| // Copyright 2017 The Abseil Authors. | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //      https://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 |  | 
 | #include "absl/random/poisson_distribution.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <cstddef> | 
 | #include <cstdint> | 
 | #include <iterator> | 
 | #include <random> | 
 | #include <sstream> | 
 | #include <string> | 
 | #include <vector> | 
 |  | 
 | #include "gmock/gmock.h" | 
 | #include "gtest/gtest.h" | 
 | #include "absl/base/macros.h" | 
 | #include "absl/container/flat_hash_map.h" | 
 | #include "absl/log/log.h" | 
 | #include "absl/random/internal/chi_square.h" | 
 | #include "absl/random/internal/distribution_test_util.h" | 
 | #include "absl/random/internal/pcg_engine.h" | 
 | #include "absl/random/internal/sequence_urbg.h" | 
 | #include "absl/random/random.h" | 
 | #include "absl/strings/str_cat.h" | 
 | #include "absl/strings/str_format.h" | 
 | #include "absl/strings/str_replace.h" | 
 | #include "absl/strings/strip.h" | 
 |  | 
 | // Notes about generating poisson variates: | 
 | // | 
 | // It is unlikely that any implementation of std::poisson_distribution | 
 | // will be stable over time and across library implementations. For instance | 
 | // the three different poisson variate generators listed below all differ: | 
 | // | 
 | // https://github.com/ampl/gsl/tree/master/randist/poisson.c | 
 | // * GSL uses a gamma + binomial + knuth method to compute poisson variates. | 
 | // | 
 | // https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/random.tcc | 
 | // * GCC uses the Devroye rejection algorithm, based on | 
 | // Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, | 
 | // New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!), ~p.511 | 
 | //   http://www.nrbook.com/devroye/ | 
 | // | 
 | // https://github.com/llvm-mirror/libcxx/blob/master/include/random | 
 | // * CLANG uses a different rejection method, which appears to include a | 
 | // normal-distribution approximation and an exponential distribution to | 
 | // compute the threshold, including a similar factorial approximation to this | 
 | // one, but it is unclear where the algorithm comes from, exactly. | 
 | // | 
 |  | 
 | namespace { | 
 |  | 
 | using absl::random_internal::kChiSquared; | 
 |  | 
 | // The PoissonDistributionInterfaceTest provides a basic test that | 
 | // absl::poisson_distribution conforms to the interface and serialization | 
 | // requirements imposed by [rand.req.dist] for the common integer types. | 
 |  | 
 | template <typename IntType> | 
 | class PoissonDistributionInterfaceTest : public ::testing::Test {}; | 
 |  | 
 | using IntTypes = ::testing::Types<int, int8_t, int16_t, int32_t, int64_t, | 
 |                                   uint8_t, uint16_t, uint32_t, uint64_t>; | 
 | TYPED_TEST_SUITE(PoissonDistributionInterfaceTest, IntTypes); | 
 |  | 
 | TYPED_TEST(PoissonDistributionInterfaceTest, SerializeTest) { | 
 |   using param_type = typename absl::poisson_distribution<TypeParam>::param_type; | 
 |   const double kMax = | 
 |       std::min(1e10 /* assertion limit */, | 
 |                static_cast<double>(std::numeric_limits<TypeParam>::max())); | 
 |  | 
 |   const double kParams[] = { | 
 |       // Cases around 1. | 
 |       1,                         // | 
 |       std::nextafter(1.0, 0.0),  // 1 - epsilon | 
 |       std::nextafter(1.0, 2.0),  // 1 + epsilon | 
 |       // Arbitrary values. | 
 |       1e-8, 1e-4, | 
 |       0.0000005,  // ~7.2e-7 | 
 |       0.2,        // ~0.2x | 
 |       0.5,        // 0.72 | 
 |       2,          // ~2.8 | 
 |       20,         // 3x ~9.6 | 
 |       100, 1e4, 1e8, 1.5e9, 1e20, | 
 |       // Boundary cases. | 
 |       std::numeric_limits<double>::max(), | 
 |       std::numeric_limits<double>::epsilon(), | 
 |       std::nextafter(std::numeric_limits<double>::min(), | 
 |                      1.0),                        // min + epsilon | 
 |       std::numeric_limits<double>::min(),         // smallest normal | 
 |       std::numeric_limits<double>::denorm_min(),  // smallest denorm | 
 |       std::numeric_limits<double>::min() / 2,     // denorm | 
 |       std::nextafter(std::numeric_limits<double>::min(), | 
 |                      0.0),  // denorm_max | 
 |   }; | 
 |  | 
 |   constexpr int kCount = 1000; | 
 |   absl::InsecureBitGen gen; | 
 |   for (const double m : kParams) { | 
 |     const double mean = std::min(kMax, m); | 
 |     const param_type param(mean); | 
 |  | 
 |     // Validate parameters. | 
 |     absl::poisson_distribution<TypeParam> before(mean); | 
 |     EXPECT_EQ(before.mean(), param.mean()); | 
 |  | 
 |     { | 
 |       absl::poisson_distribution<TypeParam> via_param(param); | 
 |       EXPECT_EQ(via_param, before); | 
 |       EXPECT_EQ(via_param.param(), before.param()); | 
 |     } | 
 |  | 
 |     // Smoke test. | 
 |     auto sample_min = before.max(); | 
 |     auto sample_max = before.min(); | 
 |     for (int i = 0; i < kCount; i++) { | 
 |       auto sample = before(gen); | 
 |       EXPECT_GE(sample, before.min()); | 
 |       EXPECT_LE(sample, before.max()); | 
 |       if (sample > sample_max) sample_max = sample; | 
 |       if (sample < sample_min) sample_min = sample; | 
 |     } | 
 |  | 
 |     LOG(INFO) << "Range {" << param.mean() << "}: " << sample_min << ", " | 
 |               << sample_max; | 
 |  | 
 |     // Validate stream serialization. | 
 |     std::stringstream ss; | 
 |     ss << before; | 
 |  | 
 |     absl::poisson_distribution<TypeParam> after(3.8); | 
 |  | 
 |     EXPECT_NE(before.mean(), after.mean()); | 
 |     EXPECT_NE(before.param(), after.param()); | 
 |     EXPECT_NE(before, after); | 
 |  | 
 |     ss >> after; | 
 |  | 
 |     EXPECT_EQ(before.mean(), after.mean())  // | 
 |         << ss.str() << " "                  // | 
 |         << (ss.good() ? "good " : "")       // | 
 |         << (ss.bad() ? "bad " : "")         // | 
 |         << (ss.eof() ? "eof " : "")         // | 
 |         << (ss.fail() ? "fail " : ""); | 
 |   } | 
 | } | 
 |  | 
 | // See http://www.itl.nist.gov/div898/handbook/eda/section3/eda366j.htm | 
 |  | 
 | class PoissonModel { | 
 |  public: | 
 |   explicit PoissonModel(double mean) : mean_(mean) {} | 
 |  | 
 |   double mean() const { return mean_; } | 
 |   double variance() const { return mean_; } | 
 |   double stddev() const { return std::sqrt(variance()); } | 
 |   double skew() const { return 1.0 / mean_; } | 
 |   double kurtosis() const { return 3.0 + 1.0 / mean_; } | 
 |  | 
 |   // InitCDF() initializes the CDF for the distribution parameters. | 
 |   void InitCDF(); | 
 |  | 
 |   // The InverseCDF, or the Percent-point function returns x, P(x) < v. | 
 |   struct CDF { | 
 |     size_t index; | 
 |     double pmf; | 
 |     double cdf; | 
 |   }; | 
 |   CDF InverseCDF(double p) { | 
 |     CDF target{0, 0, p}; | 
 |     auto it = std::upper_bound( | 
 |         std::begin(cdf_), std::end(cdf_), target, | 
 |         [](const CDF& a, const CDF& b) { return a.cdf < b.cdf; }); | 
 |     return *it; | 
 |   } | 
 |  | 
 |   void LogCDF() { | 
 |     LOG(INFO) << "CDF (mean = " << mean_ << ")"; | 
 |     for (const auto c : cdf_) { | 
 |       LOG(INFO) << c.index << ": pmf=" << c.pmf << " cdf=" << c.cdf; | 
 |     } | 
 |   } | 
 |  | 
 |  private: | 
 |   const double mean_; | 
 |  | 
 |   std::vector<CDF> cdf_; | 
 | }; | 
 |  | 
 | // The goal is to compute an InverseCDF function, or percent point function for | 
 | // the poisson distribution, and use that to partition our output into equal | 
 | // range buckets.  However there is no closed form solution for the inverse cdf | 
 | // for poisson distributions (the closest is the incomplete gamma function). | 
 | // Instead, `InitCDF` iteratively computes the PMF and the CDF. This enables | 
 | // searching for the bucket points. | 
 | void PoissonModel::InitCDF() { | 
 |   if (!cdf_.empty()) { | 
 |     // State already initialized. | 
 |     return; | 
 |   } | 
 |   ABSL_ASSERT(mean_ < 201.0); | 
 |  | 
 |   const size_t max_i = 50 * stddev() + mean(); | 
 |   const double e_neg_mean = std::exp(-mean()); | 
 |   ABSL_ASSERT(e_neg_mean > 0); | 
 |  | 
 |   double d = 1; | 
 |   double last_result = e_neg_mean; | 
 |   double cumulative = e_neg_mean; | 
 |   if (e_neg_mean > 1e-10) { | 
 |     cdf_.push_back({0, e_neg_mean, cumulative}); | 
 |   } | 
 |   for (size_t i = 1; i < max_i; i++) { | 
 |     d *= (mean() / i); | 
 |     double result = e_neg_mean * d; | 
 |     cumulative += result; | 
 |     if (result < 1e-10 && result < last_result && cumulative > 0.999999) { | 
 |       break; | 
 |     } | 
 |     if (result > 1e-7) { | 
 |       cdf_.push_back({i, result, cumulative}); | 
 |     } | 
 |     last_result = result; | 
 |   } | 
 |   ABSL_ASSERT(!cdf_.empty()); | 
 | } | 
 |  | 
 | // PoissonDistributionZTest implements a z-test for the poisson distribution. | 
 |  | 
 | struct ZParam { | 
 |   double mean; | 
 |   double p_fail;   // Z-Test probability of failure. | 
 |   int trials;      // Z-Test trials. | 
 |   size_t samples;  // Z-Test samples. | 
 | }; | 
 |  | 
 | class PoissonDistributionZTest : public testing::TestWithParam<ZParam>, | 
 |                                  public PoissonModel { | 
 |  public: | 
 |   PoissonDistributionZTest() : PoissonModel(GetParam().mean) {} | 
 |  | 
 |   // ZTestImpl provides a basic z-squared test of the mean vs. expected | 
 |   // mean for data generated by the poisson distribution. | 
 |   template <typename D> | 
 |   bool SingleZTest(const double p, const size_t samples); | 
 |  | 
 |   // We use a fixed bit generator for distribution accuracy tests.  This allows | 
 |   // these tests to be deterministic, while still testing the qualify of the | 
 |   // implementation. | 
 |   absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6}; | 
 | }; | 
 |  | 
 | template <typename D> | 
 | bool PoissonDistributionZTest::SingleZTest(const double p, | 
 |                                            const size_t samples) { | 
 |   D dis(mean()); | 
 |  | 
 |   absl::flat_hash_map<int32_t, int> buckets; | 
 |   std::vector<double> data; | 
 |   data.reserve(samples); | 
 |   for (int j = 0; j < samples; j++) { | 
 |     const auto x = dis(rng_); | 
 |     buckets[x]++; | 
 |     data.push_back(x); | 
 |   } | 
 |  | 
 |   // The null-hypothesis is that the distribution is a poisson distribution with | 
 |   // the provided mean (not estimated from the data). | 
 |   const auto m = absl::random_internal::ComputeDistributionMoments(data); | 
 |   const double max_err = absl::random_internal::MaxErrorTolerance(p); | 
 |   const double z = absl::random_internal::ZScore(mean(), m); | 
 |   const bool pass = absl::random_internal::Near("z", z, 0.0, max_err); | 
 |  | 
 |   if (!pass) { | 
 |     // clang-format off | 
 |     LOG(INFO) | 
 |         << "p=" << p << " max_err=" << max_err << "\n" | 
 |            " mean=" << m.mean << " vs. " << mean() << "\n" | 
 |            " stddev=" << std::sqrt(m.variance) << " vs. " << stddev() << "\n" | 
 |            " skewness=" << m.skewness << " vs. " << skew() << "\n" | 
 |            " kurtosis=" << m.kurtosis << " vs. " << kurtosis() << "\n" | 
 |            " z=" << z; | 
 |     // clang-format on | 
 |   } | 
 |   return pass; | 
 | } | 
 |  | 
 | TEST_P(PoissonDistributionZTest, AbslPoissonDistribution) { | 
 |   const auto& param = GetParam(); | 
 |   const int expected_failures = | 
 |       std::max(1, static_cast<int>(std::ceil(param.trials * param.p_fail))); | 
 |   const double p = absl::random_internal::RequiredSuccessProbability( | 
 |       param.p_fail, param.trials); | 
 |  | 
 |   int failures = 0; | 
 |   for (int i = 0; i < param.trials; i++) { | 
 |     failures += | 
 |         SingleZTest<absl::poisson_distribution<int32_t>>(p, param.samples) ? 0 | 
 |                                                                            : 1; | 
 |   } | 
 |   EXPECT_LE(failures, expected_failures); | 
 | } | 
 |  | 
 | std::vector<ZParam> GetZParams() { | 
 |   // These values have been adjusted from the "exact" computed values to reduce | 
 |   // failure rates. | 
 |   // | 
 |   // It turns out that the actual values are not as close to the expected values | 
 |   // as would be ideal. | 
 |   return std::vector<ZParam>({ | 
 |       // Knuth method. | 
 |       ZParam{0.5, 0.01, 100, 1000}, | 
 |       ZParam{1.0, 0.01, 100, 1000}, | 
 |       ZParam{10.0, 0.01, 100, 5000}, | 
 |       // Split-knuth method. | 
 |       ZParam{20.0, 0.01, 100, 10000}, | 
 |       ZParam{50.0, 0.01, 100, 10000}, | 
 |       // Ratio of gaussians method. | 
 |       ZParam{51.0, 0.01, 100, 10000}, | 
 |       ZParam{200.0, 0.05, 10, 100000}, | 
 |       ZParam{100000.0, 0.05, 10, 1000000}, | 
 |   }); | 
 | } | 
 |  | 
 | std::string ZParamName(const ::testing::TestParamInfo<ZParam>& info) { | 
 |   const auto& p = info.param; | 
 |   std::string name = absl::StrCat("mean_", absl::SixDigits(p.mean)); | 
 |   return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}}); | 
 | } | 
 |  | 
 | INSTANTIATE_TEST_SUITE_P(All, PoissonDistributionZTest, | 
 |                          ::testing::ValuesIn(GetZParams()), ZParamName); | 
 |  | 
 | // The PoissonDistributionChiSquaredTest class provides a basic test framework | 
 | // for variates generated by a conforming poisson_distribution. | 
 | class PoissonDistributionChiSquaredTest : public testing::TestWithParam<double>, | 
 |                                           public PoissonModel { | 
 |  public: | 
 |   PoissonDistributionChiSquaredTest() : PoissonModel(GetParam()) {} | 
 |  | 
 |   // The ChiSquaredTestImpl provides a chi-squared goodness of fit test for data | 
 |   // generated by the poisson distribution. | 
 |   template <typename D> | 
 |   double ChiSquaredTestImpl(); | 
 |  | 
 |  private: | 
 |   void InitChiSquaredTest(const double buckets); | 
 |  | 
 |   std::vector<size_t> cutoffs_; | 
 |   std::vector<double> expected_; | 
 |  | 
 |   // We use a fixed bit generator for distribution accuracy tests.  This allows | 
 |   // these tests to be deterministic, while still testing the qualify of the | 
 |   // implementation. | 
 |   absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6}; | 
 | }; | 
 |  | 
 | void PoissonDistributionChiSquaredTest::InitChiSquaredTest( | 
 |     const double buckets) { | 
 |   if (!cutoffs_.empty() && !expected_.empty()) { | 
 |     return; | 
 |   } | 
 |   InitCDF(); | 
 |  | 
 |   // The code below finds cuttoffs that yield approximately equally-sized | 
 |   // buckets to the extent that it is possible. However for poisson | 
 |   // distributions this is particularly challenging for small mean parameters. | 
 |   // Track the expected proportion of items in each bucket. | 
 |   double last_cdf = 0; | 
 |   const double inc = 1.0 / buckets; | 
 |   for (double p = inc; p <= 1.0; p += inc) { | 
 |     auto result = InverseCDF(p); | 
 |     if (!cutoffs_.empty() && cutoffs_.back() == result.index) { | 
 |       continue; | 
 |     } | 
 |     double d = result.cdf - last_cdf; | 
 |     cutoffs_.push_back(result.index); | 
 |     expected_.push_back(d); | 
 |     last_cdf = result.cdf; | 
 |   } | 
 |   cutoffs_.push_back(std::numeric_limits<size_t>::max()); | 
 |   expected_.push_back(std::max(0.0, 1.0 - last_cdf)); | 
 | } | 
 |  | 
 | template <typename D> | 
 | double PoissonDistributionChiSquaredTest::ChiSquaredTestImpl() { | 
 |   const int kSamples = 2000; | 
 |   const int kBuckets = 50; | 
 |  | 
 |   // The poisson CDF fails for large mean values, since e^-mean exceeds the | 
 |   // machine precision. For these cases, using a normal approximation would be | 
 |   // appropriate. | 
 |   ABSL_ASSERT(mean() <= 200); | 
 |   InitChiSquaredTest(kBuckets); | 
 |  | 
 |   D dis(mean()); | 
 |  | 
 |   std::vector<int32_t> counts(cutoffs_.size(), 0); | 
 |   for (int j = 0; j < kSamples; j++) { | 
 |     const size_t x = dis(rng_); | 
 |     auto it = std::lower_bound(std::begin(cutoffs_), std::end(cutoffs_), x); | 
 |     counts[std::distance(cutoffs_.begin(), it)]++; | 
 |   } | 
 |  | 
 |   // Normalize the counts. | 
 |   std::vector<int32_t> e(expected_.size(), 0); | 
 |   for (int i = 0; i < e.size(); i++) { | 
 |     e[i] = kSamples * expected_[i]; | 
 |   } | 
 |  | 
 |   // The null-hypothesis is that the distribution is a poisson distribution with | 
 |   // the provided mean (not estimated from the data). | 
 |   const int dof = static_cast<int>(counts.size()) - 1; | 
 |  | 
 |   // The threshold for logging is 1-in-50. | 
 |   const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98); | 
 |  | 
 |   const double chi_square = absl::random_internal::ChiSquare( | 
 |       std::begin(counts), std::end(counts), std::begin(e), std::end(e)); | 
 |  | 
 |   const double p = absl::random_internal::ChiSquarePValue(chi_square, dof); | 
 |  | 
 |   // Log if the chi_squared value is above the threshold. | 
 |   if (chi_square > threshold) { | 
 |     LogCDF(); | 
 |  | 
 |     LOG(INFO) << "VALUES  buckets=" << counts.size() | 
 |               << "  samples=" << kSamples; | 
 |     for (size_t i = 0; i < counts.size(); i++) { | 
 |       LOG(INFO) << cutoffs_[i] << ": " << counts[i] << " vs. E=" << e[i]; | 
 |     } | 
 |  | 
 |     LOG(INFO) << kChiSquared << "(data, dof=" << dof << ") = " << chi_square | 
 |               << " (" << p << ")\n" | 
 |               << " vs.\n" | 
 |               << kChiSquared << " @ 0.98 = " << threshold; | 
 |   } | 
 |   return p; | 
 | } | 
 |  | 
 | TEST_P(PoissonDistributionChiSquaredTest, AbslPoissonDistribution) { | 
 |   const int kTrials = 20; | 
 |  | 
 |   // Large values are not yet supported -- this requires estimating the cdf | 
 |   // using the normal distribution instead of the poisson in this case. | 
 |   ASSERT_LE(mean(), 200.0); | 
 |   if (mean() > 200.0) { | 
 |     return; | 
 |   } | 
 |  | 
 |   int failures = 0; | 
 |   for (int i = 0; i < kTrials; i++) { | 
 |     double p_value = ChiSquaredTestImpl<absl::poisson_distribution<int32_t>>(); | 
 |     if (p_value < 0.005) { | 
 |       failures++; | 
 |     } | 
 |   } | 
 |   // There is a 0.10% chance of producing at least one failure, so raise the | 
 |   // failure threshold high enough to allow for a flake rate < 10,000. | 
 |   EXPECT_LE(failures, 4); | 
 | } | 
 |  | 
 | INSTANTIATE_TEST_SUITE_P(All, PoissonDistributionChiSquaredTest, | 
 |                          ::testing::Values(0.5, 1.0, 2.0, 10.0, 50.0, 51.0, | 
 |                                            200.0)); | 
 |  | 
 | // NOTE: absl::poisson_distribution is not guaranteed to be stable. | 
 | TEST(PoissonDistributionTest, StabilityTest) { | 
 |   using testing::ElementsAre; | 
 |   // absl::poisson_distribution stability relies on stability of | 
 |   // std::exp, std::log, std::sqrt, std::ceil, std::floor, and | 
 |   // absl::FastUniformBits, absl::StirlingLogFactorial, absl::RandU64ToDouble. | 
 |   absl::random_internal::sequence_urbg urbg({ | 
 |       0x035b0dc7e0a18acfull, 0x06cebe0d2653682eull, 0x0061e9b23861596bull, | 
 |       0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull, | 
 |       0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull, | 
 |       0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull, | 
 |       0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull, | 
 |       0x4864f22c059bf29eull, 0x247856d8b862665cull, 0xe46e86e9a1337e10ull, | 
 |       0xd8c8541f3519b133ull, 0xe75b5162c567b9e4ull, 0xf732e5ded7009c5bull, | 
 |       0xb170b98353121eacull, 0x1ec2e8986d2362caull, 0x814c8e35fe9a961aull, | 
 |       0x0c3cd59c9b638a02ull, 0xcb3bb6478a07715cull, 0x1224e62c978bbc7full, | 
 |       0x671ef2cb04e81f6eull, 0x3c1cbd811eaf1808ull, 0x1bbc23cfa8fac721ull, | 
 |       0xa4c2cda65e596a51ull, 0xb77216fad37adf91ull, 0x836d794457c08849ull, | 
 |       0xe083df03475f49d7ull, 0xbc9feb512e6b0d6cull, 0xb12d74fdd718c8c5ull, | 
 |       0x12ff09653bfbe4caull, 0x8dd03a105bc4ee7eull, 0x5738341045ba0d85ull, | 
 |       0xf3fd722dc65ad09eull, 0xfa14fd21ea2a5705ull, 0xffe6ea4d6edb0c73ull, | 
 |       0xD07E9EFE2BF11FB4ull, 0x95DBDA4DAE909198ull, 0xEAAD8E716B93D5A0ull, | 
 |       0xD08ED1D0AFC725E0ull, 0x8E3C5B2F8E7594B7ull, 0x8FF6E2FBF2122B64ull, | 
 |       0x8888B812900DF01Cull, 0x4FAD5EA0688FC31Cull, 0xD1CFF191B3A8C1ADull, | 
 |       0x2F2F2218BE0E1777ull, 0xEA752DFE8B021FA1ull, 0xE5A0CC0FB56F74E8ull, | 
 |       0x18ACF3D6CE89E299ull, 0xB4A84FE0FD13E0B7ull, 0x7CC43B81D2ADA8D9ull, | 
 |       0x165FA26680957705ull, 0x93CC7314211A1477ull, 0xE6AD206577B5FA86ull, | 
 |       0xC75442F5FB9D35CFull, 0xEBCDAF0C7B3E89A0ull, 0xD6411BD3AE1E7E49ull, | 
 |       0x00250E2D2071B35Eull, 0x226800BB57B8E0AFull, 0x2464369BF009B91Eull, | 
 |       0x5563911D59DFA6AAull, 0x78C14389D95A537Full, 0x207D5BA202E5B9C5ull, | 
 |       0x832603766295CFA9ull, 0x11C819684E734A41ull, 0xB3472DCA7B14A94Aull, | 
 |   }); | 
 |  | 
 |   std::vector<int> output(10); | 
 |  | 
 |   // Method 1. | 
 |   { | 
 |     absl::poisson_distribution<int> dist(5); | 
 |     std::generate(std::begin(output), std::end(output), | 
 |                   [&] { return dist(urbg); }); | 
 |   } | 
 |   EXPECT_THAT(output,  // mean = 4.2 | 
 |               ElementsAre(1, 0, 0, 4, 2, 10, 3, 3, 7, 12)); | 
 |  | 
 |   // Method 2. | 
 |   { | 
 |     urbg.reset(); | 
 |     absl::poisson_distribution<int> dist(25); | 
 |     std::generate(std::begin(output), std::end(output), | 
 |                   [&] { return dist(urbg); }); | 
 |   } | 
 |   EXPECT_THAT(output,  // mean = 19.8 | 
 |               ElementsAre(9, 35, 18, 10, 35, 18, 10, 35, 18, 10)); | 
 |  | 
 |   // Method 3. | 
 |   { | 
 |     urbg.reset(); | 
 |     absl::poisson_distribution<int> dist(121); | 
 |     std::generate(std::begin(output), std::end(output), | 
 |                   [&] { return dist(urbg); }); | 
 |   } | 
 |   EXPECT_THAT(output,  // mean = 124.1 | 
 |               ElementsAre(161, 122, 129, 124, 112, 112, 117, 120, 130, 114)); | 
 | } | 
 |  | 
 | TEST(PoissonDistributionTest, AlgorithmExpectedValue_1) { | 
 |   // This tests small values of the Knuth method. | 
 |   // The underlying uniform distribution will generate exactly 0.5. | 
 |   absl::random_internal::sequence_urbg urbg({0x8000000000000001ull}); | 
 |   absl::poisson_distribution<int> dist(5); | 
 |   EXPECT_EQ(7, dist(urbg)); | 
 | } | 
 |  | 
 | TEST(PoissonDistributionTest, AlgorithmExpectedValue_2) { | 
 |   // This tests larger values of the Knuth method. | 
 |   // The underlying uniform distribution will generate exactly 0.5. | 
 |   absl::random_internal::sequence_urbg urbg({0x8000000000000001ull}); | 
 |   absl::poisson_distribution<int> dist(25); | 
 |   EXPECT_EQ(36, dist(urbg)); | 
 | } | 
 |  | 
 | TEST(PoissonDistributionTest, AlgorithmExpectedValue_3) { | 
 |   // This variant uses the ratio of uniforms method. | 
 |   absl::random_internal::sequence_urbg urbg( | 
 |       {0x7fffffffffffffffull, 0x8000000000000000ull}); | 
 |  | 
 |   absl::poisson_distribution<int> dist(121); | 
 |   EXPECT_EQ(121, dist(urbg)); | 
 | } | 
 |  | 
 | }  // namespace |