blob: 0398f53008bcf49e1d7dce9bd3c46bdd22508cea [file] [log] [blame]
// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_CONTAINER_INTERNAL_INLINED_VECTOR_H_
#define ABSL_CONTAINER_INTERNAL_INLINED_VECTOR_H_
#include <algorithm>
#include <cstddef>
#include <cstring>
#include <iterator>
#include <limits>
#include <memory>
#include <new>
#include <type_traits>
#include <utility>
#include "absl/base/attributes.h"
#include "absl/base/macros.h"
#include "absl/container/internal/compressed_tuple.h"
#include "absl/memory/memory.h"
#include "absl/meta/type_traits.h"
#include "absl/types/span.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace inlined_vector_internal {
// GCC does not deal very well with the below code
#if !defined(__clang__) && defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Warray-bounds"
#endif
template <typename A>
using AllocatorTraits = std::allocator_traits<A>;
template <typename A>
using ValueType = typename AllocatorTraits<A>::value_type;
template <typename A>
using SizeType = typename AllocatorTraits<A>::size_type;
template <typename A>
using Pointer = typename AllocatorTraits<A>::pointer;
template <typename A>
using ConstPointer = typename AllocatorTraits<A>::const_pointer;
template <typename A>
using SizeType = typename AllocatorTraits<A>::size_type;
template <typename A>
using DifferenceType = typename AllocatorTraits<A>::difference_type;
template <typename A>
using Reference = ValueType<A>&;
template <typename A>
using ConstReference = const ValueType<A>&;
template <typename A>
using Iterator = Pointer<A>;
template <typename A>
using ConstIterator = ConstPointer<A>;
template <typename A>
using ReverseIterator = typename std::reverse_iterator<Iterator<A>>;
template <typename A>
using ConstReverseIterator = typename std::reverse_iterator<ConstIterator<A>>;
template <typename A>
using MoveIterator = typename std::move_iterator<Iterator<A>>;
template <typename Iterator>
using IsAtLeastForwardIterator = std::is_convertible<
typename std::iterator_traits<Iterator>::iterator_category,
std::forward_iterator_tag>;
template <typename A>
using IsMemcpyOk =
absl::conjunction<std::is_same<A, std::allocator<ValueType<A>>>,
absl::is_trivially_copy_constructible<ValueType<A>>,
absl::is_trivially_copy_assignable<ValueType<A>>,
absl::is_trivially_destructible<ValueType<A>>>;
template <typename A>
using IsMoveAssignOk = std::is_move_assignable<ValueType<A>>;
template <typename A>
using IsSwapOk = absl::type_traits_internal::IsSwappable<ValueType<A>>;
template <typename T>
struct TypeIdentity {
using type = T;
};
// Used for function arguments in template functions to prevent ADL by forcing
// callers to explicitly specify the template parameter.
template <typename T>
using NoTypeDeduction = typename TypeIdentity<T>::type;
template <typename A, bool IsTriviallyDestructible =
absl::is_trivially_destructible<ValueType<A>>::value>
struct DestroyAdapter;
template <typename A>
struct DestroyAdapter<A, /* IsTriviallyDestructible */ false> {
static void DestroyElements(A& allocator, Pointer<A> destroy_first,
SizeType<A> destroy_size) {
for (SizeType<A> i = destroy_size; i != 0;) {
--i;
AllocatorTraits<A>::destroy(allocator, destroy_first + i);
}
}
};
template <typename A>
struct DestroyAdapter<A, /* IsTriviallyDestructible */ true> {
static void DestroyElements(A& allocator, Pointer<A> destroy_first,
SizeType<A> destroy_size) {
static_cast<void>(allocator);
static_cast<void>(destroy_first);
static_cast<void>(destroy_size);
}
};
template <typename A>
struct Allocation {
Pointer<A> data = nullptr;
SizeType<A> capacity = 0;
};
template <typename A,
bool IsOverAligned =
(alignof(ValueType<A>) > ABSL_INTERNAL_DEFAULT_NEW_ALIGNMENT)>
struct MallocAdapter {
static Allocation<A> Allocate(A& allocator, SizeType<A> requested_capacity) {
return {AllocatorTraits<A>::allocate(allocator, requested_capacity),
requested_capacity};
}
static void Deallocate(A& allocator, Pointer<A> pointer,
SizeType<A> capacity) {
AllocatorTraits<A>::deallocate(allocator, pointer, capacity);
}
};
template <typename A, typename ValueAdapter>
void ConstructElements(NoTypeDeduction<A>& allocator,
Pointer<A> construct_first, ValueAdapter& values,
SizeType<A> construct_size) {
for (SizeType<A> i = 0; i < construct_size; ++i) {
ABSL_INTERNAL_TRY { values.ConstructNext(allocator, construct_first + i); }
ABSL_INTERNAL_CATCH_ANY {
DestroyAdapter<A>::DestroyElements(allocator, construct_first, i);
ABSL_INTERNAL_RETHROW;
}
}
}
template <typename A, typename ValueAdapter>
void AssignElements(Pointer<A> assign_first, ValueAdapter& values,
SizeType<A> assign_size) {
for (SizeType<A> i = 0; i < assign_size; ++i) {
values.AssignNext(assign_first + i);
}
}
template <typename A>
struct StorageView {
Pointer<A> data;
SizeType<A> size;
SizeType<A> capacity;
};
template <typename A, typename Iterator>
class IteratorValueAdapter {
public:
explicit IteratorValueAdapter(const Iterator& it) : it_(it) {}
void ConstructNext(A& allocator, Pointer<A> construct_at) {
AllocatorTraits<A>::construct(allocator, construct_at, *it_);
++it_;
}
void AssignNext(Pointer<A> assign_at) {
*assign_at = *it_;
++it_;
}
private:
Iterator it_;
};
template <typename A>
class CopyValueAdapter {
public:
explicit CopyValueAdapter(ConstPointer<A> p) : ptr_(p) {}
void ConstructNext(A& allocator, Pointer<A> construct_at) {
AllocatorTraits<A>::construct(allocator, construct_at, *ptr_);
}
void AssignNext(Pointer<A> assign_at) { *assign_at = *ptr_; }
private:
ConstPointer<A> ptr_;
};
template <typename A>
class DefaultValueAdapter {
public:
explicit DefaultValueAdapter() {}
void ConstructNext(A& allocator, Pointer<A> construct_at) {
AllocatorTraits<A>::construct(allocator, construct_at);
}
void AssignNext(Pointer<A> assign_at) { *assign_at = ValueType<A>(); }
};
template <typename A>
class AllocationTransaction {
public:
explicit AllocationTransaction(A& allocator)
: allocator_data_(allocator, nullptr), capacity_(0) {}
~AllocationTransaction() {
if (DidAllocate()) {
MallocAdapter<A>::Deallocate(GetAllocator(), GetData(), GetCapacity());
}
}
AllocationTransaction(const AllocationTransaction&) = delete;
void operator=(const AllocationTransaction&) = delete;
A& GetAllocator() { return allocator_data_.template get<0>(); }
Pointer<A>& GetData() { return allocator_data_.template get<1>(); }
SizeType<A>& GetCapacity() { return capacity_; }
bool DidAllocate() { return GetData() != nullptr; }
Pointer<A> Allocate(SizeType<A> requested_capacity) {
Allocation<A> result =
MallocAdapter<A>::Allocate(GetAllocator(), requested_capacity);
GetData() = result.data;
GetCapacity() = result.capacity;
return result.data;
}
ABSL_MUST_USE_RESULT Allocation<A> Release() && {
Allocation<A> result = {GetData(), GetCapacity()};
Reset();
return result;
}
private:
void Reset() {
GetData() = nullptr;
GetCapacity() = 0;
}
container_internal::CompressedTuple<A, Pointer<A>> allocator_data_;
SizeType<A> capacity_;
};
template <typename A>
class ConstructionTransaction {
public:
explicit ConstructionTransaction(A& allocator)
: allocator_data_(allocator, nullptr), size_(0) {}
~ConstructionTransaction() {
if (DidConstruct()) {
DestroyAdapter<A>::DestroyElements(GetAllocator(), GetData(), GetSize());
}
}
ConstructionTransaction(const ConstructionTransaction&) = delete;
void operator=(const ConstructionTransaction&) = delete;
A& GetAllocator() { return allocator_data_.template get<0>(); }
Pointer<A>& GetData() { return allocator_data_.template get<1>(); }
SizeType<A>& GetSize() { return size_; }
bool DidConstruct() { return GetData() != nullptr; }
template <typename ValueAdapter>
void Construct(Pointer<A> data, ValueAdapter& values, SizeType<A> size) {
ConstructElements<A>(GetAllocator(), data, values, size);
GetData() = data;
GetSize() = size;
}
void Commit() && {
GetData() = nullptr;
GetSize() = 0;
}
private:
container_internal::CompressedTuple<A, Pointer<A>> allocator_data_;
SizeType<A> size_;
};
template <typename T, size_t N, typename A>
class Storage {
public:
struct MemcpyPolicy {};
struct ElementwiseAssignPolicy {};
struct ElementwiseSwapPolicy {};
struct ElementwiseConstructPolicy {};
using MoveAssignmentPolicy = absl::conditional_t<
IsMemcpyOk<A>::value, MemcpyPolicy,
absl::conditional_t<IsMoveAssignOk<A>::value, ElementwiseAssignPolicy,
ElementwiseConstructPolicy>>;
using SwapPolicy = absl::conditional_t<
IsMemcpyOk<A>::value, MemcpyPolicy,
absl::conditional_t<IsSwapOk<A>::value, ElementwiseSwapPolicy,
ElementwiseConstructPolicy>>;
static SizeType<A> NextCapacity(SizeType<A> current_capacity) {
return current_capacity * 2;
}
static SizeType<A> ComputeCapacity(SizeType<A> current_capacity,
SizeType<A> requested_capacity) {
return (std::max)(NextCapacity(current_capacity), requested_capacity);
}
// ---------------------------------------------------------------------------
// Storage Constructors and Destructor
// ---------------------------------------------------------------------------
Storage() : metadata_(A(), /* size and is_allocated */ 0u) {}
explicit Storage(const A& allocator)
: metadata_(allocator, /* size and is_allocated */ 0u) {}
~Storage() {
if (GetSizeAndIsAllocated() == 0) {
// Empty and not allocated; nothing to do.
} else if (IsMemcpyOk<A>::value) {
// No destructors need to be run; just deallocate if necessary.
DeallocateIfAllocated();
} else {
DestroyContents();
}
}
// ---------------------------------------------------------------------------
// Storage Member Accessors
// ---------------------------------------------------------------------------
SizeType<A>& GetSizeAndIsAllocated() { return metadata_.template get<1>(); }
const SizeType<A>& GetSizeAndIsAllocated() const {
return metadata_.template get<1>();
}
SizeType<A> GetSize() const { return GetSizeAndIsAllocated() >> 1; }
bool GetIsAllocated() const { return GetSizeAndIsAllocated() & 1; }
Pointer<A> GetAllocatedData() { return data_.allocated.allocated_data; }
ConstPointer<A> GetAllocatedData() const {
return data_.allocated.allocated_data;
}
Pointer<A> GetInlinedData() {
return reinterpret_cast<Pointer<A>>(
std::addressof(data_.inlined.inlined_data[0]));
}
ConstPointer<A> GetInlinedData() const {
return reinterpret_cast<ConstPointer<A>>(
std::addressof(data_.inlined.inlined_data[0]));
}
SizeType<A> GetAllocatedCapacity() const {
return data_.allocated.allocated_capacity;
}
SizeType<A> GetInlinedCapacity() const {
return static_cast<SizeType<A>>(kOptimalInlinedSize);
}
StorageView<A> MakeStorageView() {
return GetIsAllocated() ? StorageView<A>{GetAllocatedData(), GetSize(),
GetAllocatedCapacity()}
: StorageView<A>{GetInlinedData(), GetSize(),
GetInlinedCapacity()};
}
A& GetAllocator() { return metadata_.template get<0>(); }
const A& GetAllocator() const { return metadata_.template get<0>(); }
// ---------------------------------------------------------------------------
// Storage Member Mutators
// ---------------------------------------------------------------------------
ABSL_ATTRIBUTE_NOINLINE void InitFrom(const Storage& other);
template <typename ValueAdapter>
void Initialize(ValueAdapter values, SizeType<A> new_size);
template <typename ValueAdapter>
void Assign(ValueAdapter values, SizeType<A> new_size);
template <typename ValueAdapter>
void Resize(ValueAdapter values, SizeType<A> new_size);
template <typename ValueAdapter>
Iterator<A> Insert(ConstIterator<A> pos, ValueAdapter values,
SizeType<A> insert_count);
template <typename... Args>
Reference<A> EmplaceBack(Args&&... args);
Iterator<A> Erase(ConstIterator<A> from, ConstIterator<A> to);
void Reserve(SizeType<A> requested_capacity);
void ShrinkToFit();
void Swap(Storage* other_storage_ptr);
void SetIsAllocated() {
GetSizeAndIsAllocated() |= static_cast<SizeType<A>>(1);
}
void UnsetIsAllocated() {
GetSizeAndIsAllocated() &= ((std::numeric_limits<SizeType<A>>::max)() - 1);
}
void SetSize(SizeType<A> size) {
GetSizeAndIsAllocated() =
(size << 1) | static_cast<SizeType<A>>(GetIsAllocated());
}
void SetAllocatedSize(SizeType<A> size) {
GetSizeAndIsAllocated() = (size << 1) | static_cast<SizeType<A>>(1);
}
void SetInlinedSize(SizeType<A> size) {
GetSizeAndIsAllocated() = size << static_cast<SizeType<A>>(1);
}
void AddSize(SizeType<A> count) {
GetSizeAndIsAllocated() += count << static_cast<SizeType<A>>(1);
}
void SubtractSize(SizeType<A> count) {
ABSL_HARDENING_ASSERT(count <= GetSize());
GetSizeAndIsAllocated() -= count << static_cast<SizeType<A>>(1);
}
void SetAllocation(Allocation<A> allocation) {
data_.allocated.allocated_data = allocation.data;
data_.allocated.allocated_capacity = allocation.capacity;
}
void MemcpyFrom(const Storage& other_storage) {
ABSL_HARDENING_ASSERT(IsMemcpyOk<A>::value ||
other_storage.GetIsAllocated());
GetSizeAndIsAllocated() = other_storage.GetSizeAndIsAllocated();
data_ = other_storage.data_;
}
void DeallocateIfAllocated() {
if (GetIsAllocated()) {
MallocAdapter<A>::Deallocate(GetAllocator(), GetAllocatedData(),
GetAllocatedCapacity());
}
}
private:
ABSL_ATTRIBUTE_NOINLINE void DestroyContents();
using Metadata = container_internal::CompressedTuple<A, SizeType<A>>;
struct Allocated {
Pointer<A> allocated_data;
SizeType<A> allocated_capacity;
};
// `kOptimalInlinedSize` is an automatically adjusted inlined capacity of the
// `InlinedVector`. Sometimes, it is possible to increase the capacity (from
// the user requested `N`) without increasing the size of the `InlinedVector`.
static constexpr size_t kOptimalInlinedSize =
(std::max)(N, sizeof(Allocated) / sizeof(ValueType<A>));
struct Inlined {
alignas(ValueType<A>) char inlined_data[sizeof(
ValueType<A>[kOptimalInlinedSize])];
};
union Data {
Allocated allocated;
Inlined inlined;
};
void SwapN(ElementwiseSwapPolicy, Storage* other, SizeType<A> n);
void SwapN(ElementwiseConstructPolicy, Storage* other, SizeType<A> n);
void SwapInlinedElements(MemcpyPolicy, Storage* other);
template <typename NotMemcpyPolicy>
void SwapInlinedElements(NotMemcpyPolicy, Storage* other);
template <typename... Args>
ABSL_ATTRIBUTE_NOINLINE Reference<A> EmplaceBackSlow(Args&&... args);
Metadata metadata_;
Data data_;
};
template <typename T, size_t N, typename A>
void Storage<T, N, A>::DestroyContents() {
Pointer<A> data = GetIsAllocated() ? GetAllocatedData() : GetInlinedData();
DestroyAdapter<A>::DestroyElements(GetAllocator(), data, GetSize());
DeallocateIfAllocated();
}
template <typename T, size_t N, typename A>
void Storage<T, N, A>::InitFrom(const Storage& other) {
const SizeType<A> n = other.GetSize();
ABSL_HARDENING_ASSERT(n > 0); // Empty sources handled handled in caller.
ConstPointer<A> src;
Pointer<A> dst;
if (!other.GetIsAllocated()) {
dst = GetInlinedData();
src = other.GetInlinedData();
} else {
// Because this is only called from the `InlinedVector` constructors, it's
// safe to take on the allocation with size `0`. If `ConstructElements(...)`
// throws, deallocation will be automatically handled by `~Storage()`.
SizeType<A> requested_capacity = ComputeCapacity(GetInlinedCapacity(), n);
Allocation<A> allocation =
MallocAdapter<A>::Allocate(GetAllocator(), requested_capacity);
SetAllocation(allocation);
dst = allocation.data;
src = other.GetAllocatedData();
}
if (IsMemcpyOk<A>::value) {
std::memcpy(reinterpret_cast<char*>(dst),
reinterpret_cast<const char*>(src), n * sizeof(ValueType<A>));
} else {
auto values = IteratorValueAdapter<A, ConstPointer<A>>(src);
ConstructElements<A>(GetAllocator(), dst, values, n);
}
GetSizeAndIsAllocated() = other.GetSizeAndIsAllocated();
}
template <typename T, size_t N, typename A>
template <typename ValueAdapter>
auto Storage<T, N, A>::Initialize(ValueAdapter values, SizeType<A> new_size)
-> void {
// Only callable from constructors!
ABSL_HARDENING_ASSERT(!GetIsAllocated());
ABSL_HARDENING_ASSERT(GetSize() == 0);
Pointer<A> construct_data;
if (new_size > GetInlinedCapacity()) {
// Because this is only called from the `InlinedVector` constructors, it's
// safe to take on the allocation with size `0`. If `ConstructElements(...)`
// throws, deallocation will be automatically handled by `~Storage()`.
SizeType<A> requested_capacity =
ComputeCapacity(GetInlinedCapacity(), new_size);
Allocation<A> allocation =
MallocAdapter<A>::Allocate(GetAllocator(), requested_capacity);
construct_data = allocation.data;
SetAllocation(allocation);
SetIsAllocated();
} else {
construct_data = GetInlinedData();
}
ConstructElements<A>(GetAllocator(), construct_data, values, new_size);
// Since the initial size was guaranteed to be `0` and the allocated bit is
// already correct for either case, *adding* `new_size` gives us the correct
// result faster than setting it directly.
AddSize(new_size);
}
template <typename T, size_t N, typename A>
template <typename ValueAdapter>
auto Storage<T, N, A>::Assign(ValueAdapter values, SizeType<A> new_size)
-> void {
StorageView<A> storage_view = MakeStorageView();
AllocationTransaction<A> allocation_tx(GetAllocator());
absl::Span<ValueType<A>> assign_loop;
absl::Span<ValueType<A>> construct_loop;
absl::Span<ValueType<A>> destroy_loop;
if (new_size > storage_view.capacity) {
SizeType<A> requested_capacity =
ComputeCapacity(storage_view.capacity, new_size);
construct_loop = {allocation_tx.Allocate(requested_capacity), new_size};
destroy_loop = {storage_view.data, storage_view.size};
} else if (new_size > storage_view.size) {
assign_loop = {storage_view.data, storage_view.size};
construct_loop = {storage_view.data + storage_view.size,
new_size - storage_view.size};
} else {
assign_loop = {storage_view.data, new_size};
destroy_loop = {storage_view.data + new_size, storage_view.size - new_size};
}
AssignElements<A>(assign_loop.data(), values, assign_loop.size());
ConstructElements<A>(GetAllocator(), construct_loop.data(), values,
construct_loop.size());
DestroyAdapter<A>::DestroyElements(GetAllocator(), destroy_loop.data(),
destroy_loop.size());
if (allocation_tx.DidAllocate()) {
DeallocateIfAllocated();
SetAllocation(std::move(allocation_tx).Release());
SetIsAllocated();
}
SetSize(new_size);
}
template <typename T, size_t N, typename A>
template <typename ValueAdapter>
auto Storage<T, N, A>::Resize(ValueAdapter values, SizeType<A> new_size)
-> void {
StorageView<A> storage_view = MakeStorageView();
Pointer<A> const base = storage_view.data;
const SizeType<A> size = storage_view.size;
A& alloc = GetAllocator();
if (new_size <= size) {
// Destroy extra old elements.
DestroyAdapter<A>::DestroyElements(alloc, base + new_size, size - new_size);
} else if (new_size <= storage_view.capacity) {
// Construct new elements in place.
ConstructElements<A>(alloc, base + size, values, new_size - size);
} else {
// Steps:
// a. Allocate new backing store.
// b. Construct new elements in new backing store.
// c. Move existing elements from old backing store to new backing store.
// d. Destroy all elements in old backing store.
// Use transactional wrappers for the first two steps so we can roll
// back if necessary due to exceptions.
AllocationTransaction<A> allocation_tx(alloc);
SizeType<A> requested_capacity =
ComputeCapacity(storage_view.capacity, new_size);
Pointer<A> new_data = allocation_tx.Allocate(requested_capacity);
ConstructionTransaction<A> construction_tx(alloc);
construction_tx.Construct(new_data + size, values, new_size - size);
IteratorValueAdapter<A, MoveIterator<A>> move_values(
(MoveIterator<A>(base)));
ConstructElements<A>(alloc, new_data, move_values, size);
DestroyAdapter<A>::DestroyElements(alloc, base, size);
std::move(construction_tx).Commit();
DeallocateIfAllocated();
SetAllocation(std::move(allocation_tx).Release());
SetIsAllocated();
}
SetSize(new_size);
}
template <typename T, size_t N, typename A>
template <typename ValueAdapter>
auto Storage<T, N, A>::Insert(ConstIterator<A> pos, ValueAdapter values,
SizeType<A> insert_count) -> Iterator<A> {
StorageView<A> storage_view = MakeStorageView();
auto insert_index = static_cast<SizeType<A>>(
std::distance(ConstIterator<A>(storage_view.data), pos));
SizeType<A> insert_end_index = insert_index + insert_count;
SizeType<A> new_size = storage_view.size + insert_count;
if (new_size > storage_view.capacity) {
AllocationTransaction<A> allocation_tx(GetAllocator());
ConstructionTransaction<A> construction_tx(GetAllocator());
ConstructionTransaction<A> move_construction_tx(GetAllocator());
IteratorValueAdapter<A, MoveIterator<A>> move_values(
MoveIterator<A>(storage_view.data));
SizeType<A> requested_capacity =
ComputeCapacity(storage_view.capacity, new_size);
Pointer<A> new_data = allocation_tx.Allocate(requested_capacity);
construction_tx.Construct(new_data + insert_index, values, insert_count);
move_construction_tx.Construct(new_data, move_values, insert_index);
ConstructElements<A>(GetAllocator(), new_data + insert_end_index,
move_values, storage_view.size - insert_index);
DestroyAdapter<A>::DestroyElements(GetAllocator(), storage_view.data,
storage_view.size);
std::move(construction_tx).Commit();
std::move(move_construction_tx).Commit();
DeallocateIfAllocated();
SetAllocation(std::move(allocation_tx).Release());
SetAllocatedSize(new_size);
return Iterator<A>(new_data + insert_index);
} else {
SizeType<A> move_construction_destination_index =
(std::max)(insert_end_index, storage_view.size);
ConstructionTransaction<A> move_construction_tx(GetAllocator());
IteratorValueAdapter<A, MoveIterator<A>> move_construction_values(
MoveIterator<A>(storage_view.data +
(move_construction_destination_index - insert_count)));
absl::Span<ValueType<A>> move_construction = {
storage_view.data + move_construction_destination_index,
new_size - move_construction_destination_index};
Pointer<A> move_assignment_values = storage_view.data + insert_index;
absl::Span<ValueType<A>> move_assignment = {
storage_view.data + insert_end_index,
move_construction_destination_index - insert_end_index};
absl::Span<ValueType<A>> insert_assignment = {move_assignment_values,
move_construction.size()};
absl::Span<ValueType<A>> insert_construction = {
insert_assignment.data() + insert_assignment.size(),
insert_count - insert_assignment.size()};
move_construction_tx.Construct(move_construction.data(),
move_construction_values,
move_construction.size());
for (Pointer<A>
destination = move_assignment.data() + move_assignment.size(),
last_destination = move_assignment.data(),
source = move_assignment_values + move_assignment.size();
;) {
--destination;
--source;
if (destination < last_destination) break;
*destination = std::move(*source);
}
AssignElements<A>(insert_assignment.data(), values,
insert_assignment.size());
ConstructElements<A>(GetAllocator(), insert_construction.data(), values,
insert_construction.size());
std::move(move_construction_tx).Commit();
AddSize(insert_count);
return Iterator<A>(storage_view.data + insert_index);
}
}
template <typename T, size_t N, typename A>
template <typename... Args>
auto Storage<T, N, A>::EmplaceBack(Args&&... args) -> Reference<A> {
StorageView<A> storage_view = MakeStorageView();
const SizeType<A> n = storage_view.size;
if (ABSL_PREDICT_TRUE(n != storage_view.capacity)) {
// Fast path; new element fits.
Pointer<A> last_ptr = storage_view.data + n;
AllocatorTraits<A>::construct(GetAllocator(), last_ptr,
std::forward<Args>(args)...);
AddSize(1);
return *last_ptr;
}
// TODO(b/173712035): Annotate with musttail attribute to prevent regression.
return EmplaceBackSlow(std::forward<Args>(args)...);
}
template <typename T, size_t N, typename A>
template <typename... Args>
auto Storage<T, N, A>::EmplaceBackSlow(Args&&... args) -> Reference<A> {
StorageView<A> storage_view = MakeStorageView();
AllocationTransaction<A> allocation_tx(GetAllocator());
IteratorValueAdapter<A, MoveIterator<A>> move_values(
MoveIterator<A>(storage_view.data));
SizeType<A> requested_capacity = NextCapacity(storage_view.capacity);
Pointer<A> construct_data = allocation_tx.Allocate(requested_capacity);
Pointer<A> last_ptr = construct_data + storage_view.size;
// Construct new element.
AllocatorTraits<A>::construct(GetAllocator(), last_ptr,
std::forward<Args>(args)...);
// Move elements from old backing store to new backing store.
ABSL_INTERNAL_TRY {
ConstructElements<A>(GetAllocator(), allocation_tx.GetData(), move_values,
storage_view.size);
}
ABSL_INTERNAL_CATCH_ANY {
AllocatorTraits<A>::destroy(GetAllocator(), last_ptr);
ABSL_INTERNAL_RETHROW;
}
// Destroy elements in old backing store.
DestroyAdapter<A>::DestroyElements(GetAllocator(), storage_view.data,
storage_view.size);
DeallocateIfAllocated();
SetAllocation(std::move(allocation_tx).Release());
SetIsAllocated();
AddSize(1);
return *last_ptr;
}
template <typename T, size_t N, typename A>
auto Storage<T, N, A>::Erase(ConstIterator<A> from, ConstIterator<A> to)
-> Iterator<A> {
StorageView<A> storage_view = MakeStorageView();
auto erase_size = static_cast<SizeType<A>>(std::distance(from, to));
auto erase_index = static_cast<SizeType<A>>(
std::distance(ConstIterator<A>(storage_view.data), from));
SizeType<A> erase_end_index = erase_index + erase_size;
IteratorValueAdapter<A, MoveIterator<A>> move_values(
MoveIterator<A>(storage_view.data + erase_end_index));
AssignElements<A>(storage_view.data + erase_index, move_values,
storage_view.size - erase_end_index);
DestroyAdapter<A>::DestroyElements(
GetAllocator(), storage_view.data + (storage_view.size - erase_size),
erase_size);
SubtractSize(erase_size);
return Iterator<A>(storage_view.data + erase_index);
}
template <typename T, size_t N, typename A>
auto Storage<T, N, A>::Reserve(SizeType<A> requested_capacity) -> void {
StorageView<A> storage_view = MakeStorageView();
if (ABSL_PREDICT_FALSE(requested_capacity <= storage_view.capacity)) return;
AllocationTransaction<A> allocation_tx(GetAllocator());
IteratorValueAdapter<A, MoveIterator<A>> move_values(
MoveIterator<A>(storage_view.data));
SizeType<A> new_requested_capacity =
ComputeCapacity(storage_view.capacity, requested_capacity);
Pointer<A> new_data = allocation_tx.Allocate(new_requested_capacity);
ConstructElements<A>(GetAllocator(), new_data, move_values,
storage_view.size);
DestroyAdapter<A>::DestroyElements(GetAllocator(), storage_view.data,
storage_view.size);
DeallocateIfAllocated();
SetAllocation(std::move(allocation_tx).Release());
SetIsAllocated();
}
template <typename T, size_t N, typename A>
auto Storage<T, N, A>::ShrinkToFit() -> void {
// May only be called on allocated instances!
ABSL_HARDENING_ASSERT(GetIsAllocated());
StorageView<A> storage_view{GetAllocatedData(), GetSize(),
GetAllocatedCapacity()};
if (ABSL_PREDICT_FALSE(storage_view.size == storage_view.capacity)) return;
AllocationTransaction<A> allocation_tx(GetAllocator());
IteratorValueAdapter<A, MoveIterator<A>> move_values(
MoveIterator<A>(storage_view.data));
Pointer<A> construct_data;
if (storage_view.size > GetInlinedCapacity()) {
SizeType<A> requested_capacity = storage_view.size;
construct_data = allocation_tx.Allocate(requested_capacity);
if (allocation_tx.GetCapacity() >= storage_view.capacity) {
// Already using the smallest available heap allocation.
return;
}
} else {
construct_data = GetInlinedData();
}
ABSL_INTERNAL_TRY {
ConstructElements<A>(GetAllocator(), construct_data, move_values,
storage_view.size);
}
ABSL_INTERNAL_CATCH_ANY {
SetAllocation({storage_view.data, storage_view.capacity});
ABSL_INTERNAL_RETHROW;
}
DestroyAdapter<A>::DestroyElements(GetAllocator(), storage_view.data,
storage_view.size);
MallocAdapter<A>::Deallocate(GetAllocator(), storage_view.data,
storage_view.capacity);
if (allocation_tx.DidAllocate()) {
SetAllocation(std::move(allocation_tx).Release());
} else {
UnsetIsAllocated();
}
}
template <typename T, size_t N, typename A>
auto Storage<T, N, A>::Swap(Storage* other_storage_ptr) -> void {
using std::swap;
ABSL_HARDENING_ASSERT(this != other_storage_ptr);
if (GetIsAllocated() && other_storage_ptr->GetIsAllocated()) {
swap(data_.allocated, other_storage_ptr->data_.allocated);
} else if (!GetIsAllocated() && !other_storage_ptr->GetIsAllocated()) {
SwapInlinedElements(SwapPolicy{}, other_storage_ptr);
} else {
Storage* allocated_ptr = this;
Storage* inlined_ptr = other_storage_ptr;
if (!allocated_ptr->GetIsAllocated()) swap(allocated_ptr, inlined_ptr);
StorageView<A> allocated_storage_view{
allocated_ptr->GetAllocatedData(), allocated_ptr->GetSize(),
allocated_ptr->GetAllocatedCapacity()};
IteratorValueAdapter<A, MoveIterator<A>> move_values(
MoveIterator<A>(inlined_ptr->GetInlinedData()));
ABSL_INTERNAL_TRY {
ConstructElements<A>(inlined_ptr->GetAllocator(),
allocated_ptr->GetInlinedData(), move_values,
inlined_ptr->GetSize());
}
ABSL_INTERNAL_CATCH_ANY {
allocated_ptr->SetAllocation(Allocation<A>{
allocated_storage_view.data, allocated_storage_view.capacity});
ABSL_INTERNAL_RETHROW;
}
DestroyAdapter<A>::DestroyElements(inlined_ptr->GetAllocator(),
inlined_ptr->GetInlinedData(),
inlined_ptr->GetSize());
inlined_ptr->SetAllocation(Allocation<A>{allocated_storage_view.data,
allocated_storage_view.capacity});
}
swap(GetSizeAndIsAllocated(), other_storage_ptr->GetSizeAndIsAllocated());
swap(GetAllocator(), other_storage_ptr->GetAllocator());
}
template <typename T, size_t N, typename A>
void Storage<T, N, A>::SwapN(ElementwiseSwapPolicy, Storage* other,
SizeType<A> n) {
std::swap_ranges(GetInlinedData(), GetInlinedData() + n,
other->GetInlinedData());
}
template <typename T, size_t N, typename A>
void Storage<T, N, A>::SwapN(ElementwiseConstructPolicy, Storage* other,
SizeType<A> n) {
Pointer<A> a = GetInlinedData();
Pointer<A> b = other->GetInlinedData();
// see note on allocators in `SwapInlinedElements`.
A& allocator_a = GetAllocator();
A& allocator_b = other->GetAllocator();
for (SizeType<A> i = 0; i < n; ++i, ++a, ++b) {
ValueType<A> tmp(std::move(*a));
AllocatorTraits<A>::destroy(allocator_a, a);
AllocatorTraits<A>::construct(allocator_b, a, std::move(*b));
AllocatorTraits<A>::destroy(allocator_b, b);
AllocatorTraits<A>::construct(allocator_a, b, std::move(tmp));
}
}
template <typename T, size_t N, typename A>
void Storage<T, N, A>::SwapInlinedElements(MemcpyPolicy, Storage* other) {
Data tmp = data_;
data_ = other->data_;
other->data_ = tmp;
}
template <typename T, size_t N, typename A>
template <typename NotMemcpyPolicy>
void Storage<T, N, A>::SwapInlinedElements(NotMemcpyPolicy policy,
Storage* other) {
// Note: `destroy` needs to use pre-swap allocator while `construct` -
// post-swap allocator. Allocators will be swaped later on outside of
// `SwapInlinedElements`.
Storage* small_ptr = this;
Storage* large_ptr = other;
if (small_ptr->GetSize() > large_ptr->GetSize()) {
std::swap(small_ptr, large_ptr);
}
auto small_size = small_ptr->GetSize();
auto diff = large_ptr->GetSize() - small_size;
SwapN(policy, other, small_size);
IteratorValueAdapter<A, MoveIterator<A>> move_values(
MoveIterator<A>(large_ptr->GetInlinedData() + small_size));
ConstructElements<A>(large_ptr->GetAllocator(),
small_ptr->GetInlinedData() + small_size, move_values,
diff);
DestroyAdapter<A>::DestroyElements(large_ptr->GetAllocator(),
large_ptr->GetInlinedData() + small_size,
diff);
}
// End ignore "array-bounds"
#if !defined(__clang__) && defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
} // namespace inlined_vector_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_INLINED_VECTOR_H_