible(const TriviallyDestructible&) {}
TriviallyDestructible& operator=(TriviallyDestructible&&) { return *this; }
TriviallyDestructible& operator=(const TriviallyDestructible&) {
return *this;
}
};
struct TriviallyMovable {
TriviallyMovable(TriviallyMovable&&) = default;
TriviallyMovable(TriviallyMovable const&) {}
TriviallyMovable& operator=(const TriviallyMovable&) { return *this; }
};
struct TriviallyCopyable {
TriviallyCopyable(const TriviallyCopyable&) = default;
TriviallyCopyable& operator=(const TriviallyCopyable&) { return *this; }
};
struct TriviallyMoveAssignable {
TriviallyMoveAssignable(TriviallyMoveAssignable&&) = default;
TriviallyMoveAssignable(const TriviallyMoveAssignable&) {}
TriviallyMoveAssignable& operator=(TriviallyMoveAssignable&&) = default;
TriviallyMoveAssignable& operator=(const TriviallyMoveAssignable&) {
return *this;
}
};
struct TriviallyCopyAssignable {};
#if ABSL_VARIANT_PROPAGATE_COPY_MOVE_TRIVIALITY
TEST(VariantTest, TestTriviality) {
{
using TrivDestVar = absl::variant<TriviallyDestructible>;
EXPECT_FALSE(is_trivially_move_constructible<TrivDestVar>::value);
EXPECT_FALSE(absl::is_trivially_copy_constructible<TrivDestVar>::value);
EXPECT_FALSE(is_trivially_move_assignable<TrivDestVar>::value);
EXPECT_FALSE(absl::is_trivially_copy_assignable<TrivDestVar>::value);
EXPECT_TRUE(absl::is_trivially_destructible<TrivDestVar>::value);
}
{
using TrivMoveVar = absl::variant<TriviallyMovable>;
EXPECT_TRUE(is_trivially_move_constructible<TrivMoveVar>::value);
EXPECT_FALSE(absl::is_trivially_copy_constructible<TrivMoveVar>::value);
EXPECT_FALSE(is_trivially_move_assignable<TrivMoveVar>::value);
EXPECT_FALSE(absl::is_trivially_copy_assignable<TrivMoveVar>::value);
EXPECT_TRUE(absl::is_trivially_destructible<TrivMoveVar>::value);
}
{
using TrivCopyVar = absl::variant<TriviallyCopyable>;
EXPECT_TRUE(is_trivially_move_constructible<TrivCopyVar>::value);
EXPECT_TRUE(absl::is_trivially_copy_constructible<TrivCopyVar>::value);
EXPECT_FALSE(is_trivially_move_assignable<TrivCopyVar>::value);
EXPECT_FALSE(absl::is_trivially_copy_assignable<TrivCopyVar>::value);
EXPECT_TRUE(absl::is_trivially_destructible<TrivCopyVar>::value);
}
{
using TrivMoveAssignVar = absl::variant<TriviallyMoveAssignable>;
EXPECT_TRUE(is_trivially_move_constructible<TrivMoveAssignVar>::value);
EXPECT_FALSE(
absl::is_trivially_copy_constructible<TrivMoveAssignVar>::value);
EXPECT_TRUE(is_trivially_move_assignable<TrivMoveAssignVar>::value);
EXPECT_FALSE(absl::is_trivially_copy_assignable<TrivMoveAssignVar>::value);
EXPECT_TRUE(absl::is_trivially_destructible<TrivMoveAssignVar>::value);
}
{
using TrivCopyAssignVar = absl::variant<TriviallyCopyAssignable>;
EXPECT_TRUE(is_trivially_move_constructible<TrivCopyAssignVar>::value);
EXPECT_TRUE(
absl::is_trivially_copy_constructible<TrivCopyAssignVar>::value);
EXPECT_TRUE(is_trivially_move_assignable<TrivCopyAssignVar>::value);
EXPECT_TRUE(absl::is_trivially_copy_assignable<TrivCopyAssignVar>::value);
EXPECT_TRUE(absl::is_trivially_destructible<TrivCopyAssignVar>::value);
}
}
#endif // ABSL_VARIANT_PROPAGATE_COPY_MOVE_TRIVIALITY
// To verify that absl::variant correctly use the nontrivial move ctor of its
// member rather than use the trivial copy constructor.
TEST(VariantTest, MoveCtorBug) {
// To simulate std::tuple in libstdc++.
struct TrivialCopyNontrivialMove {
TrivialCopyNontrivialMove() = default;
TrivialCopyNontrivialMove(const TrivialCopyNontrivialMove&) = default;
TrivialCopyNontrivialMove(TrivialCopyNontrivialMove&&) { called = true; }
bool called = false;
};
{
using V = absl::variant<TrivialCopyNontrivialMove, int>;
V v1(absl::in_place_index<0>);
// this should invoke the move ctor, rather than the trivial copy ctor.
V v2(std::move(v1));
EXPECT_TRUE(absl::get<0>(v2).called);
}
{
// this case failed to compile before our fix due to a GCC bug.
using V = absl::variant<int, TrivialCopyNontrivialMove>;
V v1(absl::in_place_index<1>);
// this should invoke the move ctor, rather than the trivial copy ctor.
V v2(std::move(v1));
EXPECT_TRUE(absl::get<1>(v2).called);
}
}
} // namespace
ABSL_NAMESPACE_END
} // namespace absl
#endif // #if !defined(ABSL_USES_STD_VARIANT)