blob: 06291865e3dcf370923fd2d16df6bccf6e762697 [file] [log] [blame]
// Copyright 2017 The Abseil Authors.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cstdint>
#include <cstdlib>
#include <initializer_list>
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
#include "absl/container/inlined_vector.h"
#include "absl/meta/type_traits.h"
#include "absl/random/internal/seed_material.h"
#include "absl/types/optional.h"
#include "absl/types/span.h"
namespace absl {
namespace random_internal {
// This class conforms to the C++ Standard "Seed Sequence" concept
// [rand.req.seedseq].
// A `SaltedSeedSeq` is meant to wrap an existing seed sequence and modify
// generated sequence by mixing with extra entropy. This entropy may be
// build-dependent or process-dependent. The implementation may change to be
// have either or both kinds of entropy. If salt is not available sequence is
// not modified.
template <typename SSeq>
class SaltedSeedSeq {
using inner_sequence_type = SSeq;
using result_type = typename SSeq::result_type;
SaltedSeedSeq() : seq_(absl::make_unique<SSeq>()) {}
template <typename Iterator>
SaltedSeedSeq(Iterator begin, Iterator end)
: seq_(absl::make_unique<SSeq>(begin, end)) {}
template <typename T>
SaltedSeedSeq(std::initializer_list<T> il)
: SaltedSeedSeq(il.begin(), il.end()) {}
SaltedSeedSeq(const SaltedSeedSeq&) = delete;
SaltedSeedSeq& operator=(const SaltedSeedSeq&) = delete;
SaltedSeedSeq(SaltedSeedSeq&&) = default;
SaltedSeedSeq& operator=(SaltedSeedSeq&&) = default;
template <typename RandomAccessIterator>
void generate(RandomAccessIterator begin, RandomAccessIterator end) {
using U = typename std::iterator_traits<RandomAccessIterator>::value_type;
// The common case is that generate is called with ContiguousIterators
// to uint arrays. Such contiguous memory regions may be optimized,
// which we detect here.
using TagType = absl::conditional_t<
(std::is_same<U, uint32_t>::value &&
(std::is_pointer<RandomAccessIterator>::value ||
typename std::vector<U>::iterator>::value)),
ContiguousAndUint32Tag, DefaultTag>;
if (begin != end) {
generate_impl(TagType{}, begin, end, std::distance(begin, end));
template <typename OutIterator>
void param(OutIterator out) const {
size_t size() const { return seq_->size(); }
struct ContiguousAndUint32Tag {};
struct DefaultTag {};
// Generate which requires the iterators are contiguous pointers to uint32_t.
// Fills the initial seed buffer the underlying SSeq::generate() call,
// then mixes in the salt material.
template <typename Contiguous>
void generate_impl(ContiguousAndUint32Tag, Contiguous begin, Contiguous end,
size_t n) {
seq_->generate(begin, end);
const uint32_t salt = absl::random_internal::GetSaltMaterial().value_or(0);
auto span = absl::Span<uint32_t>(&*begin, n);
MixIntoSeedMaterial(absl::MakeConstSpan(&salt, 1), span);
// The uncommon case for generate is that it is called with iterators over
// some other buffer type which is assignable from a 32-bit value. In this
// case we allocate a temporary 32-bit buffer and then copy-assign back
// to the initial inputs.
template <typename RandomAccessIterator>
void generate_impl(DefaultTag, RandomAccessIterator begin,
RandomAccessIterator, size_t n) {
// Allocates a seed buffer of `n` elements, generates the seed, then
// copies the result into the `out` iterator.
absl::InlinedVector<uint32_t, 8> data(n, 0);
generate_impl(ContiguousAndUint32Tag{}, data.begin(), data.end(), n);
std::copy(data.begin(), data.end(), begin);
// Because [rand.req.seedseq] is not required to be copy-constructible,
// copy-assignable nor movable, we wrap it with unique pointer to be able
// to move SaltedSeedSeq.
std::unique_ptr<SSeq> seq_;
// is_salted_seed_seq indicates whether the type is a SaltedSeedSeq.
template <typename T, typename = void>
struct is_salted_seed_seq : public std::false_type {};
template <typename T>
struct is_salted_seed_seq<
T, typename std::enable_if<std::is_same<
T, SaltedSeedSeq<typename T::inner_sequence_type>>::value>::type>
: public std::true_type {};
// MakeSaltedSeedSeq returns a salted variant of the seed sequence.
// When provided with an existing SaltedSeedSeq, returns the input parameter,
// otherwise constructs a new SaltedSeedSeq which embodies the original
// non-salted seed parameters.
template <
typename SSeq, //
typename EnableIf = absl::enable_if_t<is_salted_seed_seq<SSeq>::value>>
SSeq MakeSaltedSeedSeq(SSeq&& seq) {
return SSeq(std::forward<SSeq>(seq));
template <
typename SSeq, //
typename EnableIf = absl::enable_if_t<!is_salted_seed_seq<SSeq>::value>>
SaltedSeedSeq<typename std::decay<SSeq>::type> MakeSaltedSeedSeq(SSeq&& seq) {
using sseq_type = typename std::decay<SSeq>::type;
using result_type = typename sseq_type::result_type;
absl::InlinedVector<result_type, 8> data;
return SaltedSeedSeq<sseq_type>(data.begin(), data.end());
} // namespace random_internal
} // namespace absl