| // Copyright 2019 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/profiling/internal/exponential_biased.h" |
| |
| #include <stdint.h> |
| |
| #include <algorithm> |
| #include <atomic> |
| #include <cmath> |
| #include <limits> |
| |
| #include "absl/base/attributes.h" |
| #include "absl/base/optimization.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace profiling_internal { |
| |
| // The algorithm generates a random number between 0 and 1 and applies the |
| // inverse cumulative distribution function for an exponential. Specifically: |
| // Let m be the inverse of the sample period, then the probability |
| // distribution function is m*exp(-mx) so the CDF is |
| // p = 1 - exp(-mx), so |
| // q = 1 - p = exp(-mx) |
| // log_e(q) = -mx |
| // -log_e(q)/m = x |
| // log_2(q) * (-log_e(2) * 1/m) = x |
| // In the code, q is actually in the range 1 to 2**26, hence the -26 below |
| int64_t ExponentialBiased::GetSkipCount(int64_t mean) { |
| if (ABSL_PREDICT_FALSE(!initialized_)) { |
| Initialize(); |
| } |
| |
| uint64_t rng = NextRandom(rng_); |
| rng_ = rng; |
| |
| // Take the top 26 bits as the random number |
| // (This plus the 1<<58 sampling bound give a max possible step of |
| // 5194297183973780480 bytes.) |
| // The uint32_t cast is to prevent a (hard-to-reproduce) NAN |
| // under piii debug for some binaries. |
| double q = static_cast<uint32_t>(rng >> (kPrngNumBits - 26)) + 1.0; |
| // Put the computed p-value through the CDF of a geometric. |
| double interval = bias_ + (std::log2(q) - 26) * (-std::log(2.0) * mean); |
| // Very large values of interval overflow int64_t. To avoid that, we will |
| // cheat and clamp any huge values to (int64_t max)/2. This is a potential |
| // source of bias, but the mean would need to be such a large value that it's |
| // not likely to come up. For example, with a mean of 1e18, the probability of |
| // hitting this condition is about 1/1000. For a mean of 1e17, standard |
| // calculators claim that this event won't happen. |
| if (interval > static_cast<double>(std::numeric_limits<int64_t>::max() / 2)) { |
| // Assume huge values are bias neutral, retain bias for next call. |
| return std::numeric_limits<int64_t>::max() / 2; |
| } |
| double value = std::rint(interval); |
| bias_ = interval - value; |
| return value; |
| } |
| |
| int64_t ExponentialBiased::GetStride(int64_t mean) { |
| return GetSkipCount(mean - 1) + 1; |
| } |
| |
| void ExponentialBiased::Initialize() { |
| // We don't get well distributed numbers from `this` so we call NextRandom() a |
| // bunch to mush the bits around. We use a global_rand to handle the case |
| // where the same thread (by memory address) gets created and destroyed |
| // repeatedly. |
| ABSL_CONST_INIT static std::atomic<uint32_t> global_rand(0); |
| uint64_t r = reinterpret_cast<uint64_t>(this) + |
| global_rand.fetch_add(1, std::memory_order_relaxed); |
| for (int i = 0; i < 20; ++i) { |
| r = NextRandom(r); |
| } |
| rng_ = r; |
| initialized_ = true; |
| } |
| |
| } // namespace profiling_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |