blob: f3fcbe77e0089ec757c98e7f866a26bfd773ab88 [file] [log] [blame]
// Copyright (c) 2015 The Khronos Group Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and/or associated documentation files (the
// "Materials"), to deal in the Materials without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Materials, and to
// permit persons to whom the Materials are furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Materials.
//
// MODIFICATIONS TO THIS FILE MAY MEAN IT NO LONGER ACCURATELY REFLECTS
// KHRONOS STANDARDS. THE UNMODIFIED, NORMATIVE VERSIONS OF KHRONOS
// SPECIFICATIONS AND HEADER INFORMATION ARE LOCATED AT
// https://www.khronos.org/registry/
//
// THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
// MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
// This file contains a disassembler: It converts a SPIR-V binary
// to text.
#include <cassert>
#include <cstring>
#include <unordered_map>
#include "assembly_grammar.h"
#include "binary.h"
#include "diagnostic.h"
#include "endian.h"
#include "ext_inst.h"
#include "libspirv/libspirv.h"
#include "opcode.h"
#include "print.h"
#include "util/hex_float.h"
namespace {
// A Disassembler instance converts a SPIR-V binary to its assembly
// representation.
class Disassembler {
public:
Disassembler(const libspirv::AssemblyGrammar& grammar, uint32_t const* words,
size_t num_words, uint32_t options)
: words_(words),
num_words_(num_words),
grammar_(grammar),
print_(spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_PRINT, options)),
color_(print_ &&
spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_COLOR, options)),
text_(),
out_(print_ ? out_stream() : out_stream(text_)),
stream_(out_.get()) {}
// Emits the assembly header for the module, and sets up internal state
// so subsequent callbacks can handle the cases where the entire module
// is either big-endian or little-endian.
spv_result_t HandleHeader(spv_endianness_t endian, uint32_t version,
uint32_t generator, uint32_t id_bound,
uint32_t schema);
// Emits the assembly text for the given instruction.
spv_result_t HandleInstruction(const spv_parsed_instruction_t& inst);
// If not printing, populates text_result with the accumulated text.
// Returns SPV_SUCCESS on success.
spv_result_t SaveTextResult(spv_text* text_result) const;
private:
// Emits an operand for the given instruction, where the instruction
// is at offset words from the start of the binary.
void EmitOperand(const spv_parsed_instruction_t& inst,
const uint16_t operand_index);
// Emits a mask expression for the given mask word of the specified type.
void EmitMaskOperand(const spv_operand_type_t type, const uint32_t word);
// Resets the output color, if color is turned on.
void ResetColor() {
if (color_) out_.get() << clr::reset();
}
// Sets the output to grey, if color is turned on.
void SetGrey() {
if (color_) out_.get() << clr::grey();
}
// Sets the output to blue, if color is turned on.
void SetBlue() {
if (color_) out_.get() << clr::blue();
}
// Sets the output to yellow, if color is turned on.
void SetYellow() {
if (color_) out_.get() << clr::yellow();
}
// Sets the output to red, if color is turned on.
void SetRed() {
if (color_) out_.get() << clr::red();
}
// Sets the output to green, if color is turned on.
void SetGreen() {
if (color_) out_.get() << clr::green();
}
// The SPIR-V binary. The endianness is not necessarily converted
// to native endianness.
const uint32_t* const words_;
const size_t num_words_;
const libspirv::AssemblyGrammar& grammar_;
const bool print_; // Should we also print to the standard output stream?
const bool color_; // Should we print in colour?
spv_endianness_t endian_; // The detected endianness of the binary.
std::stringstream text_; // Captures the text, if not printing.
out_stream out_; // The Output stream. Either to text_ or standard output.
std::ostream& stream_; // The output std::stream.
};
spv_result_t Disassembler::HandleHeader(spv_endianness_t endian,
uint32_t version, uint32_t generator,
uint32_t id_bound, uint32_t schema) {
endian_ = endian;
SetGrey();
stream_ << "; SPIR-V\n"
<< "; Version: " << version << "\n"
<< "; Generator: " << spvGeneratorStr(generator) << "\n"
<< "; Bound: " << id_bound << "\n"
<< "; Schema: " << schema << "\n";
ResetColor();
return SPV_SUCCESS;
}
spv_result_t Disassembler::HandleInstruction(
const spv_parsed_instruction_t& inst) {
if (inst.result_id) {
SetBlue();
stream_ << "%" << inst.result_id << " = ";
ResetColor();
}
stream_ << "Op" << spvOpcodeString(inst.opcode);
for (uint16_t i = 0; i < inst.num_operands; i++) {
const spv_operand_type_t type = inst.operands[i].type;
assert(type != SPV_OPERAND_TYPE_NONE);
if (type == SPV_OPERAND_TYPE_RESULT_ID) continue;
stream_ << " ";
EmitOperand(inst, i);
}
stream_ << "\n";
return SPV_SUCCESS;
}
void Disassembler::EmitOperand(const spv_parsed_instruction_t& inst,
const uint16_t operand_index) {
assert(operand_index < inst.num_operands);
const spv_parsed_operand_t& operand = inst.operands[operand_index];
const size_t index = inst.offset + operand.offset;
const uint32_t word = spvFixWord(words_[index], endian_);
switch (operand.type) {
case SPV_OPERAND_TYPE_RESULT_ID:
assert(false && "<result-id> is not supposed to be handled here");
SetBlue();
stream_ << "%" << word;
break;
case SPV_OPERAND_TYPE_ID:
case SPV_OPERAND_TYPE_TYPE_ID:
case SPV_OPERAND_TYPE_EXECUTION_SCOPE:
case SPV_OPERAND_TYPE_MEMORY_SEMANTICS:
SetYellow();
stream_ << "%" << word;
break;
case SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER: {
spv_ext_inst_desc ext_inst;
if (grammar_.lookupExtInst(inst.ext_inst_type, word, &ext_inst))
assert(false && "should have caught this earlier");
SetRed();
stream_ << ext_inst->name;
} break;
case SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER: {
spv_opcode_desc opcode_desc;
if (grammar_.lookupOpcode(SpvOp(word), &opcode_desc))
assert(false && "should have caught this earlier");
SetRed();
stream_ << opcode_desc->name;
} break;
case SPV_OPERAND_TYPE_LITERAL_INTEGER:
case SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER: {
SetRed();
if (operand.num_words == 1) {
switch (operand.number_kind) {
case SPV_NUMBER_SIGNED_INT:
stream_ << int32_t(word);
break;
case SPV_NUMBER_UNSIGNED_INT:
stream_ << uint32_t(word);
break;
case SPV_NUMBER_FLOATING:
// Assume only 32-bit floats.
// TODO(dneto): Handle 16-bit floats also.
stream_ << spvutils::FloatProxy<float>(word);
break;
default:
assert(false && "Unreachable");
}
} else if (operand.num_words == 2) {
uint64_t bits =
spvFixDoubleWord(words_[index], words_[index + 1], endian_);
switch (operand.number_kind) {
case SPV_NUMBER_SIGNED_INT:
stream_ << int64_t(bits);
break;
case SPV_NUMBER_UNSIGNED_INT:
stream_ << uint64_t(bits);
break;
case SPV_NUMBER_FLOATING:
// Assume only 64-bit floats.
stream_ << spvutils::FloatProxy<double>(bits);
break;
default:
assert(false && "Unreachable");
}
} else {
// TODO(dneto): Support more than 64-bits at a time.
assert("Unhandled");
}
} break;
case SPV_OPERAND_TYPE_LITERAL_STRING: {
// Strings are always little-endian.
const std::string string(reinterpret_cast<const char*>(&words_[index]));
stream_ << "\"";
SetGreen();
for (auto ch : string) {
if (ch == '"' || ch == '\\') stream_ << '\\';
stream_ << ch;
}
ResetColor();
stream_ << '"';
} break;
case SPV_OPERAND_TYPE_CAPABILITY:
case SPV_OPERAND_TYPE_SOURCE_LANGUAGE:
case SPV_OPERAND_TYPE_EXECUTION_MODEL:
case SPV_OPERAND_TYPE_ADDRESSING_MODEL:
case SPV_OPERAND_TYPE_MEMORY_MODEL:
case SPV_OPERAND_TYPE_EXECUTION_MODE:
case SPV_OPERAND_TYPE_STORAGE_CLASS:
case SPV_OPERAND_TYPE_DIMENSIONALITY:
case SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE:
case SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE:
case SPV_OPERAND_TYPE_FP_ROUNDING_MODE:
case SPV_OPERAND_TYPE_LINKAGE_TYPE:
case SPV_OPERAND_TYPE_ACCESS_QUALIFIER:
case SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE:
case SPV_OPERAND_TYPE_DECORATION:
case SPV_OPERAND_TYPE_BUILT_IN:
case SPV_OPERAND_TYPE_GROUP_OPERATION:
case SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS:
case SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO: {
spv_operand_desc entry;
if (grammar_.lookupOperand(operand.type, word, &entry))
assert(false && "should have caught this earlier");
stream_ << entry->name;
} break;
case SPV_OPERAND_TYPE_FP_FAST_MATH_MODE:
case SPV_OPERAND_TYPE_FUNCTION_CONTROL:
case SPV_OPERAND_TYPE_LOOP_CONTROL:
case SPV_OPERAND_TYPE_IMAGE:
case SPV_OPERAND_TYPE_MEMORY_ACCESS:
case SPV_OPERAND_TYPE_SELECTION_CONTROL:
EmitMaskOperand(operand.type, word);
break;
default:
assert(false && "unhandled or invalid case");
}
ResetColor();
}
void Disassembler::EmitMaskOperand(const spv_operand_type_t type,
const uint32_t word) {
// Scan the mask from least significant bit to most significant bit. For each
// set bit, emit the name of that bit. Separate multiple names with '|'.
uint32_t remaining_word = word;
uint32_t mask;
int num_emitted = 0;
for (mask = 1; remaining_word; mask <<= 1) {
if (remaining_word & mask) {
remaining_word ^= mask;
spv_operand_desc entry;
if (grammar_.lookupOperand(type, mask, &entry))
assert(false && "should have caught this earlier");
if (num_emitted) stream_ << "|";
stream_ << entry->name;
num_emitted++;
}
}
if (!num_emitted) {
// An operand value of 0 was provided, so represent it by the name
// of the 0 value. In many cases, that's "None".
spv_operand_desc entry;
if (SPV_SUCCESS == grammar_.lookupOperand(type, 0, &entry))
stream_ << entry->name;
}
}
spv_result_t Disassembler::SaveTextResult(spv_text* text_result) const {
if (!print_) {
size_t length = text_.str().size();
char* str = new char[length + 1];
if (!str) return SPV_ERROR_OUT_OF_MEMORY;
strncpy(str, text_.str().c_str(), length + 1);
spv_text text = new spv_text_t();
if (!text) {
delete[] str;
return SPV_ERROR_OUT_OF_MEMORY;
}
text->str = str;
text->length = length;
*text_result = text;
}
return SPV_SUCCESS;
}
spv_result_t DisassembleHeader(void* user_data, spv_endianness_t endian,
uint32_t /* magic */, uint32_t version,
uint32_t generator, uint32_t id_bound,
uint32_t schema) {
assert(user_data);
auto disassembler = static_cast<Disassembler*>(user_data);
return disassembler->HandleHeader(endian, version, generator, id_bound,
schema);
}
spv_result_t DisassembleInstruction(
void* user_data, const spv_parsed_instruction_t* parsed_instruction) {
assert(user_data);
auto disassembler = static_cast<Disassembler*>(user_data);
return disassembler->HandleInstruction(*parsed_instruction);
}
} // anonymous namespace
spv_result_t spvBinaryToText(const uint32_t* code, const size_t wordCount,
const uint32_t options, spv_text* pText,
spv_diagnostic* pDiagnostic) {
// Invalid arguments return error codes, but don't necessarily generate
// diagnostics. These are programmer errors, not user errors.
if (!pDiagnostic) return SPV_ERROR_INVALID_DIAGNOSTIC;
const libspirv::AssemblyGrammar grammar;
if (!grammar.isValid()) return SPV_ERROR_INVALID_TABLE;
Disassembler disassembler(grammar, code, wordCount, options);
if (auto error =
spvBinaryParse(&disassembler, code, wordCount, DisassembleHeader,
DisassembleInstruction, pDiagnostic)) {
return error;
}
return disassembler.SaveTextResult(pText);
}