blob: 585053df78c10a7e371307c386498d82bb837711 [file] [log] [blame]
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and/or associated documentation files (the
// "Materials"), to deal in the Materials without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Materials, and to
// permit persons to whom the Materials are furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Materials.
//
// MODIFICATIONS TO THIS FILE MAY MEAN IT NO LONGER ACCURATELY REFLECTS
// KHRONOS STANDARDS. THE UNMODIFIED, NORMATIVE VERSIONS OF KHRONOS
// SPECIFICATIONS AND HEADER INFORMATION ARE LOCATED AT
// https://www.khronos.org/registry/
//
// THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
// MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
#include "validate.h"
#include "validate_passes.h"
#include "binary.h"
#include "diagnostic.h"
#include "instruction.h"
#include "spirv-tools/libspirv.h"
#include "opcode.h"
#include "operand.h"
#include "spirv_constant.h"
#include "spirv_endian.h"
#include <algorithm>
#include <cassert>
#include <cstdio>
#include <functional>
#include <iterator>
#include <sstream>
#include <string>
#include <vector>
using std::function;
using std::ostream_iterator;
using std::placeholders::_1;
using std::string;
using std::stringstream;
using std::transform;
using std::vector;
using libspirv::CfgPass;
using libspirv::InstructionPass;
using libspirv::ModuleLayoutPass;
using libspirv::SsaPass;
using libspirv::ValidationState_t;
#if 0
spv_result_t spvValidateOperandsString(const uint32_t* words,
const uint16_t wordCount,
spv_position position,
spv_diagnostic* pDiagnostic) {
const char* str = (const char*)words;
uint64_t strWordCount = strlen(str) / sizeof(uint32_t) + 1;
if (strWordCount < wordCount) {
DIAGNOSTIC << "Instruction word count is too short, string extends past "
"end of instruction.";
return SPV_WARNING;
}
return SPV_SUCCESS;
}
spv_result_t spvValidateOperandsLiteral(const uint32_t* words,
const uint32_t length,
const uint16_t maxLength,
spv_position position,
spv_diagnostic* pDiagnostic) {
// NOTE: A literal could either be a number consuming up to 2 words or a
// null terminated string.
(void)words;
(void)length;
(void)maxLength;
(void)position;
(void)pDiagnostic;
return SPV_UNSUPPORTED;
}
spv_result_t spvValidateOperandValue(const spv_operand_type_t type,
const uint32_t word,
const spv_operand_table operandTable,
spv_position position,
spv_diagnostic* pDiagnostic) {
switch (type) {
case SPV_OPERAND_TYPE_ID:
case SPV_OPERAND_TYPE_TYPE_ID:
case SPV_OPERAND_TYPE_RESULT_ID:
case SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID:
case SPV_OPERAND_TYPE_SCOPE_ID: {
// NOTE: ID's are validated in SPV_VALIDATION_LEVEL_1, this is
// SPV_VALIDATION_LEVEL_0
} break;
case SPV_OPERAND_TYPE_LITERAL_INTEGER: {
// NOTE: Implicitly valid as they are encoded as 32 bit value
} break;
case SPV_OPERAND_TYPE_SOURCE_LANGUAGE:
case SPV_OPERAND_TYPE_EXECUTION_MODEL:
case SPV_OPERAND_TYPE_ADDRESSING_MODEL:
case SPV_OPERAND_TYPE_MEMORY_MODEL:
case SPV_OPERAND_TYPE_EXECUTION_MODE:
case SPV_OPERAND_TYPE_STORAGE_CLASS:
case SPV_OPERAND_TYPE_DIMENSIONALITY:
case SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE:
case SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE:
case SPV_OPERAND_TYPE_FP_FAST_MATH_MODE:
case SPV_OPERAND_TYPE_FP_ROUNDING_MODE:
case SPV_OPERAND_TYPE_LINKAGE_TYPE:
case SPV_OPERAND_TYPE_ACCESS_QUALIFIER:
case SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE:
case SPV_OPERAND_TYPE_DECORATION:
case SPV_OPERAND_TYPE_BUILT_IN:
case SPV_OPERAND_TYPE_SELECTION_CONTROL:
case SPV_OPERAND_TYPE_LOOP_CONTROL:
case SPV_OPERAND_TYPE_FUNCTION_CONTROL:
case SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID:
case SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS:
case SPV_OPERAND_TYPE_SCOPE_ID:
case SPV_OPERAND_TYPE_GROUP_OPERATION:
case SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS:
case SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO: {
spv_operand_desc operandEntry = nullptr;
spv_result_t error =
spvOperandTableValueLookup(operandTable, type, word, &operandEntry);
if (error) {
DIAGNOSTIC << "Invalid '" << spvOperandTypeStr(type) << "' operand '"
<< word << "'.";
return error;
}
} break;
default:
assert(0 && "Invalid operand types should already have been caught!");
}
return SPV_SUCCESS;
}
spv_result_t spvValidateBasic(const spv_instruction_t* pInsts,
const uint64_t instCount,
const spv_opcode_table opcodeTable,
const spv_operand_table operandTable,
spv_position position,
spv_diagnostic* pDiagnostic) {
for (uint64_t instIndex = 0; instIndex < instCount; ++instIndex) {
const uint32_t* words = pInsts[instIndex].words.data();
uint16_t wordCount;
SpvOp opcode;
spvOpcodeSplit(words[0], &wordCount, &opcode);
spv_opcode_desc opcodeEntry = nullptr;
if (spvOpcodeTableValueLookup(opcodeTable, opcode, &opcodeEntry)) {
DIAGNOSTIC << "Invalid Opcode '" << opcode << "'.";
return SPV_ERROR_INVALID_BINARY;
}
position->index++;
if (opcodeEntry->numTypes > wordCount) {
DIAGNOSTIC << "Instruction word count '" << wordCount
<< "' is not small, expected at least '"
<< opcodeEntry->numTypes << "'.";
return SPV_ERROR_INVALID_BINARY;
}
spv_operand_desc operandEntry = nullptr;
for (uint16_t index = 1; index < pInsts[instIndex].words.size();
++index, position->index++) {
const uint32_t word = words[index];
// TODO(dneto): This strategy is inadequate for dealing with operations
// with varying kinds or numbers of logical operands. See the definition
// of spvBinaryOperandInfo for more.
// We should really parse the instruction and capture and use
// the elaborated list of logical operands generated as a side effect
// of the parse.
spv_operand_type_t type = spvBinaryOperandInfo(
word, index, opcodeEntry, operandTable, &operandEntry);
if (SPV_OPERAND_TYPE_LITERAL_STRING == type) {
spvCheckReturn(spvValidateOperandsString(
words + index, wordCount - index, position, pDiagnostic));
// NOTE: String literals are always at the end of Opcodes
break;
} else if (SPV_OPERAND_TYPE_LITERAL_INTEGER == type) {
// spvCheckReturn(spvValidateOperandsNumber(
// words + index, wordCount - index, 2, position, pDiagnostic));
} else {
spvCheckReturn(spvValidateOperandValue(type, word, operandTable,
position, pDiagnostic));
}
}
}
return SPV_SUCCESS;
}
#endif
spv_result_t spvValidateIDs(
const spv_instruction_t* pInsts, const uint64_t count,
const spv_opcode_table opcodeTable, const spv_operand_table operandTable,
const spv_ext_inst_table extInstTable, const ValidationState_t& state,
spv_position position, spv_diagnostic* pDiagnostic) {
auto undefd = state.usedefs().FindUsesWithoutDefs();
for (auto id : undefd) {
DIAGNOSTIC << "Undefined ID: " << id;
}
position->index = SPV_INDEX_INSTRUCTION;
spvCheckReturn(spvValidateInstructionIDs(pInsts, count, opcodeTable,
operandTable, extInstTable, state,
position, pDiagnostic));
return undefd.empty() ? SPV_SUCCESS : SPV_ERROR_INVALID_ID;
}
namespace {
// TODO(umar): Validate header
// TODO(umar): The Id bound should be validated also. But you can only do that
// after you've seen all the instructions in the module.
// TODO(umar): The binary parser validates the magic word, and the length of the
// header, but nothing else.
spv_result_t setHeader(void* user_data, spv_endianness_t endian, uint32_t magic,
uint32_t version, uint32_t generator, uint32_t id_bound,
uint32_t reserved) {
(void)user_data;
(void)endian;
(void)magic;
(void)version;
(void)generator;
(void)id_bound;
(void)reserved;
return SPV_SUCCESS;
}
// Improves diagnostic messages by collecting names of IDs
// NOTE: This function returns void and is not involved in validation
void DebugInstructionPass(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
switch (inst->opcode) {
case SpvOpName: {
const uint32_t target = *(inst->words + inst->operands[0].offset);
const char* str =
reinterpret_cast<const char*>(inst->words + inst->operands[1].offset);
_.assignNameToId(target, str);
} break;
case SpvOpMemberName: {
const uint32_t target = *(inst->words + inst->operands[0].offset);
const char* str =
reinterpret_cast<const char*>(inst->words + inst->operands[2].offset);
_.assignNameToId(target, str);
} break;
case SpvOpSourceContinued:
case SpvOpSource:
case SpvOpSourceExtension:
case SpvOpString:
case SpvOpLine:
case SpvOpNoLine:
default:
break;
}
}
// Collects use-def info about an instruction's IDs.
void ProcessIds(ValidationState_t& _, const spv_parsed_instruction_t& inst) {
if (inst.result_id) {
_.usedefs().AddDef(
{inst.result_id, inst.type_id, inst.opcode,
std::vector<uint32_t>(inst.words, inst.words + inst.num_words)});
}
for (auto op = inst.operands; op != inst.operands + inst.num_operands; ++op) {
if (spvIsIdType(op->type))
_.usedefs().AddUse(inst.words[op->offset]);
}
}
spv_result_t ProcessInstruction(void* user_data,
const spv_parsed_instruction_t* inst) {
ValidationState_t& _ = *(reinterpret_cast<ValidationState_t*>(user_data));
_.incrementInstructionCount();
if (inst->opcode == SpvOpEntryPoint) _.entry_points().push_back(inst->words[2]);
DebugInstructionPass(_, inst);
// TODO(umar): Perform data rules pass
ProcessIds(_, *inst);
spvCheckReturn(ModuleLayoutPass(_, inst));
spvCheckReturn(CfgPass(_, inst));
spvCheckReturn(SsaPass(_, inst));
spvCheckReturn(InstructionPass(_, inst));
return SPV_SUCCESS;
}
} // anonymous namespace
spv_result_t spvValidate(const spv_const_context context,
const spv_const_binary binary, const uint32_t options,
spv_diagnostic* pDiagnostic) {
if (!pDiagnostic) return SPV_ERROR_INVALID_DIAGNOSTIC;
spv_endianness_t endian;
spv_position_t position = {};
if (spvBinaryEndianness(binary, &endian)) {
DIAGNOSTIC << "Invalid SPIR-V magic number.";
return SPV_ERROR_INVALID_BINARY;
}
spv_header_t header;
if (spvBinaryHeaderGet(binary, endian, &header)) {
DIAGNOSTIC << "Invalid SPIR-V header.";
return SPV_ERROR_INVALID_BINARY;
}
// NOTE: Parse the module and perform inline validation checks. These
// checks do not require the the knowledge of the whole module.
ValidationState_t vstate(pDiagnostic, options, context);
spvCheckReturn(spvBinaryParse(context, &vstate, binary->code,
binary->wordCount, setHeader,
ProcessInstruction, pDiagnostic));
// TODO(umar): Add validation checks which require the parsing of the entire
// module. Use the information from the ProcessInstruction pass to make the
// checks.
if (vstate.unresolvedForwardIdCount() > 0) {
stringstream ss;
vector<uint32_t> ids = vstate.unresolvedForwardIds();
transform(begin(ids), end(ids), ostream_iterator<string>(ss, " "),
bind(&ValidationState_t::getIdName, vstate, _1));
auto id_str = ss.str();
return vstate.diag(SPV_ERROR_INVALID_ID)
<< "The following forward referenced IDs have not be defined:\n"
<< id_str.substr(0, id_str.size() - 1);
}
// NOTE: Copy each instruction for easier processing
std::vector<spv_instruction_t> instructions;
uint64_t index = SPV_INDEX_INSTRUCTION;
while (index < binary->wordCount) {
uint16_t wordCount;
SpvOp opcode;
spvOpcodeSplit(spvFixWord(binary->code[index], endian), &wordCount,
&opcode);
spv_instruction_t inst;
spvInstructionCopy(&binary->code[index], opcode, wordCount, endian, &inst);
instructions.push_back(inst);
index += wordCount;
}
if (spvIsInBitfield(SPV_VALIDATE_ID_BIT, options)) {
position.index = SPV_INDEX_INSTRUCTION;
spvCheckReturn(spvValidateIDs(instructions.data(), instructions.size(),
context->opcode_table, context->operand_table,
context->ext_inst_table, vstate, &position,
pDiagnostic));
}
return SPV_SUCCESS;
}